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Optimal linear drift for the speed of convergence of an

hypoelliptic di�usion

Arnaud Guillin, Pierre Monmarch�e

April 25, 2016

Abstract

Among all generalized Ornstein-Uhlenbeck processes which sample the same invariant mea-
sure and for which the same amount of randomness (a N -dimensional Brownian motion) is
injected in the system, we prove that the asymptotic rate of convergence is maximized by a
non-reversible hypoelliptic one.

1 Introduction

For a potential V : RN ! R such that
R
e�V <1, consider � the associated Gibbs law, namely

the probability measure with a density with respect to the Lebesgue measure proportional to
e�V . In order to compute expectations with respect to �, Markov Chain Monte Carlo (MCMC)
algorithms are widely spread. Such an algorithm is based on an ergodic Markov process (Xt)t�0
whose unique invariant law is �, so that for T large enough XT is not far to be distributed
according to �. The e�ciency of the algorithm is directly linked to the rate of convergence of
X toward its equilibrium, which is why a fair amount of work has been devoted to accelerating
this convergence (see [11] and references within). In particular, since there are many possible
Markov processes to sample the same equilibrium �, the question arises to choose the fastest,
if any.

Along with those obtained from a Metropolis-Hasting procedure (see e.g. [15] and references
within), one of the most classical Gibbs sampler is the Fokker-Planck di�usion that solves the
SDE

dXt = �rV (Xt)dt+
p
2dBt (1)

where B is a standard N -dimensional Brownian motion. Its generator is

L = �rV � r+�

where we recall the generator of a Markov process X is formally de�ned by

Lf(x) = (@t)jt=0 E (f(Xt) j X0 = x) .

The Fokker-Planck di�usion is a reversible process in the sense its generator is self-adjoint in
L2(�). This property is of theoretical interest but, from a practical point of view, reversible
processes are usually not optimal with regard to their speed of convergence. A particular
technique for improving the convergence of X to � is to add a divergence-free (with respect to
�) drift b, namely to consider the SDE

dXt = (�rV (Xt) + b(Xt)) dt+
p
2dBt (2)
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with b such that r � �be�V � = 0 where r� stands for the divergence operator. That way,
the equilibrium is not a�ected, but the process is no longer reversible and the convergence
is improved (cf. [8, 9, 1, 10]). It can be easily seen if we consider for example convergence
in L2(�), where the spectral gap of the reversible dynamic is a lower bound for the speed of
convergence of the non reversible one (just by comparison of Dirichlet forms), see [9].

Another way to improve the convergence is to consider a kinetic process (X,Y ) where X
is the position and Y = dX=dt is the velocity, which acts as an instantaneous memory (see
[6, 15, 5]). For instance the Langevin di�usion�

dXt = Ytdt

dYt = �rV (Xt)dt� Ytdt+
p
2dBt

(3)

admits e�H as an invariant measure where the Hamiltonian is H(x, y) = V (x) + 1
2 jyj2. In

particular, the �rst marginal of this equilibrium is �. The Langevin di�usion is non-reversible
and moreover it is hypoelliptic. It has been observed in [15] that it may converge faster than
the reversible Fokker-Planck di�usion in some applied problems. It recently regained much
interest under the name Hamiltonian Monte Carlo methods [7].

For both dynamics (2) and (3) it is di�cult for a general potential V to obtain sharp
theoretical bounds on the rates of convergence (see [13] for consideration on this matter in the
metastable case, namely the regime "! 0 with the potential V" =

1
"
V where V has several local

minima). A particular simple situations is the case where V is quadratic or, in other words, � is
a Gaussian measure. Of course MCMC algorithms are not really relevant in practice regarding
sampling according to Gaussian measures, but then the exact rates of convergence for (2) and
(3) are trackable (see [2, 12] and below).

In this context, the purpose of the present work is to answer the problem raised in [10],
namely: for a given Gaussian law �, is it possible to �nd the optimal divergence-free linear drift
one can add to (3) in order to obtain the largest rate of convergence ? More generally, what
is the largest rate of convergence one can get when sampling according to � using a (possibly
hypoelliptic) Markov di�usion with linear drift and constant di�usion coe�cients ?

Obviously this question is ill-posed since the invariant measure of (Wt)t�0 = (X�t)t�0 is still
� for any � > 0, and W goes � times faster than X to equilibrium. Following [6] we will thus
work under the additional assumption that the total amount of randomness instantaneously
injected in the system (that is, the trace of the di�usion matrix) is prescribed.

In the following, we will �rst introduce the main notations and recall basic facts about
generalized Ornstein-Uhlenbeck prcesses. In Section 2, we present our main results, giving a
positive and de�nite answer to the problem raised in [10]. Section 3 is dedicated to the proofs
of our main results, whereas Section 4 presents numerical illustration of our results and present
some thoughts on the general case we wish to tackle in the future.

Notations

In this whole work, MN (R) is the set of N � N real matrices, S>0N (R) (resp. S>0N (R)) the
set of positive de�nite (resp. semi-de�nite) symmetric ones and AN (R) is the set of anti-
symmetric ones. The spectrum of a matrix A is �(A), its trace is Tr(A), its transpose is AT

and vectors are considered as column matrices, so that the scalar product x � y is xT y. Finally
<(�) stands for the real part of � 2 C and diag(a1, : : : , aN ) stands for the the diagonal matrix
with coe�cients ai.

Basic facts about Ornstein-Uhlenbeck processes

We recall here some facts whose proofs and details may be found for instance in [2]. A gen-
eralized Ornstein-Uhlenbeck process (OUP) is any di�usion with a linear drift and a constant
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matrix di�usion. In other words in dimension N it is the solution of an SDE of the form

dXt = AXt +
NX
j=0

�jdB
j
t

where A is a constant matrix, the �j 's are constant vectors and the Bj 's are 1-dimensional
independent Brownian motions. A Markov process is an OUP if and only if its generator is of
the form

LA,Df(x) := (Ax)Trf(x) +r � (Drf) (x) (4)

where D = 1
2

P
�j�

T
j is a positive semi-de�nite matrix and r� stands for the divergence

operator. Recall that a measure is said invariant for X (or equivalently for LA,D) if Law (X0) =
� implies Law (Xt) = � for all t � 0. For an OUP, an invariant measure is necessarily a
(possibly degenerated) Gaussian distribution.

On the other hand the process is hypoelliptic if and only if KerD does not contain any non-
trivial subspace which is invariant by AT , and in that case an invariant measure is necessarily
unique and non-degenerated (it has a positive density with respect to the Lebesgue measure
on RN ). In the case where the invariant measure exists and is unique, its density  1 is the
unique solution of L0A,D = 0 where

L0A,Df(x) = �(Ax)Trf(x)� Tr(A)f(x) +r � (Drf) (x)

is the dual in the Lebesgue sense of LA,D.
We will focus mainly on generalized Ornstein-Uhlenbeck processes which have a non de-

genrate Gaussian distribution as invariant probability measure. Let N � 1, S 2 S>0N (R)
and

 1(x) =
(detS)

1
2

(2�)
N

2

exp

��xTSx
2

�

be the density of the (non-degenerated) Gaussian distribution with covariance matrix S�1.
The dual of LA,D in L2 ( 1) is then

L�A,Df(x) =
1

 1(x)
L0A,D (f 1) (x)

= � ((2DS +A)x)T rf(x) +r � (Drf) (x)
= L�(2DS+A),Df(x).

Starting from an initial distribution  0, the law  t and the density with respect to equilibrium
 t
 1

at time t of an OUP generated by LA,D are (weak) solutions of

@t t = L0A,D t and @t

�
 t
 1

�
= L�A,D

�
 t
 1

�
.

2 Main results

Let
I(S) = �

(A,D) 2MN�N (R)� S>0N (R) , TrD � N , L0A,D 1 = 0
	

be the set of drift/di�usions matrices such that  1 is invariant for the corresponding OUP and
with at most the same amount of randomness injected in the system as the reversible dynamics
with generator

L�S,IN f(x) = � (Sx)T rf(x) + �f(x).
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For A 2Md�d (R) we write

�(A) = inff�<(�), � 2 �(A)g.

As we will see later, if (A,D) 2 I(S) with �(A) > 0 then  t !  1 as t!1 for all  0, which
implies  1 to be the unique invariant measure of LA,D, which is by consequence necessarily
hypoelliptic.

Our main result identi�es the maximum of �(A) under the constraint (A,D) 2 I(S).
Theorem 1. For all S 2 S>0N (R),

max f�(A), (A,D) 2 I(S)g = max�(S).

For an OUP with drift matrix A the rate of convergence to equilibrium is �(A) (see [12] and
below). Hence Theorem 1 states that it is possible to sample an OUP that converges at rate
max�(S) to  1 using the same amount of randomness as the classical reversible dynamics
with generator L�S,IN , while the latter converges at rate

�(�S) = min�(S).

This should be compared to the results of Leli�evre, Nier and Pavliotis [10] that reads

max f�(A), A s.t. (A, IN ) 2 I(S)g =
TrS

N

which is the arithmetic mean of all eigenvalues of S. On the other hand, for (A,D) 2 I(S), the
process is reversible if and only if A = �(2DS+A), namely A = �DS, and for D = N

TrS�1S
�1

this gives

�(A) =
N

TrS�1

which is the harmonic mean of the eigenvalues of S. Note that

min�(S) � N

TrS�1
� TrS

N
� max�(S)

and that the equalities hold only when S is a homogeneous dilation, in which case no non-
reversible dynamics can yield any improvement of the rate of convergence to equilibrium.
On the other hand when the eigenvalues have di�erent orders of magnitude (which means
the problem is multi-scale; cf. [10, Fig. 4] where S has uniformly distributed coe�cients in
[0, 1]), the improvement is already clear from the reversible di�usion (with D = IN ) to the non-
reversible (but still elliptic) ones, but yet it seems even more drastic when hypoelliptic dynamics
are allowed. Obviously the cost to pay for an optimal asymptotic speed of convergence is an
initial delay for small times.

We will focus here on the convergence in the entropy sense, ensuring for example also
convergence in total variation via Pinsker's inequality. However, the same line of reasoning will
also work for L2 convergence or ��entropies (see [4]). More precisely, for a measure �, denote
by

Ent�(h) :=

Z
h lnhd��

�Z
hd�

�
ln

�Z
hd�

�

the entropy of a positive function h with respect to �. For the reversible elliptic OUP with
generator L�S,IN , it is well known that for all h > 0

Ent 1

�
e
tL�
�S,IN h

�
� e��(�S)tEnt 1 (h) .
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This is nothing else than an equivalent formulation of the Gaussian logarithmic Sobolev in-
equality of Nelson, see for example [3] and references therein.

For a general OUP, if (A,D) 2 I(S), according to [12, Corollary 12] there exists a constant
c � 1 such that for all h > 0

Ent 1

�
etL

�

A,Dh
�

� ce��(A)tEnt 1 (h)

at least if A is diagonalizable (when it is not the case, a polynomial prefactor should be added).
For a non-reversible yet elliptic OUP, c may be strictly greater than 1 due to a change of norm,
exactly as when we consider the transport semi-group etLA,0f = f

�
etA�� alone and write

jetAxj2 � jQxjjQetAQ�1jjQ�1xj � e��(A)tjQjjQ�1jjxj2.
When the process is both non-reversible and non-elliptic, there are two reasons for c to be
greater than 1: the change of norm for etA, and the initial regularization which is really slower
than in the elliptic case. Indeed, the part of c which is due to slow regularization may badly
behave with N . More precisely, since the optimal (A,D) 2 I(S) we will consider will be very
degenerated (the rank ofD being 1), [12, Remark p.16] yields a constant c of order N40N2

which
is, at the very least, absolutely awful. Of course this estimate is the result of a succession of
rough bounds and a more careful (and involved) analysis could certainly re�ne it, but it is
unclear whether the optimal bound is less than exponential with respect to N .

Fortunately this problem disappears if we start the dynamics with an elliptic one and then
switch to the hypoelliptic optimal one, ensuring thus �rst a quick regularization property.

Theorem 2. For any C > 1 we can construct (A,D) 2 I(S) such that for all h > 0, with
�nite entropy, and for all t � t0 > 0

Ent 1

�
e(t�t0)L

�

A,Det0L�S,IN h
�

� C
max�(S)

2t0 (min�(S))2
e�(max�(S))(t�t0)Ent 1 (h) .

Moreover it is possible to construct (A,D) 2 I(S) with kAkF � 4N2
q

(max�(S))3

min�(S) (where

kAkF =
p
Tr (ATA) is the Frobenius norm) such that for all h > 0, with �nite entropy,

and for all t � t0 > 0

Ent 1

�
e(t�t0)L

�

A,Det0L�S,IN h
�

� max�(S)

t0 (min�(S))2
e�(max�(S))(t�t0)Ent 1 (h) .

It is thus possible to completely quantify the initial loss, which, due to the role of the initial
warm up via the reversible di�usion, boils down to the change of norm in the energy.

3 Proofs

Let us start with an easy lemma which will enable us to characterize A in the couple (A,D) 2
I(S) once D is �xed.

Lemma 3. For S 2 S>0N (R), the following are equivalent:

� (A,D) 2 I(S)
� D 2 S>0N (R) with TrD � N and there exists J 2 AN (R) such that

A = �(D + J)S.

Proof. Fix D 2 S>0N (R) such that TrD � N . First we see that

L0�DS,D ( 1) = r � ((DSx) 1 � (DSx) 1) = 0.

As a consequence �
L0A,D � L0�DS,D

�
 1 = �r � ((A+DS)x 1)

and [10, Lemma 1] concludes.
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We may now proceed to the proof of our main result.

Proof of Theorem 1. Let (A,D) 2 I(S), so that by the previous lemma 3, D 2 S>0N (R) such
that TrD � N , J 2 AN (R) and A = �(D + J)S. Following [10] we write

(D + J)S = (S)�
1
2

� eD + eJ� (S) 12
where eD = (S)

1
2D(S)

1
2 and similarly for eJ . Note that M $ (S)

1
2M(S)

1
2 is a bijection which

�xes S>0N (R) and AN (R), and that

�(A) = �
�
� eD � eJ� .

From [10, Propositions 1 and 4],

max
n
�
�
� eD � eJ� , eJ 2 AN (R)

o
=

Tr eD
N

.

One may object that [10, Propositions 1 and 4] are written for an invertible matrix, which is
not necessarily the case for eD. It can be seen that this restriction is not necessary in the proof;
or to save the reader from a careful check of these proofs, we may note that eD + "IN falls
within the scope of [10], which yields the same result. Hence

max f� (A) , (A,D) 2 I(S)g =
1

N
max

n
Tr
�
(S)

1
2D(S)

1
2

�
, TrD � N

o
.

Let Q be an orthonormal matrix such that S
1
2 = QT�Q with � = diag(

p
�1, : : : ,

p
�).

Tr
�
(S)

1
2D(S)

1
2

�
= Tr

�
�QDQT�

�
� maxf�i, i = 1..NgTr �QDQT �
= max�(S)Tr (D) .

We have proved

max f� (A) , (A,D) 2 I(S)g � max�(S)

and to prove equality holds we need to �nd D 2 S>0N (R) with TrD � N such that Tr eD =
N max�(S). Let i 2 J1,NK be such that �i = max�(S), let Ei,i be the N � N matrix with
all coe�cients being zero except the coe�cient (i, i) being equal to 1, and set D = NQTEi,iQ.
In other words D = Nviv

T
i where vi is a normalized eigenvector of S associated to �i. In that

case

eD = NQT�QQTEi,iQQ
T�Q

= �iD

which concludes the proof.

Proof of Theorem 2. Without loss of generality (up to an orthonormal change of variables) we
can assume the vector v with all coordinates being equal to 1 is an eigenvector of S associated
to � = max�(S). Let D = vvT , which is the matrix with all coe�cients equal to 1. Let 0 <
�1 < �2 < � � � < �N (to be speci�ed later) and Q = diag(�1, : : : , �N ). Note that the eigenvectors
of Q are obviously the canonical basis vectors (e1, : : : , eN ), which satisfy eTi Dei = 1 = TrD=N

for all i. Let eJ be the antisymmetric matrix de�ned by� eJ�
k,l

= ��k + �l
�k � �l
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if k 6= l and 0 else. According to [10, Lemma 2],

eJQ�Q eJ = �DQ�QD + 2Q (5)

and �
�
D + eJ� � 1 + iR. Let

A = ��S� 1
2

�
D + eJ�S 1

2 = �
�
D + S�

1
2 eJS� 1

2

�
S,

so that (A,D) 2 I(S) according to Lemma 3. Recall that L�A,D = LC,D with

C := �2DS �A

= ��S� 1
2

�
D � eJ�S 1

2 .

and note that �
�
D � eJ� = �

�
D + eJ�T � 1 + iR.

Let � be either the function r > 0 7! �(r) = r ln r (or r 2 R 7! �(r) = 1
2r

2 if one desires to
deal with L2 decay rather than entropy), so that �00(r) is either r�1 (or 1). According to [12,
Lemma 8], for all M 2 S>0N (R) and for all h > 0, denoting by ht = etLC,Dh,

@t

�
�00(ht) (rht)T Mrht

�
� 2�00(ht) (rht)T MCrht

Applying this with M = S
1
2QS

1
2 , we obtain

@t

�
�00(ht)

���Q 1
2S

1
2rht

���2� � �2��00(ht) (rht)T S
1
2Q

�
D � eJ�S 1

2rht

= ���00(ht)
�
S

1
2rht

�T �
QD +DQ�Q eJ + eJQ�S 1

2rht

= �2��00(ht)
�
S

1
2rht

�T
QS

1
2rht

where the �rst equality comes from the fact thatQ andD are symmetric and ~J is antisymmetric,
and the last equality from (5). Hence

�00(ht)
���Q 1

2S
1
2ht

���2 � e�2�(t�s)�00(hs)
���Q 1

2S
1
2hs

���2 .
The log-Sobolev inequality for the standard Gaussian distribution 
(dx) = 1p

2�
e�

1
2
jxj2 reads

Ent
f � 1

2

Z jrf j2
f

d
,

for all f > 0 such that the r.h.s is �nite. By the change of variable z = S
1
2x it yields

Ent 1f � 1

2

Z
(rf)TS�1rf

f
d 1.

Now

Ent 1 (ht) � 1

2 (min�(S))2

Z
(rht)TSrht

ht
d 1

� 1

2�1 (min�(S))2

Z ���Q 1
2S

1
2rht

���2
ht

d 1

� e��(t�s)�N
2�1 (min�(S))2

Z ���S 1
2rhs

���2
hs

d 1,

� �N max� (S)

2�1 (min�(S))2
e��(t�s)

Z jrhsj2
hs

d 1.
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Finally the elliptic reversible generator L�S,IN satis�es the Bakry-Emery criterion �2 � 0 (see
[4, 3] for instance), so that if now ht = etL�S,IN h,Z jrhsj2

hs
d 1 � 1

s
Ent 1h.

We can then take �N arbitrarily close to �1 to get the �rst part of Theorem 2. On the other
hand, following [10, Remark 8], if we choose �k = N + k (so that �N � 2�1), using that for any
T 2 S>0N (R), kATkF � max�(T )kAkF , we get

kAk2F = �2kS� 1
2

�
D + eJ�S 1

2 k2F

� �3

min�(S)

0
@N +

X
j 6=k

�
��k + �j
�k � �j

+ 1

�2
1
A

� �3

min�(S)

�
N +N(N � 1)(4N)2

�
� 16�3N4

min�(S)
.

4 Numerical Illustrations

In dimension 2 consider S = diag(", 1). For any h 2 R, the corresponding  1 is the unique
equilibrium of

dXt = �
�
" �h
"h 1

�
Xt +

p
2dBt (6)

where B = (B1,B2) is a 2-dimensional Brownian motion. It is also an equilibrium for

dZt = �
�
0 �h
"h 2

�
Zt +

p
2

�
0

dB1 + dB2

�
(7)

which is hypoelliptic as soon as h 6= 0. When h is large enough, away from the origin (so
that the random forces are small with respect to the deterministic drift), the behaviours of X
and Z are similar, mostly driven by a fast rotation, while the �rst coordinate of the reversible
process solving (6) with h = 0 moves slower, and thus covers the space less e�ciently (see Fig.
1, where the parameter p is the step size of the Euler Scheme). Note that in the case of Z,
even if this rotation is randomly perturbed, since dZ1 = hZ2dt, the process always goes from
left to right in the lower half-plane f(x, y), y < 0g and from right to left in the upper one.

In (6), the optimal rate 1+"
2 is obtained for h2 � (1+")2

4" � 1 while in (7) the optimal rate 1

is obtained for h2 � 1
"
. For instance if we chose h =

q
2
"
, then both conditions are ful�lled and

in both cases the drift matrix is diagonalizable with two conjugated distinct eigenvalues. For
a diagonalizable 2� 2 matrix A with eigenvalues �1 = ��2 6= �2, denoting by � = j�1 � �2j and
by � = j�vT1 v2j�1 where (v1, v2) is a normalized eigenbasis of A, the Hermitian matrix norm of
etA can be explicitly computed (see e.g. [14, Lemma 3]) as



etA

2 = e2<(�1)t

0
@1 +

2q
2(�2�1)
1�cos(�t) + 1� 1

1
A .

This is represented in Figure 2 (with " = 0.05 for every curves, h =
q

2
"
for the second and

third ones and h =
q

1
"
for the last one).
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Figure 1: Trajectories for a multi-scale equilibrium.

Figure 2: Norms of the drift matrix exponentials

9



As remarked in the Introduction, how to boost the speed of convergence of a Markov
process to sample a Gibbs measure is perhaps less relevant for quadratic potentials. There
are thus two distinct problems that we have in mind for the future. The �rst one deals with
the direct generalization of our result when we replace the Gaussian measure  1 by e�V

where V satis�es Hess(V ) � S > 0, with S constant postive symmetric. Is it possible to
add a divergence free drift and a potentially degenrate (constant) di�usion matric so that
the rate of convergence to equilibrium is max(�(S))? The question is also of great interest
when the dynamics is metastable, namely when V has several local minima. A toy problem
of this phenomenon would be to consider in dimension 1 (even if MCMC algorithm usually
outperforms deterministic algorithm only in large dimension) a two-wells potential

V (x) = ax4 � bx2

with a, b > 0. Then V has two minima �b2=(4a) attained at x = �
p
b=(2a) and separated by

a local maxima 0 at x = 0. Depending on the energy barrier V (0) � V
�p

b=(2a)
�
= b2=(4a)

to overcome in order to go from one catchment area to the other, the reversible Fokker-Planck
di�usion (6) will take a long time to achieve such a crossing. In Figures 3 and 4 are represented
two such trajectories over di�erent periods, along with trajectories of the �rst coordinate of a
kinetic Langevin di�usion (7) (in each case both the reversible and the kinetic di�usions are
driven by the same Brownian motion).

Figure 3: Metastable trajectories in short time.

The �rst point to comment in Figure 3 is that the trajectory is smoother in the kinetic
case than in the reversible one, which is obvious since in the �rst case it is 3/2-H�older con-
tinuous while in the second one it is only 1/2-H�older continuous. Second, due to its inertia,
the trajectory in the kinetic case shows large oscillations in which kinetic and potential energy
successively convert one to the other. In particular from the times t ' 6.5 to 10 we can see the
process has a high level of total energy and thus these large oscillations cross the energy barrier
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at x = 0 without di�culty. At some point the total energy will decrease su�ciently for the
process to stay trapped in the vicinity of one of the two minima, which has then a reasonable
chance to be di�erent from the one from which it started before the energy level got high.

Figure 4: Metastable trajectories in longer time.

That way we would interpret Figure 4 as an illustration to the fact the Langevin dynamics
deals more e�ciently with metastability (or at least energy barriers) than the reversible Fokker-
Planck di�usion. With Theorem 2 in mind, we could also interpolate from these �gures the
behaviour of a process that switch at random times from Equation (6) to (7) (or anything else
in that spirit). However it is di�cult to export an intuition based on a toy model in dimension
1 and with a �xed set of parameter (especially the variance of the velocity in (7)) to a more
general case.
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