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Approximability of 3- and 4-hop bounded
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2 Institut TELECOM, TELECOM & Management SudParis,
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Abstract A path is said to be `-bounded if it contains at most ` edges. We consider two types of `-bounded
disjoint paths problems. In the maximum edge- or node-disjoint path problems MEDP(`) and MNDP(`), the
task is to find the maximum number of edge- or node-disjoint `-bounded (s, t)-paths in a given graph G with
source s and sink t, respectively. In the weighted edge- or node-disjoint path problems WEDP(`) and WNDP(`),
we are also given an integer k ∈ N and non-negative edge weights ce ∈ N, e ∈ E, and seek for a minimum
weight subgraph of G that contains k edge- or node-disjoint `-bounded (s, t)-paths. Both problems are of great
practical relevance in the planning of fault-tolerant communication networks, for example.
Even though length-bounded cut and flow problems have been studied intensively in the last decades, theNP-
hardness of some 3- and 4-bounded disjoint paths problems was still open. In this paper, we settle the complexity
status of all open cases showing that WNDP(3) can be solved in polynomial time, that MEDP(4) is APX -
complete and approximable within a factor of 2, and that WNDP(4) and WEDP(4) are APX -hard and NPO-
complete, respectively.
Keywords: Graph algorithms; length-bounded paths; complexity; approximation algorithms

1 Introduction

Two major concerns in the design of modern communication networks are the protection against po-
tential failures and the permanent provision of a guaranteed minimum level of service quality. A wide
variety of models expressing such requirements may be found in the literature, e.g. [1,14,15,16]. Coping
simultaneously with both requirements naturally leads to length-restricted disjoint paths problems: In
order to ensure that a pair of nodes remains connected also after some nodes or edges of the network
fail, one typically demands the existence of several node- or edge-disjoint transmission paths between
them. Each node on a transmission path, however, may lead to additional packet delay, jitter, and poten-
tial transmission errors for the corresponding data stream. To provide a guaranteed level of transmission
service quality, these paths thus must not contain more than a certain number of intermediate nodes or,
equivalently, of edges.

Mathematically, the task of verifying if a given network satisfies the robustness and quality require-
ments of a given node pair can be formulated as an edge- or node-disjoint paths problem. LetG = (V,E)
be a simple graph with source s ∈ V and sink t ∈ V and let k ∈ N. A path in G is said to be `-bounded
for a given number ` ∈ N if it contains at most ` edges. In the edge-disjoint paths problem EDP (`),
the task is to decide if there are k edge-disjoint `-bounded (s, t)-paths in G or not. In the correspond-
ing maximum edge-disjoint paths problem MEDP(`), we wish to find the maximum number of edge-
disjoint `-bounded (s, t)-paths. The analogous node-disjoint path problems are denoted as NDP (`) and
MNDP (`). The task of designing a network that satisfies the requirements of a single node pair can be
modeled as a weighted edge- or node-disjoint path problems WEDP(`) and WNDP(`). In these problems,
we are given the graph G, source s and sink t, the number of paths k, and non-negative edge weights
ce ∈ N, e ∈ E. The task is to find a minimum cost subsetE′ ⊆ E such that the subgraph (V,E′) contains
at least k edge- or node-disjoint `-bounded (s, t)-paths, respectively.
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Table 1. Known and new (bold) complexity results for node- and edge-disjoint `-bounded paths problems.

` MNDP(`) WNDP(`) MEDP(`) WEDP(`)
≤ 2 P P P P
= 3 P P P P
= 4 P APX-hard (at least) APX-complete NPO-complete
≥ 5 APX -complete NPO-complete APX -complete NPO-complete

Due to their great practical relevance, problems asking for disjoint paths or unsplittable flows between
some node pairs have received considerable attention in the literature. Structural results, complexity
issues, and approximation algorithms for disjoint paths problems without length restrictions are discussed
in [8,9,20], for example.

In a seminal article Menger [24] shows that the maximum number of edge- or node-disjoint (s, t)-
paths in a graph is equal to the minimum size of an (s, t)-edge- or (s, t)-node-cut, respectively. Lovász
et al. [21], Exoo [12], and Niepel et al. [25] showed that this strong duality between disjoint paths and
(suitably defined) cuts still holds for 4-bounded node-disjoint paths and node-cuts and for 3-bounded
edge-disjoint paths and edge-cuts, but that Menger’s theorem does not hold for length bounds ` ≥ 5.
The ratio between the number of paths and the cut size is studied in [5,27]. Generalizations of Menger’s
theorem and of Ford and Fulkerson’s max flow min cut theorem to length-bounded flows are an area of
active research [3,23].

Polynomial time algorithms for the minimum `-bounded edge-cut problem with ` ≤ 3 have been
presented by Mahjoub and McCormick [22]. Baier et al. [4] proved that the minimum `-bounded edge-
cut problem is APX -hard for ` ≥ 4 and that the corresponding node-cut problem is APX -hard for
` ≥ 5.

Itai et al. [19] and Bley [6] showed that the problems MEDP(`) and MNDP(`) of finding the maxi-
mum number of edge- and node-disjoint `-bounded paths are polynomially solvable for ` ≤ 3 and ` ≤ 4,
respectively, and that both problems are APX -complete for ` ≥ 5. Heuristics to find large sets of dis-
joint length bounded paths can be found, e.g., in [19,26,29]. Polyhedral approaches to these problems
are investigated in [7,10,18]. The weighted disjoint paths problems WEDP(`) and WNDP(`) are known
to be NPO-complete for ` ≥ 5 and to be polynomially solvable for ` ≤ 2 in the node-disjoint case and
for ` ≤ 3 in the edge-disjoint case [6]. Further results and a finer analysis of the complexity of disjoint
paths problems by means of different parameterizations (namely w.r.t. the number of paths, their length,
or the graph treewidth) are presented in [13,17]. The complexity of MEDP(4), WEDP(4), WNDP(3), and
WNDP(4), however, has been left open until now.

The contribution of this paper is to close all these open cases. In Section 2, we prove that the maxi-
mum edge-disjoint 4-bounded paths problem MEDP(4) isAPX -complete, presenting a 2-approximation
algorithm and an approximation preserving reduction from MAX-k-SAT(3) to MEDP(4). This implies
that the corresponding weighted edge-disjoint paths problem WEDP(4) isNPO-complete. In Section 3,
we then show how to solve the weighted node-disjoint 3-bounded paths problem WNDP(3) via matching
techniques in polynomial time and prove that the 4-bounded version of this problem is at least APX -
hard. Table 1 summarizes the known and new complexity results regarding these problems. All hardness
results and algorithms presented in this paper generalize in a straightforward way to directed graphs and
to non-simple graphs containing parallel edges.

2 Edge-Disjoint 4-Bounded Paths

In this section, we study the approximability of the two edge-disjoint 4-bounded problems. First, we
consider the problem of maximizing the number of edge-disjoint paths. One easily observes that any
inclusion-wise maximal set of edge-disjoint 4-bounded (s, t)-paths, which can be computed in polyno-
mial time by greedily adding disjoint paths to the solution, is a 4-approximate solution for MEDP(4) [6].
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Figure 1. Construction of the hop-extended digraph G′ (right) from the given graph G (left) in Step 1 of algorithm EXFLOW.
Arcs with cost 0 in G′ are thick.

A 2-approximation algorithm is obtained as shown in algorithm EXFLOW.

EXFLOW

1. Compute a minimum cost maximum (s0, t4)-flow f in the hop-extended digraph G′.
Let F := {P1, . . . , Pk} be the corresponding 4-bounded simple paths in G.

2. Create the conflict graph H := (F , {PiPj | Pi ∩ Pj 6= ∅}).
3. Compute an independent set S ⊆ F in H with |S| ≥ 1

2 |F|.
4. Return S .

In the first step of algorithm EXFLOW, we construct the directed graphG′ = (V ′, E′) with V ′ =
⋃4

i=0 Vi

for V0 := {s0}, V4 := {t4}, and Vi := {vi | v ∈ V \{s, t} with distG(v, s) ≤ i and distG(v, t) ≤ 4−i}
for all i ∈ {1, 2, 3}, and E′ :=

⋃4
i=0Ei with E0 := {(s0, t4)} if st ∈ E, E0 := ∅ if st 6∈ E, and

Ei := {(vi−1, wi) ∈ Vi−1 × Vi | vw ∈ E or v = w} for i ∈ {1, . . . , 4}, where distG(u, v) denotes the
distance from node u to node v in G. We assign cost 0 and capacity 1 to all edges uiui+1 ∈ E′ and
capacity 1 and cost 1 to all other edges in E′. Figure 1 illustrates this construction.

In this layered digraph, we compute an (integer) minimum cost maximum (s0, t4)-flow and its
decomposition into paths P ′1, . . . , P

′
k. Each path P ′i = (s0, u1, v2, w3, t4) defines a 4-bounded walk

(s, u, v, w, t) in G, which can be shortened to a simple 4-bounded path Pi. Let F = {P1, . . . , Pk} be the
set of these paths. Note that these paths are 4-bounded, but not necessarily edge-disjoint.

In the second step, we create the associated “conflict graph” H = (F , {PiPj | Pi ∩ Pj 6= ∅}).
By Lemma 1, H consists only of disjoint paths and isolated nodes. Choosing all isolated nodes and a
maximum independent set in each of these paths, we thus can compute an independent set S ⊆ F of size
|S| ≥ |F|/2 in H . This is done in the third step of our algorithm.

Finally, we return the path set corresponding to this independent set.

Steps 1, 2, and 4 of this algorithm clearly can be done in polynomial time. The possibility to perform
also Step 3 in polynomial time follows from the following lemma.

Lemma 1. The conflict graph H = (F , {PiPj | Pi ∩ Pj 6= ∅}) created in Step 3 of algorithm EXFLOW

consists of isolated nodes and disjoint paths only.

Proof. Let f be the minimum cost maximum (s0, t4)-flow in G′ computed in Step 1 of EXFLOW and let
P ′1, . . . , P

′
k be its path decomposition. Note that the paths P ′i are edge-disjoint in G′.

By construction of G′, each edge e ∈ δ(s) ∪ δ(t) corresponds to at most one arc (s0, v1), (v3, t4),
or (s0, t4) in G′. Thus, any such edge is contained in at most one path in F . Furthermore, for each edge
e = uv ∈ E \ δ(s)\ δ(t), the paths P ′1, . . . , P

′
k in G′ contain at most one of the arcs (u1, v2) and (v1, u2)

and at most one of the arcs (u2, v3) and (v2, u3). Otherwise, these paths do not correspond to a minimum
cost maximum flow: If there were two paths P ′1 = (s0, u1, v2, w3, t4) and P ′2 = (s0, v1, u2, q3, t4), for
example, then replacing these paths by the paths P ′′1 = (s0, u1, u2, q3, t4) and P ′′2 = (s0, v1, v2, w3, t4)
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would reduce the cost of the corresponding flow. Consequently, any edge e ∈ E \ δ(s) \ δ(t) can be
contained in at most two of the paths in F and, further on, a path in F can intersect with at most two
other paths in F . This implies that the conflict graph H constructed in Step 2 of EXFLOW consists only
of isolated nodes and disjoint paths and cycles.

To see that H cannot contain cycles, let C = {P1, . . . , Pn} be the shortest cycle in H . Then each
edge in M :=

⋃
i∈C Pi \ δ(s) \ δ(t) must appear in exactly two paths in C, once as the second and once

as the third edge. If there were two paths P1 and P2 in C that traverse one of the edges e = uv ∈ M
in opposite directions, then the corresponding paths in G′ would be of the form P ′1 = (s0, u1, v2, w3, t4)
and P ′2 = (s0, q1, v2, u3, t4). In this case, replacing P ′1 and P ′2 by P ′′1 = (s0, u1, u2, u3, t4) and P ′′2 =
(s0, q1, v2, w3, t4) would reduce the cost of the corresponding flow in G′ (and the size of the remaining
cycle in C), which is a contradiction to our assumption that the paths P ′i correspond to a minimum cost
maximum flow in G′.

So, we may assume that the paths in C traverse each edge e ∈ M in the same direction. Then,
for each e = uv ∈ M , there is exactly one path of the form (s, u, v, w, t) and exactly one path of the
form (s, q, u, v, t) in C. In this case, however, we can replace each path P ′i = (s0, u1, v2, w3, t4) that
corresponds to a path in C by the less costly path P ′′i = (s0, u1, v2, v3, t4) without exceeding the edge
capacities in G′. This is again a contradiction to our assumption that the paths P ′i define a minimum cost
maximal flow in G′. Consequently, there are no cycles in H . ut

Theorem 2. EXFLOW is a 2-approximation algorithm for MEDP(4).

Proof. By Lemma 1, all steps of the algorithm can be executed in polynomial time. The paths in S
are derived from the 4-bounded (s0, t4)-flow paths in G′, so they are clearly 4-bounded. As S is an
independent set in the conflict graph H , the paths in S are also edge-disjoint.

Furthermore, any set of edge-disjoint 4-bounded (s, t)-paths in G defines a feasible (s0, t4)-flow in
G′. Hence, k = |F| is an upper bound on the maximum number k∗ of edge-disjoint 4-bounded (s, t)-
paths in G, which immediately implies |S| ≥ 1

2k
∗. ut

In order to show that MEDP(4) is APX -hard, i.e., that there is some c > 1 such that approximating
MEDP(4) within a factor less than c is NP-hard, we construct an approximation preserving reduction
from the MAX-k-SAT(3) problem to MEDP(4). Given a set X of boolean variables and a collection
C of disjunctive clauses such that each clause contains at most k literals and each variable occurs at
most 3 times as a literal, the MAX-k-SAT(3) problem is to find a truth assignment to the variables that
maximizes the number of satisfied clauses. MAX-k-SAT(3) is known to be APX -complete [2].

Theorem 3. MEDP(4) is APX -hard.

Proof. We construct an approximation preserving reduction from MAX-k-SAT(3) to MEDP(4). Let xi,
i ∈ I , be the boolean variables and Cl, l ∈ L be the clauses of the given MAX-k-SAT(3) instance.
Without loss of generality we may assume that each variable xi occurs exactly 3 times as a literal and
denote these occurrences by xj

i , j ∈ J := {1, . . . , 3}.
We construct an undirected graph G = (V,E) that consists of |I| + |L| subgraphs, one for each

variable and one for each clause, as follows. For each i ∈ I , we construct a variable graph Gi = (Vi, Ei)
as shown in Figure 2. Gi contains the nodes and edges

Vi :={s, t} ∪ {uj
i , v

j
i , w

j
i , w̄

j
i , a

j
i , ā

j
i | j ∈ J} and

Ei :={suj
i , u

j
iv

j
i , v

j
iw

j
i , v

j
i w̄

j
i , w

j
i t, w̄

j
i t, sa

j
i , sā

j
i , w̄

j
iw

j+1
i | j ∈ J}

∪ {aj
iw

j+1
i | j ∈ J : xj

i occurs as unnegated literal xj
i}

∪ {āj
i w̄

j
i | j ∈ J : xj

i occurs as negated literal x̄j
i} ,

where w4
i = w1

i for notational simplicity. The nodes s and t are contained in all subgraphs and serve as
source and destination for all paths. For each l ∈ L, we construct a clause graph Hl = (Wl, Fl) as shown
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i∨x1

j∨x̄2
k).

in Figure 3. In addition to the nodes and edges it shares with the variable graphs, Hl contains 2 nodes
and k′ + 2 edges, where k′ is the number of literals in clause Cl. Formally, Wl and Fl are defined as

Wl :={s, t, bl, cl} ∪ {āj
i | i ∈ I, j ∈ J : negated literal x̄j

i occurs in Cl}
∪ {aj

i | i ∈ I, j ∈ J : unnegated literal xj
i occurs in Cl} and

Fl :={blcl, clt} ∪ {sāj
i , ā

j
i bl | i ∈ I, j ∈ J : negated literal x̄j

i occurs in Cl}
∪ {saj

i , a
j
i bl | i ∈ I, j ∈ J : unnegated literal xj

i occurs in Cl} .

The goal in the constructed MEDP(4) instance is to find the maximum number of edge-disjoint 4-
bounded (s, t)-paths in the simple undirected graph G obtained as the union of all variable and clause
(sub)-graphs. It is clear that the constructions can be performed in polynomial time.

For notational convenience, we denote for each i ∈ I and j ∈ J the paths

Pij = (s, uj
i , v

j
i , w̄

j
i , t) , P ′ij =

{
(s, āj

i , w̄
j
i , w

j+1
i , t) if x̄j

i occurs
(s, āj

i , a
j
i , w

j+1
i , t) if xj

i occurs
,

P̄ij = (s, uj
i , v

j
i , w

j
i , t) , P̄ ′ij =

{
(s, aj

i , ā
j
i , w̄

j
i , t) if x̄j

i occurs
(s, aj

i , w
j+1
i , w̄j

i , t) if xj
i occurs

.

For each i ∈ I and l ∈ L such that variable xi occurs in clause Cl, we denote

Qli =

{
(s, aj

i , bl, cl, t) if literal xj
i occurs in Cl

(s, āj
i , bl, cl, t) if literal x̄j

i occurs in Cl.

Furthermore, we define Pi := {Pij , P
′
ij | j ∈ J} and P̄i := {P̄ij , P̄ ′ij | j ∈ J} for all i ∈ I , and

Ql := {Qli | i ∈ I : xi occurs in Cl} for all l ∈ L. Figure 4 illustrates the paths in P̄i and path Qli.

In the first part of the proof we show that any truth assignment x̂ that satisfies r clauses of the given
MAX-k-SAT(3) instance can be transformed into a set S(x̂) of 6|I| + r edge-disjoint 4-bounded (s, t)-
paths in G. Let x̂ be a truth assignment. For each clause Cl that is satisfied by this truth assignment, let
il(x̂) be one of the variables whose literal evaluates to true in Cl. We define

S = S(x̂) :=
⋃

i∈I:x̂i=true

Pi ∪
⋃

i∈I:x̂i=false

P̄i ∪ {Qlil(x̂) | l ∈ L : Cl(x̂) = true} .

Clearly, all paths in S contain at most 4 edges, |S| = 6|I| + r, and all paths in S ∩
⋃

i(Pi ∪ P̄i) are
edge-disjoint. Note that if some path Qli is contained in S, then either the negated literal x̄j

i occurring
in clause Cl evaluates to true, which implies that xi = false and P ′ij 6∈ S, or the unnegated literal xj

i

occurring in Cl evaluates to true and, hence, P̄ ′ij 6∈ S . Furthermore, observe that these paths P ′ij and
P̄ ′ij are the only paths that may be contained in S and share an edge with Qlil . Consequently, each path
Qli ∈ S is edge-disjoint to any other path in S and, thus, all paths in S are edge-disjoint.
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Figure 4. Union of Gi and Hl for variable xi and clause Cl = (x̄3
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In the second part of the proof we show that any set S of 6|I|+r edge-disjoint 4-bounded (s, t)-paths
in G can be transformed into a truth assignment x̂(S) that satisfies a least r clauses of the given MAX-k-
SAT(3) instance. We may ignore path sets with |S| < 6|I|, as the path set

⋃
i∈I Pi is a feasible solution

for the constructed MEDP(4) instance with 6|I| paths. Furthermore, we may restrict our attention to path
sets S that satisfy the property that, for each i ∈ I , either Pi ⊆ S or P̄i ⊆ S . Any path set S that does
not satisfy this property can be turned into a path set S ′ with |S ′| ≥ S that does as follows:

Suppose that, for some i, neither Pi ⊆ S nor P̄i ⊆ S. Let Si ⊆ S be the set of paths in S that
are fully contained in the variable subgraph Gi. As there are only 6 edges adjacent to t in Gi, we have
|Si| ≤ 6. Observe that each 4-bounded (s, t)-path in G is either of the form Qli or it is fully contained
in one of the variable subgraphs Gi. Furthermore, all (s, t)-paths of length exactly 4 in Gi are contained
in Pi ∪ P̄i. The only other 4-bounded paths in Gi are the three paths of length 3, which we denote
P̄ ′′ij = (s, āj

i , w̄
j
i , t) for the negated literals x̄j

i and P ′′ij = (s, aj
i , w

j+1
i , t) for the unnegated literals x̄j

i .
In terms of edge-disjointness, however, the paths P ′′ij and P̄ ′′ij conflict with the same 4-bounded (s, t)-
paths as the paths P ′ij or P̄ ′ij , respectively. Replacing all paths P ′′ij and P̄ ′′ij in S by the paths P ′ij and
P̄ ′ij , respectively, thus yields a set of edge-disjoint 4-bounded path of the same size as S . Hence, we can
assume that Si ⊆ Pi ∪ P̄i.

Now consider the paths Qil corresponding to the clauses Cl in which variable xi occurs. Recall that
variable xi occurs exactly 3 times in the clauses, so there are at most 3 paths Qil in S that may share an
edge with the paths in Pi∪P̄i. If variable xi occurs uniformly in all 3 clauses negated or unnegated, then
these three paths Qil are edge-disjoint from either all 6 paths in Pi or from all 6 paths in P̄i. Replacing
the paths in Si by Pi or P̄i, respectively, yields an edge-disjoint path set S ′ with |S ′| ≥ |S|. If variable
xi occurs non-uniformly, then either the paths in Pi or the paths in P̄i conflict with at most one of the
three Qil paths. In this case we have Si ≤ 5, as the only edge-disjoint path sets of size 6 in Pi ∪ P̄i are
Pi and P̄i themselves. Replacing the at most 5 paths in Si and the 1 potentially conflicting path Qil (if it
is contained in S at all) by either Pi or P̄i thus yields a path set S ′ with |S ′| ≥ |S| and either Pi ⊆ S ′ or
P̄i ⊆ S ′. Repeating this procedure for all i ∈ I , we obtain a path set with the desired property.

So, suppose we are given a set S of 4-bounded edge-disjoint (s, t)-paths in G with |S| = 6|I| + r
and Pi ⊆ S or P̄i ⊆ S for each i ∈ I . Then we define the truth assignment x̂(S) as

x̂i(S) :=

{
true if Pi ⊂ S,
false otherwise

for all i ∈ I .

To see that x̂(S) satisfies at least r clauses, consider the (s, t)-cut in G formed by the edges adjacent
to node t. As S contains either Pi or P̄i for each i ∈ I , which amounts to a total of 6|I| paths, each
of the remaining r paths in S must be of the form Qil for some i ∈ I and l ∈ L. Path Qil, however,
can be contained in S only if clause Cl evaluates to true. Otherwise it would intersect with the path P ′ij
or P̄ ′ij in S that corresponds to literal xj

i occurring in clause Cl. Hence, at least r clauses of the given
MAX-k-SAT(3) instance are satisfied by the truth assignment x̂(S).
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It now follows in a straightforward way that MEDP(4) is APX -hard. Suppose there is an algorithm
ALG to approximate MEDP(4) within a factor of α > 1 and denote by S the solution computed by this
algorithm. Let r(S) be the number of clauses satisfied by the truth assignment x̂(S) and let |S∗| and r∗ be
optimal solution values of MEDP(4) and MAX-k-SAT(3), respectively. The fact that at least half of the
clauses in any MAX-k-SAT(3) instance can be satisfied implies r∗ ≥ 1

2 |L| and, further on, r∗ ≥ 3
2k |I|.

Applying the problem transformation and algorithm ALG to a given MAX-k-SAT(3) instance, we get

r(S) ≥ |S| − 6|I| ≥ 1
α
|S∗| − 6|I| ≥ 1

α
(r∗+ 6|I|)− 6|I| ≥ 1 + 4k − 4kα

α
r∗

As there is a threshold c > 1 such that approximating MAX-k-SAT(3) within a factor smaller than c is
NP-hard, it is also NP-hard to approximate MEDP(4) within a factor less than c′ = 4kc+c

4kc+1 > 1. ut

Theorem 3 immediately implies the following corollary.

Corollary 4. Given a graph G = (V,E), s, t ∈ V , and k ∈ Z+, it is NP-hard to decide if there are k
edge-disjoint 4-bounded (s, t)-paths in G.

Now consider the weighted problem WEDP(4). By Corollary 4, it is alreadyNP-hard to decide whether
a given subgraph of the given graph contains k edge-disjoint (s, t)-path and, thus, comprises a feasible
solution or not. Consequently, finding a minimum cost such subgraph is NPO-complete.

Theorem 5. WEDP(4) is NPO-complete.

As a consequence of Theorem 5, it is NP-hard to approximate WEDP(4) within a factor 2f(n) for any
polynomial function f in the input size n of the problem.

3 Node-Disjoint 3- and 4-Bounded Paths

In this section we study the complexity of the node-disjoint paths problems. The maximum disjoint
paths problem MNDP(`) is known to be polynomially solvable for ` ≤ 4 and to be APX -hard for ` ≥ 5
[6,19]. The weighted problem WNDP(`) is solvable in polynomial time for ` ≤ 2, and NPO-complete
for ` ≥ 5. In the special case where ce ≤

∑
f∈C−e cf holds for every cycle C in G and every edge

e ∈ C, the weighted problem can be solved polynomially also for ` = 3 and ` = 4 [6]. For ` = 3, the
problem can still be solved efficiently if this condition is not satisfied.

Theorem 6. WNDP(3) can be solved in polynomial time.

Proof. Let S and T denote the set of neighbors of node s and t in the given graph G, respectively. We
may assume w.l.o.g. that each node in G is contained in {s, t} ∪ S ∪ T , for otherwise it may not appear
in any 3-bounded (s, t)-path.

We reduce WNDP(3) to the problem of finding a minimum weight matching with cardinality k in
an auxiliary graph G′ = (V ′, E′), which is constructed as follows: For each node v ∈ S (resp. w ∈ T ),
there is an associated node uv ∈ V ′, (resp. u′w ∈ V ′). For each node v ∈ S ∩ T , there is an associated
edge ev = (uv, u

′
v) ∈ E′ with weight csv + cvt. Choosing this edge in the matching corresponds to

choosing the path (s, v, t) in G. For each edge (v, w) ∈ (S × T ) \ (S ∩ T )2, there is an associated edge
(uv, uw) ∈ E′, with uz = u′z if z ∈ T and uz = uz otherwise for any z ∈ V . The weight of edge
(uv, uw) is set to csv + cvw + cwt. Choosing (uv, uw) in the matching in G′ corresponds to choosing
path (s, v, w, t) in G. For each edge (v, w) ∈ (S ∩ T )2, there is an associated edge (uv, uw) ∈ E′, with
weight min{csv + cvw + cwt, csw + cwv + cvt}, which represents the paths (s, v, w, t) and (s, w, v, t)
in G. For each edge (s, t) ∈ E, there is an associated edge (us, ut) ∈ E′ with weight cuv.

Clearly, this construction can be performed in polynomial time. One easily verifies that any set of k
vertex-disjoint 3-bounded (s, t)-paths in G corresponds to a matching of size k and the same cost in G′,
and vice versa. Since the cardinality constrained minimum weight matching problem can be solved in
polynomial time [11,28], the claim follows. ut

7



s

t

r1
i r2

i r3
iw1

i w2
i w3

i

a1
i a2

i a3
iā1
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Figure 5. Union of Gi and Hl for variable xi and clause Ck = (x̄3
i ∨ . . . ). Thick lines are paths in P̄i and path Qli.

For ` = 4, the problem becomes at least APX -hard in the general case.

Theorem 7. WNDP(4) is (at least) APX -hard.

Proof. We use a construction similar to the one presented in the previous section to reduce MAX-k-
SAT(3) to WEDP(4). Again, we let xi, i ∈ I , be the boolean variables and Cl, l ∈ L be the clauses of
the given MAX-k-SAT(3) instance and we denote the three occurrences of variable xi by xj

i , j ∈ J :=
{1, . . . , 3}.

For each l ∈ L, we construct a clause graph Hl = (Wl, Fl) exactly as in the proof of Theorem 3 and
shown in Figure 3. For each i ∈ I , we construct a variable graph Gi = (Vi, Ei) as

Vi :={s, t} ∪ {aj
i , ā

j
i , u

j
i , ū

j
i , v

j
i , w

j
i , r

j
i | j ∈ J} and

Ei :={saj
i , sā

j
i , su

j
i , sū

j
i , a

j
iu

j
i , ā

j
i ū

j
i , u

j
iv

j
i , ū

j
iv

j
i ,

vj
iw

j
i , u

j
i r

j
i , ū

j
i r

j+1
i , rj

i t, w
j
i t | j ∈ J} ,

where r4i = r1i . Figure 5 illustrates these graphs. The graph G is obtained as the union of all Gi and Hl

(sub-)graphs. Finally, we assign weight 1 to all edges suj
i and sūj

i and weight 0 to all other edges in G.
The goal in the constructed WNDP(4) instance is to find a minimum cost subgraph of G that contains (at
least) 6|I|+ |L| node-disjoint 4-bounded (s, t)-paths.

For each i ∈ I and j ∈ J , we denote the paths

Pij = (s, uj
i , v

j
i , w

j
i , t) , P ′ij = (s, āj

i , ū
j
i , r

j+1
i , t) , P ′′ij = (s, ūj

i , r
j+1
i , t) ,

P̄ij = (s, ūj
i , v

j
i , w

j
i , t) , P̄ ′ij = (s, aj

i , u
j
i , r

j
i , t) , P̄ ′′ij = (s, uj

i , r
j
i , t) .

For each variable xi that occurs in clause Cl, we denote

Qli =

{
(s, aj

i , bl, cl, t) if literal xj
i occurs in Cl,

(s, āj
i , bl, cl, t) if literal x̄j

i occurs in Cl.

Note that these are the only 4-bounded (s, t)-paths in G. Furthermore, we let Pi := {Pij , P
′
ij | j ∈ J},

P̄i := {P̄ij , P̄ ′ij | j ∈ J}, and Ql := {Qli | i ∈ I : xi occurs in Cl}. Figure 5 illustrates the paths in P̄i

and path Qli.

As in the proof of Theorem 3, one finds that a truth assignment x̂ that satisfies r clauses of the given
MAX-k-SAT(3) instance corresponds to a path set

S = S(x̂) :=
⋃

i∈I:x̂i=true

Pi ∪
⋃

i∈I:x̂i=false

P̄i ∪ {Qlil(x̂) | l ∈ L : Cl(x̂) = true}

with |S| = 6|I| + r and cost c(S) = 3|I|. In order to obtain a set of 6|I| + |L| paths, we modify S as
follows: For each l ∈ L with Cl(x̂) = false, we arbitrarily chose one i such that xj

i or x̄j
i occurs in Cl,

add the pathQli to S, and replace the path P ′ij or P̄ ′ij in S with P ′′ij or P̄ ′′ij , respectively. This modification

8



maintains the node-disjointness of the paths in S and increases both the size and the cost of S by |L|− r.
The cost of the resulting path set S thus is

c(S(x̂)) = 3|I|+ |L| − r . (1)

Conversely, one finds that any set S of 6|I| + |L| node-disjoint 4-bounded (s, t)-paths must con-
tain one path from each set Ql and 6 paths within each variable subgraph Gi. The only way to have
6 node-disjoint 4-bounded path within Gi, however, is to have either all 3 paths Pij or all 3 paths P̄ij ,
complemented with 3 paths of the type P ′ij and P ′′ij or with 3 paths of the type P̄ ′ij and P̄ ′′ij , respectively.
The cost of such a path set is equal to the number of Pij and P̄ij paths it contains, which amounts to a
total of 3|I|, plus the number of P ′′ij and P̄ ′′ij paths. Note that the paths P ′′ij and P̄ ′′ij contain only a subset
of the nodes in P ′ij and P̄ ′ij , respectively, and that the cost induced by P ′′ij and P̄ ′′ij is 1, while the cost
induced by P ′ij and P̄ ′ij is 0. Thus, we may assume that S contains path P ′′ij or P̄ ′′ij only if it contains path
Qli for the clause l in which literal xj

i occurs. Let x̂(S) be the truth assignment defined as

x̂i(S) :=

{
true if Pi1 ∈ S,
false otherwise,

for all i ∈ I .

Consider a path Qli ∈ S and suppose Cl(x̂(S)) = false. Then also the literal xj
i or x̄j

i occurring in
Cl evaluates to false. Since S contains either Pij or P̄ij , it also must contain P ′′ij or P̄ ′′ij , respectively. As
these paths induce a cost of one, the number of clauses satisfied by x̂(S) is

r(x̂(S)) ≥ |L|+ 3|I| − c(S) . (2)

As in the proof of Theorem 3, it follows straightforward from (1) and (2) that approximation ratios are
transformed linearly by the presented reduction and, hence, WNDP(4) is APX -hard. ut

Unfortunately, it remains open if WNDP(4) is approximable within a constant factor or not. The best
known approximation ratio for WNDP(4) is O(k), which is achieved by a simple greedy algorithm.

Theorem 8. WNDP(4) can be approximated within a factor of 4k.

Proof. Consider the algorithm, which adds the edges in order of non-decreasing cost until the constructed
subgraph contains k node-disjoint 4-bounded (s, t)-paths and then returns the subgraph defined by these
paths. As, in each iteration, we can check in polynomial time whether such paths exist or not [19], this
algorithms runs in polynomial time. Furthermore, the optimal solution must contain at least one edge
whose cost is at least as big as the cost of the last edge added by the greedy algorithm. Therefore, the
total cost of the greedy solution is at most 4k times the optimal solution’s cost. ut

4 Conclusion

In this paper we show that the maximum edge-disjoint 4-bounded paths problem MEDP(4) is APX -
complete and that the corresponding weighted edge-disjoint paths problem WEDP(4) isNPO-complete.
The weighted node-disjoint `-bounded paths problem was proven to be polynomially solvable for ` = 3
and to be at least APX -hard for ` = 4. This closes all basic complexity issues that were left open in
[19,6]. In addition, we presented a 2-approximation algorithm for WEDP(4) and a 4k-approximation
algorithm WNDP(4). It remains open whether WNDP(4) is approximable within a factor better than
O(k) or if there is a stronger, non-constant approximation threshold.

The hardness results and algorithms presented in this paper also hold for directed graphs and for
graphs containing parallel edges.
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