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Abstract The primary concern of the work is robust

control of hybrid mechanical systems under unilateral

constraints with underactuation degree one. Nonlinear

H∞ output feedback synthesis is developed in the hy-

brid setting, covering collision phenomena. Sufficient

conditions are presented to ensure internal asymptotic

stability while also attenuating external disturbances

and plant uncertainties. The developed synthesis is ap-

plied to the orbital stabilization of an underactuated

bipedal robot periodically touching the ground. Good

performance of the closed-loop system is obtained not

only in the presence of measurement noise and external

disturbances, affecting the gait of the biped between

collision time instants, but also under uncertainties at

the velocity restitution when the ground collision oc-

curs.

Keywords robust control · unilateral constraints · un-

deractuated mechanical systems · orbital stabilization ·
bipedal robot · walking gait.

1 Introduction

Significant research interest has recently been attracted

to hybrid dynamical systems due to the wide variety of

their applications and due to the need of special analy-

sis tools for this type of systems (see, e.g., the relevant
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works of Goebel et al (2009); Hamed and Grizzle (2013);

Naldi and Sanfelice (2013); Nešić et al (2013), and ref-

erences quoted therein). Particularly, the disturbance

attenuation problem for hybrid dynamical systems has

been addressed in, for example, the works by Haddad

et al (2005) and Nešić et al (2008, 2013) where impulsive

control inputs were admitted to counteract/compensate

disturbances/uncertainties at time instants of instan-

taneous changes of the underlying state. It should be

noted, however, that even in the state feedback de-

sign, a pair of independent Riccati equations, separately

coming from continuous and discrete dynamics, was re-

quired to possess a solution that satisfies both equa-

tions, thus yielding a restrictive condition on the fea-

sibility of the proposed synthesis. Moreover, the physi-

cal implementation of impulsive control inputs remains

impossible in many practical situations, e.g., while con-

trolling walking biped robots.

Other robust control techniques, such as sliding modes

control, have been designed for this kind of systems (see

e.g., the works by Raibert et al (1993), Manamani et al

(1997), Nikkhah et al (2007), Aoustin et al (2010), Oza

et al (2014). While providing both finite-time conver-

gence to a desired reference trajectory and disturbance

rejection, these approaches also entail the well-known

problem of chattering in the actuators.

Stability of bipedal locomotion has been a recent

topic of research. For example, in the work by West-

ervelt et al (2004), the authors stabilized a planar un-

deractuated biped around a periodic orbit, but instead

of a sliding mode or finite-time converging controller,

the authors preferred to use a decoupled PD control

law for its robustness to noise. Hamed et al (2014) pro-

posed a control strategy to exponentially stabilize an

underactuated biped using a time-invariant continuous-

time controller; however, the effects of external distur-
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bances were not explicitly taken into account for the

synthesis of the controller, and a perfect knowledge of

the complete state vector was assumed. In the works

by Chevallereau et al (2009) and Hamed and Grizzle

(2014), event based controllers were developed to ro-

bustly stabilize periodic orbits for underactuated biped

systems. Also, based on the Poincaré map, Hobbelen

and Wisse (2007) introduced the gait sensitivity norm

as a measure of the robustness cycle limits in bipedal

walkers. Miossec and Aoustin (2005) inserted a double

support to reinforce the stability of the walking gait

of an underactuated biped and studied the stability of

the dynamics not controlled during the single support

phase, considering a perfect tracking of the references

of the other joint angles of the biped.

In this regard, two major drawbacks should be men-

tioned with the methods based on the Poincaré map

analysis. On one hand, it is hardly possible to include

uncertainties into the free-motion phase, since the anal-

ysis is made only on the selected Poincaré section. On

the other hand, it is difficult to represent the Poincaré

map in the closed form since it relies on finding the an-

alytical solution to the differential equations that de-

scribe the motion of the system. As stated by Morris

and Grizzle (2005), numerical schemes can be used to

compute the return map, to find its fixed points, and

to estimate eigenvalues for determining exponential sta-

bility. However, the numerical computations are usually

time-intensive, and performing them iteratively as part

of a system design process can be cumbersome. A more

important drawback is that numerical computations are

not insightful for a fixed point of the Poincaré map to

exist and to possess desired stability properties as these

computations, made a priori, do not allow one to tune

the controller gains in the closed loop.

The orbital stability analysis has recently been ad-

dressed using the moving Poincaré section approach

(Leonov, 2006). In contrast to the standard Poincaré

analysis, dealing with a single transversal surface at a

fixed point, the moving Poincaré section method in-

volves a family of transversal surfaces at each point

on the cyclic trajectory. The linearized dynamics on

the foliation of these surfaces are governed by a lin-

ear time-varying and periodic system, whose dimen-

sion is less than the original system by one. Therefore,

asymptotic orbital stability of the desired motion can

be studied by analyzing the stability of this auxiliary

transversal system. Coupled to the virtual holonomic

constraint approach, the transverse linearization has

proved to be a powerful method for orbital stabiliza-

tion around desired periodic motions (see the works by

Shiriaev et al (2008); Freidovich et al (2008); Shiriaev

and Freidovich (2009); La Hera et al (2013) and refer-

ences cited therein).

Thus motivated, this investigation is devoted to the

derivation of sufficient conditions for a new output feed-

back control strategy, that would result in the asymp-

totic orbital stabilization of the undisturbed hybrid sys-

tem of interest, while also guaranteing the L2-gain of its

disturbed version to be less than an appropriate distur-

bance attenuation level γ. The work focuses on impulse

hybrid systems, recognized as dynamical systems under

unilateral constraints (Brogliato, 1999). Since the dy-

namic systems with unilateral constraints possess non-

smooth solutions, which arise due to hitting the con-

straints, a challenging problem is to extend the pop-

ular nonlinear H∞ approach (see the works by Van

Der Schaft (1991), Isidori and Astolfi (1992), and Basar

and Bernhard (1995)) to this kind of dynamic systems.

TheH∞ approach, that has recently been developed

by Orlov and Aguilar (2014) towards nonsmooth me-

chanical applications with hard-to-model friction forces

(such as dry or Coulomb friction and backlash effects),

and then extended by Montano et al (2014) to fully ac-

tuated systems under unilateral constraints, is now gen-

eralized to an underactuated mechanical system with

collisions. As in the fully actuated case (Montano et al,

2014), a local synthesis of an underactuated system

is derived in the presence of unilateral constraints by

means of two coupled Riccati equations that appear in

solving the H∞ state feedback and output injection de-

signs for the linearized system viewed beyond the sys-

tem constraints.

An essential feature, adding value to the present in-

vestigation, is that standard external disturbances (such

as environmental external forces, biped parameters un-

certainty, etc.), their discrete-time counterparts (such

as non-perfect inelastic contact between the floor and

the foot at the impact, or floor height variations), and

measurement imperfections are considered in combina-

tion and are attenuated with the proposed synthesis.

This in contrast to the existing literature where the per-

fect knowledge of both the state vector, and of the im-

pact equation at the collision time instants is assumed.

In order to illustrate capabilities of the proposed

synthesis it is further developed to the orbital stabiliza-

tion of an underactuated planar bipedal robot under

ground unilateral constraints and subject to external

disturbances in the over-all hybrid dynamical system.

Due to the existence of a free-motion and a transition

phase, the bipedal robot represents a hybrid system

whose desired orbit to track is actually required to be

attained at a sufficiently rapid rate, before occurring

the next contact between the swing leg and the ground

(Morris and Grizzle, 2005). The underactuation degree
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of the robot is one during the single support phase.

The effects of the disturbances during the single sup-

port phase and during the impact phase are studied.

In the recent work of Dai and Tedrake (2012) and

Dai and Tedrake (2013), a hybrid H∞ control approach

was developed by defining an L2-gain from ground per-

turbations to deviations from the nominal limit cycle.

In contrast to the work of Dai and Tedrake (2013),

the present work demonstrates good robustness fea-

tures of the developed orbital synthesis against both

external disturbances, affecting the collision-free mo-

tion phase, and against uncertainties that occur in the

collision phase, while using only the available measure-

ments of the plant variables. Along with the theoretical

development of the nonsmooth orbital H∞ synthesis

under unilateral constraints, these robustness features,

numerically justified on a biped emulator (Aoustin et al,

2010), form the novelty of the paper.

The contribution, this paper makes into the exist-

ing literature, is thus twofold. First, the nonlinear H∞
approach is constructively generalized to position feed-

back tracking of underactuated mechanical systems, op-

erating under unilateral constraints. Second, the re-

sulting synthesis is then effectively applied to the or-

bital stabilization of underactuated mechanical systems

with collisions to demonstrate good robustness features

against external disturbances in the collision-free phase,

uncertainties in the collision phase, and disturbances in

the position measurements.

The paper is outlined as follows. Section 2 presents

a hybrid model of interest which is subject to an unilat-

eral constraint. Background materials on H∞-control,

virtual constraints, and transversal coordinates are pre-

sented in Section 3. A locally stabilizing nonlinear H∞
controller is synthesized in Section 4. This controller

is then generalized in Section 5 for an underactuated

biped, walking in the saggital plane, and its capabili-

ties are illustrated in simulation runs made on an em-

ulator. Finally, conclusions and potential extensions of

this work are collected in Section 6.

Fig. 1 Disturbances present in bipedal locomotion

1.1 Notation

The notation used throughout is rather standard. The

variable x+ is used to denote the post-impact value

x(t+i ) of a trajectory x(ti) at an impact time instant

ti whereas x− stands for the pre-impact value of the

same; by default, x(t) is reserved for x−, thus implying

an underlying trajectory to be continuous on the left.

2 Objective

Given a scalar unilateral constraint F (q) ≥ 0 of class

C1, consider a nonlinear system, evolving within the

above constraint, which is governed by continuous dy-

namics of the form

D(q)q̈ + C(q, q̇)q̇ + G(q) = BΓ + wc (1)

out of the surface F (q) = 0 when the constraint is in-

active, and by the algebraic relations[
q+

q̇+

]
= µ(q−, q̇−) + ω(q−, q̇−)wd (2)

when the system trajectory hits the surface F (q) = 0.

The vectors q ∈ Rn and q̇ ∈ Rn are generalized posi-

tions and velocities, respectively, D is a n×n symmet-

ric, positive definite inertia matrix, B is a n × (n − k)

constant matrix composed of 0 and 1 which defines

the underactuated and the actuated variables, whereas

Γ ∈ Rn−k with 1 ≤ k < n is the vector of actuated

torques (thus covering underactuated systems); µ rep-

resents the impact equation; wc ∈ Rn represents ex-

ternal disturbances affecting the continuous dynamics,

whereas wd ∈ Rs represents disturbances affecting the
impact equation (2) (see Fig. 1). The vector C(q, q̇)q̇

stands for centrifugal and Coriolis forces whereas G(q)

stands for the gravity forces. This work will focus in

mechanical systems of underactuation degree 1 during

their locomotion, so k = 1.

Let us consider that a certain task is achieved by

carrying out a feasible trajectory q? of the hybrid me-

chanical system (1)-(2), and this feasible trajectory will

describe a periodic orbit, given by

O? = {(q, q̇) ∈ R2n : q = q?(θ), q̇ = q̇?(θ, θ̇)} (3)

where θ is called a phasing variable, and is a scalar

quantity, which is strictly monotonic on the periodic

orbit. Let θ? denote the evolution of θ corresponding

to the periodic orbit O?, then θ?|t = θ?|(t+Ts), where

Ts > 0 stands for the period of the motion.

As presented in the work of Hamed et al (2014), now

lets consider a controller Γ of the form

Γ = Γ? + u, (4)
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where Γ? is a feedforward term corresponding to the

periodic orbit O?, and u is a feedback control law that

internally stabilizes the closed-loop system system (1)-

(2) to a feasible trajectory q?(θ). Thus the existence

of the periodic orbit O? as well as the existence of the

feedforward term Γ? are postulated a priori.

Therefore, the orbital stabilization problem in ques-

tion is to find an appropriate control action Γ such that

the solutions of the undisturbed version of(1), (2), initi-

ated in a neighborhood of the desired orbit O?, defined

by (3), asymptotically approach the compact set O?,
and for the disturbed version, attenuate the effect of

the disturbances on the continuous dynamics (1) and

the restitution law (2).

3 Background Materials

In this section, sufficient conditions of a fully actuated

hybrid system (formally corresponding to the case k =

0) to possess a solution to the attenuation problem are

first recalled from Montano et al (2014, 2015a). Then,

the virtual holonomic constraint approach is presented

as well as the concepts of transverse coordinates and

transverse linearization are. Coupled together, these re-

sults form a basis of attenuating disturbances in me-

chanical systems of underactuation degree one (k = 1).

3.1 The H∞-Control Problem

Consider the nonlinear hybrid system

ẋ = f(x, t) + g1(x, t)wc + g2(x, t)u, F (x1, t) > 0

x+ = ∆(x−, t) + ω(x−, t)wd, F (x1, t) = 0
(5)

where x = [x1,x2]> ∈ R2n is the state vector and u ∈
Rn is the control input; f(x, t), g1(x, t) and g2(x, t) are

continuously differentiable in their arguments and uni-

formly bounded in t. In addition, the origin is assumed

to be an equilibrium of the unforced and undisturbed

system (5), i.e., for all t and u = wc = wd = 0, one

has f(0,t) = 0 and ∆(0, t) = 0. Assuming that only

position measurements are available, the outputs to be

controlled (driven to zero) can be defined as

z = h1(x, t) + k12(x, t)u (6)

for the dynamics between impacts (which is the stan-

dard form for the controlled output in the impact-less

time-varying case, see for e.g. (Orlov et al, 1999)), and

zdi = x+ (7)

for the dynamics at the impact instants, with variables

z ∈ Rm and zdi ∈ Rn, whereas

y = h2(x, t) + k21(x, t)wy (8)

with y ∈ Rp, p ≥ n, is the only available measurement

of the state of the system; wy represents the distur-

bances in the measurements; also, for all t, h1(0, t) = 0,

h2(0, t) = 0. In order to simplify the synthesis to be de-

veloped and to provide reasonable expressions for the

controller design, the following assumptions

h1
>k12 = 0, k12

>k12 = I,

k21g1
> = 0, k21k21

> = I,
(9)

which are standard in the literature (Isidori and As-

tolfi, 1992), are made. The first and second ones mean

that in the norm of the output variable z there is no

cross product involving hl(x, t) and input u and that

the control weight matrix is the identity. The third and

fourth ones are dual to the first and second ones. Relax-

ing these assumptions is indeed possible, but it would

substantially complicate the formulas to be worked out.

For later use, the notion of an admissible controller

is specified for the underlying system. Consider a causal

dynamic feedback controller of the same structure

ξ̇ = η(ξ,y, t) ξ+ = ∆ξ(ξ
−, t)

u = κ(ξ, t)
(10)

as that of the plant and with the internal state ξ =

[ξ1, ξ2]> ∈ R2n, representing the state estimation of

x, with the time instants t = tj , j = 1, 2, . . . , which

are not necessarily coinciding with the collision time

instants in the plant equations (5), and with uniformly
bounded in t functions η(ξ,y, t), ∆ξ(ξ, t), and κ(ξ, t)

of class C1 such that η(0, t) = 0, ∆ξ(0, t) = 0, and

κ(0, t) = 0 for all t. Such a controller is said to be a

locally admissible controller iff the undisturbed closed-

loop system (5), (10) with wc, wy, wd = 0 is uniformly

asymptotically stable, thus driving the controlled out-

puts (6) and (7) to zero.

The H∞-control problem of interest consists in find-

ing a locally admissible controller (if any) such that the

L2-gain of the disturbed system is less than a certain

γ > 0, that is the inequality (Montano et al, 2014)∫ T

t0

‖z(t)‖2dt+

NT∑
i=1

‖zdi ‖
2 ≤

γ2

[∫ T

t0

‖w(t)‖2dt+

NT∑
i=1

‖wdi
‖2
]

+

NT∑
k=0

βk(x(t−k ), ξ(t−k ), tk)

(11)
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holds for some positive definite functions βk(x, ξ, t),

k = 0, . . . , NT , for all segments [t0, T ] and a natural

NT such that tNT
≤ T < tNT +1, for all piecewise con-

tinuous disturbances w = [w>y ,w
>
c ]> and discrete ones

wdi
, i = 1, 2, . . . , for which the state trajectory of

the closed-loop system starting from an initial point

(x(t0), ξ(t0)) = (x0, ξ0) ∈ U remains in some neigh-

borhood U ∈ R4n of the origin for all t ∈ [t0, T ]. This

means that the influence of the disturbances w and wdi

is attenuated on the outputs z and zd .

3.2 H∞-Output Feedback Synthesis Under Unilateral

Constraints

Let us consider the H∞ control problem for the lin-

earized system which is given by

ẋ = A(t)x + B1(t)w + B2(t)u, (12)

z = C1(t)x + D12(t)u, (13)

y = C2(t)x + D21(t)w, (14)

within impact-free time intervals (ti−1, ti) where t0 is

the initial time instant and ti, i = 1, 2, . . . are the col-

lision time instants whereas

A(t) =
∂f

∂x

∣∣∣∣
x=0

, B1(t) = g1(0, t), B2(t) = g2(0, t),

C1(t) =
∂h1

∂x

∣∣∣∣
x=0

, D12(t) = k12(0, t),

C2(t) =
∂h2

∂x

∣∣∣∣
x=0

, D21(t) = k21(0, t).

(15)

By the time-varying strict bounded real lemma (Orlov

and Aguilar, 2014, p.46), the following conditions are

necessary and sufficient for the linear H∞ control prob-

lem (12)-(14) to possess a solution: given γ > 0,

C1) there exists a positive constant ε0 such that the dif-

ferential Riccati equation

−Ṗε(t) = Pε(t)A(t) + A>(t)Pε(t) + C1
>(t)C1(t)

+Pε(t)[
1

γ2
B1B1

> −B2B2
>](t)Pε(t) + εI

(16)

has a uniformly bounded symmetric positive definite

solution Pε(t) for each ε ∈ (0, ε0);

C2) while being coupled to (16), the differential Riccati

equation

Żε(t) = Aε(t)Zε(t) + Zε(t)A
>
ε (t) + B1(t)B1

>(t)

+Zε(t)[
1

γ2
PεB2B2

>Pε −C2
>C2](t)Zε(t) + εI,

(17)

has a uniformly bounded symmetric positive definite

solution Zε(t) with

Aε(t) = A(t) +
1

γ2
B1(t)B1

>(t)Pε(t).

In order to insure dissipation at the impact times, the

following conditions are also considered:

C3) the norm of the matrix function ω (see (5)) is upper

bounded by
√

2
2 γ, i.e.,

‖ω(x, t)‖ ≤
√

2

2
γ. (18)

C4) the functions V (x, t) = x>Pε(t)x and W (x, ξ, t) =

γ2(x−ξ)>Z−1ε (t)(x−ξ) decrease along the direction

µ in the sense that the inequalities

V (x, t) ≥ V (∆(x, t), t), (19)

W (x, ξ, t) ≥W (∆(x, t),∆(ξ,t), t) (20)

hold in the domains of V and W .

Under these conditions, the following theorem is pre-

sented.

Theorem 1 (Montano et al, 2015a) Let conditions C1)-

C4) be satisfied with some γ > 0. Then the closed-loop

(5)-(7) system driven by the output feedback

ξ̇ = f(ξ, t) + ZεC2
>(t)[y − h2(ξ, t)]

+

[
1

γ2
g1(ξ, t)g1

>(ξ, t)− g2(ξ, t)g2
>(ξ, t)

]
Pε(t)ξ (21)

ξ+ = ∆(ξ−, ti)

u = −g2(ξ, t)
>

Pε(t)ξ (22)

locally possesses a L2-gain less than γ. Moreover, the

disturbance-free closed-loop system (5)-(7), (21)-(22) is

uniformly asymptotically stable.

Thus, the synthesized controller will consist of a ro-

bust state estimator (21), providing disturbance atten-

uation for the non-perfect position measurements, and

the robust control law (22), locally attenuating the dis-

turbances around the desired trajectory.

For autonomous systems, all functions in (5)-(8) and

(15) are time-independent, and the differential Riccati

equations (16) and (17) degenerate to the algebraic Ric-

cati equations with Ṗε(t) = 0 and Żε(t) = 0.

For periodic systems of period T with periodic im-

pact instants ti+1 = ti+T, i = 1, 2, . . ., all functions in

(5)-(8) and (15) are time-periodic, and Theorem 1 ad-

mits a time-periodic synthesis (21)-(22) which is based

on appropriate periodic solutions Pε(t) and Zε(t) to the

periodic differential Riccati equations (16) and (17). It

Oscar
Highlight
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should be noted that just in case, Pε(t
+
i+1) = Pε(t

+
i ),

Zε(t
+
i+1) = Zε(t

+
i ) due to the periodicity, and condi-

tions (19), (20) of Hypothesis H4) are then specified to

the boundary conditions

x>Pε(t
−
2 )x ≥∆>(x, t+1 ))Pε(t

+
1 )∆>(x, t+1 )), (23)

(x− ξ)>Zε(t
−
2 )(x− ξ) ≥ [∆(x, t+1 )−

∆(ξ, t+1 )]>Zε(t
+
1 )[∆(x, t+1 )−∆(ξ, t+1 )] (24)

on the Riccati equations (16), (17). The need of such

boundary relations on the Riccati equations has been

recognized in the literature for the correct generation of

periodic biped locomotion (cf. inequality (39) of La Hera

et al (2013)).

For the full information case, the controller to be

synthesized is a particular case of the previous one, and

it is presented below.

Theorem 2 (Montano et al, 2014) Let conditions C1),

C3) and (19) be satisfied with some γ > 0. Then the

closed-loop (5)-(7) system driven by the output feedback

u = −g2(x, t)
>

Pε(t)x (25)

locally possesses a L2-gain less than γ. Moreover, the

disturbance-free closed-loop system (5)-(7), (25) is uni-

formly asymptotically stable.

While these results are valid for fully-actuated me-

chanical systems under unilateral constraints, additional

considerations, required for the orbital stabilization syn-

thesis of the underactuated mechanical system of inter-

est, is presented next.

3.3 Virtual Constraint Approach and Transverse

Coordinates

The virtual holonomic constraint (VHC) approach is a

powerful analytical tool of planning periodic motions

in underactuated mechanical systems . Along with the

system representation (1)-(2) in the generalized coordi-

nates

q1 = q1(t), . . . , qn = qn(t), t ∈ [0, Ts], (26)

an alternative time independent representation can be

given in the parametric form

q1 = φ1(θ), . . . , qn = φn(θ), θ ∈ [θ0, θf ] (27)

to be valid along a desired orbit, specified with func-

tions φi(·), i = 1, . . . , n, which are functions of a param-

eter θ. Identities (27) are known as virtual holonomic

constraints since they express algebraic relations among

the generalized coordinates. The parameter θ can be

chosen as one of the generalized coordinates (Shiriaev

et al, 2005) or as a linear combination of them (West-

ervelt et al, 2007).

The dynamics of (1) in the new coordinates (27) can

now be obtained by introducing the time derivatives

q̇i = φ′iθ̇, q̈i = φ′′i θ̇
2 + φ′iθ̈, i = 1, . . . , n into the Euler-

Lagrange equation (1), where φ′i = ∂φi

∂θ and φ′′i = ∂2φi

∂θ2 .

The resulting equation is then governed by

D(Φ(θ))
[
Φ′(θ)θ̈ + Φ′′θ̇2

]
+ C

(
Φ(θ),Φ′(θ)θ̇

)
Φ′(θ)θ̇2

+G(Φ(θ)) = B(Φ(θ))Γ

(28)

where

Φ(θ) = [φ1(θ), . . . , φn(θ)]> (29)

Φ′(θ) = [φ′1(θ), . . . , φ′n(θ)]> (30)

Φ′′(θ) = [φ′′1(θ), . . . , φ′′n(θ)]>. (31)

Since the present development is confined to mechani-

cal systems (1) of underactuation degree 1, there exists

a nontrivial matrix function B⊥(q) ∈ R1×n such that

B⊥(q)B(q) = 0. Therefore, multiplying (28) by B⊥(q)

from the left, one arrives at the reduced second order

dynamics along the holonomic constraints (27):

ᾱ(θ)θ̈ + β̄(θ)θ̇2 + γ̄(θ) = 0 (32)

where

ᾱ(θ) = B⊥(Φ(θ))D(Φ(θ))Φ′(θ) (33)

β̄(θ) = B⊥(Φ(θ))[C(Φ(θ),Φ′(θ)θ̇) + D(Φ(θ))Φ′′] (34)

γ̄(θ) = B⊥(Φ(θ))G(Φ(θ)). (35)

For underactuated mechanical systems under unilateral

constraints, (32) should be accompanied with the reset

law[
θ+

θ̇+

]
= ∆θ(θ

−, θ̇−) (36)

where∆θ translates the jumps of the mechanical system

(1), (2) to the jumps of the reduced dynamics (32).

The reduced system (32), (36) is referred to as the

hybrid zero dynamics (Westervelt et al, 2003; Ames

et al, 2012), and its solutions (if any) represent mo-

tions that, under some technical assumptions, can be

imposed on the system by a proper feedback synthesis.

An appropriate periodic solution q?(t) = q?(t+Ts)

of (1)-(2) can be found by the use of a nonlinear dy-

namic optimization (see, e.g. the works by Aoustin and

Formalsky (2003); Westervelt et al (2007)), where the

motion is defined by basis functions (normally polyno-

mials) q?(t) whose coefficients are to be specified to

optimize some criteria, e.g., energy. A feasible solution
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of the hybrid zero dynamics (32), (36) can thus be ob-

tained. The resulting procedure constitutes a widely

used methodology of the reference trajectory design in

bipedal robotics, and it is the approach adopted in this

paper. Other methods to generate periodic solutions

can be found, e.g., in Arai et al (1998); Bullo and Lynch

(2001); Mettin et al (2007).

Clearly, the knowledge of q?(t) allows one to con-

struct n-scalar functions φ1(θ), . . . , φn(θ) that parametrize

the same periodic solution q?(t) by the scalar variable

θ. Given these VHCs, the n+ 1 quantities

θ, η1 = q1 − φ1(θ), . . . , ηn = qn − φn(θ) (37)

can be viewed as redundant generalized coordinates for

the underactuated system (1)-(2) so that one of them,

can be expressed as a function of the other coordinates.

Without loss of generality, ηn is assumed to be so, and

the new independent coordinates are

η = η1, . . . , ηn−1
> ∈ Rn−1 and θ ∈ R (38)

whereas the last equality in (37) can be rewritten as

qn = φn(θ) + h(η, θ) (39)

with some smooth scalar function h(η, θ). Hence, the

coordinate transformation (37), (39) comes with the Ja-

cobian matrix

L(θ,η) =

[
In−1 0(n−1)×1
∂h
∂η

∂h
∂θ

]
+ [0n×(n−1),Φ

′(θ)]. (40)

Provided that the Jacobian matrix is not singular in

a vicinity of the desired orbit, a one-to-one relation is

locally established between the first order derivatives

of the new coordinates (η, θ)> and those of the original
coordinates q as

q̇ = L(η, θ)[η̇, θ̇]>. (41)

Then, by substituting the relations qi = ηi−φi(θ), 1 ≤
i ≤ (n − 1), qn = φn(θ) + h(η, θ), (41), (40), their

derivatives q̇i(θ,η), 1 ≤ i ≤ (n − 1), q̇n(θ,η) into (1),

the state equations, governing the dynamics of η, are

obtained as follows

η̈ = R(η, η̇, θ, θ̇) + N1(η, θ)w + N2(η, θ)Γ. (42)

Moreover, one can introduce a control transformation

Γ = v + Γ? (43)

where Γ? is the nominal input along the nominal target

trajectory θ = θ?, θ̇ = θ̇?, η = 0, η̇. Then, combining

(42) and (43) yields the dynamics of the η variables in

the form

η̈ = R̄(η, η̇, θ, θ̇) + N1(θ,η)w + N2(θ,η)v (44)

where the function R̄ = R(η, η̇, θ, θ̇) + N2(θ,η)Γ? is

nullified along the desired orbit. In order to fully de-

scribe the dynamics in the new coordinates (37), it re-

mains to incorporate the plant dynamics of θ. Follow-

ing (Shiriaev et al, 2005), the local dynamics of (1) are

given by

ᾱ(θ)θ̈ + β̄(θ)θ̇2 + γ̄(θ) = gI(η, η̇, θ, θ̇, θ̈)I

+gη(η, η̇, θ, θ̇, θ̈)η + gη̇(η, η̇, θ, θ̇, θ̈)η̇ + gv(η, η̇, θ, θ̇, θ̈)v

+gw(η, η̇, θ, θ̇, θ̈)w

(45)

η̈ = R̄(η, η̇, θ, θ̇) + N1(θ,η)w + N2(θ,η)v

(46)

where the functions gI(·), gη(·), gη̇(·), gv(·) and gw(·)
are smooth matrix functions of appropriate dimensions,

and are nullified for η = η̇ = 0, whereas I is a solution

of the differential equation

İ = θ̇

[
2

α(θ)
g − 2β(θ)

α(θ)
I

]
(47)

with g(·) = gI(·)I + gη(·)η + gη̇(·)η̇ + gv(·)v + gw(·)w.

The transversal coordinates to the periodic motion

are given by the (2n− 1)-dimensional vector

x⊥ = [I,η, η̇]>, (48)

which can be introduced in a vicinity of the solution

η1 = η?1 = 0, . . . , ηn−1 = η?(n−1) = 0, θ = θ?. (49)

The choice of these transverse coordinates allows one

to introduce a moving Poincaré section S(τ), which

is determined in a time interval [0, Ts]. These sections

are transversal to the target trajectory at each instant

of time and at each point of the motion (see (Leonov,

2006) for more details on moving Poincaré sections). In

particular, the conserved quantity I, playing an impor-

tant role in the transversal dynamics, is shown (Shiriaev

et al, 2008) to directly relate to the Euclidean distance

from the orbit, generated by the reference trajectory

θ?(t), to the actual plant trajectory for every t ∈ [0, Ts].

The underactuated orbital stabilization problem can

now be treated, using theH∞-control synthesis for fully

actuated systems operating under unilateral constraints,

that has been revisited in section 3.2.

4 Orbital synthesis via nonlinear H∞-control

Between impacts, combining (47), (44), one arrives to

the nonlinear dynamics of the transverse coordinates

(48), defined by a nonlinear time-variant system of the

form

ẋ⊥ = f(x⊥, t) + g1(x⊥, t)w + g2(x⊥, t)v (50)
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To complete this model, one needs to complement

(50) with its corresponding impact map. This can be

done by applying the instantaneous transformation pro-

posed in (Freidovich et al, 2008), that allows to intro-

duce the impact law as

x+
⊥ = Fx−⊥ + wd

⊥ (51)

with

F = P+
n(0)dF̄P−n(Ts) (52)

P+
n(0) = Lc(0)

(
I− n(0)n>(0)

n>(0)n(0)

)
(53)

P−n(Ts) =

(
I− n(Ts)m

>(Ts)

n>(Ts)m

)[
Lc(Ts)

n>(Ts)

]−1 [
I

0

]
(54)

where F̄ is the map from the pre-impact states (q−, q̇−)

to the post-impact states (q+, q̇+), Ts is the period

of the target trajectory, I is an identity matrix of the

appropriate dimensions (not to be confused with the

scalar I, which is the solution of (47)), wd⊥ accounts for

inaccuracies in the restitution law, m is a normal vec-

tor to the linearization of the switching surface, n(t) =

[q̇>? (t), q̈?(t)]
> and Lc(·) defines the Jacobian matrix of

the coordinate transformation

[∆I,∆η>, ∆η̇>]> = Lc(t)[∆q>, ∆q̇>]> (55)

that relates the linear parts of the increments of the

transverse coordinates and the linear parts of incre-

ments of the generalized coordinates, which in turn can

be computed from the relations (37) and the formulas

∂I

∂θ

∣∣∣∣ θ = θ?(t)

θ̇ = θ̇?(t)

= −2θ̈?(t),
∂I

∂θ̇

∣∣∣∣ θ = θ?(t)

θ̇ = θ̇?(t)

= 2θ̇?(t).

(56)

For more details on this formulation, see the works by

Freidovich et al (2008); Freidovich and Shiriaev (2009).

Clearly, (50)-(51) define a hybrid linear system that

can be stabilized using the nonlinearH∞ control theory

presented before. The following result is in order.

Theorem 3 Consider the nonlinear time-variant hy-

brid system (50)-(51). Let conditions C1), C3) and (19)

be satisfied with some γ > 0. Then the transverse sys-

tem (50)-(51) driven by the state feedback

v = −g2
>Pε(s(θ))x⊥ (57)

locally possesses a L2-gain less than γ, where s(θ) is

an index parametrizing the particular leaf of the mov-

ing Poincaré section, to which the vector x⊥ belongs at

time moments t, i.e. a smooth function that satisfies

the identity s(θ?) = t for all t ∈ [0, Ts]. Moreover, the

disturbance-free closed-loop transverse system (5)-(7),

(57) is uniformly asymptotically stable, which renders

the desired orbit (3) orbitally asymptotically stable.

Proof The proof can be obtained by applying theorem

2 to the nonlinear hybrid system (50)-(51).

The solution Pε(t) of the differential Riccati equation

(16), subject to the boundary condition (23), relies on

the transverse linearization (15) of the nonlinear dy-

namics (50) along the desired motion (49), after an out-

put to be controlled (13) has been defined.

This result will be used in the next section to or-

bitally stabilize a five-link underactuated biped.

5 Case study: H∞-Control Synthesis for of an

Underactuated Planar Five-Link Bipedal

Robot

The objective of this section is to extend the results

of the previous section to the robust orbital stabiliza-

tion of an underactuated bipedal robot using position

feedback.

5.1 Model of a Planar Five-Link Bipedal Robot

The bipedal robot considered in this section is walking

on a rigid and horizontal surface. It is modeled as a pla-

nar biped, which consists of a torso, hips, two legs with

knees but no actuated ankles (see Fig. 2). The walking

gait is composed of single support phases and impacts.

The complete model of the biped robot consists of two

parts: the differential equations describing the dynam-

ics of the robot during the swing phase, and an impulse

model of the contact event (the impact between the

swing leg and the ground is modeled as a contact be-

tween two rigid bodies as in the work of Chevallereau

et al (2003)). It is assumed that the only measurements

available are the joints positions, since no velocity sen-

sors are used. During the single-support phase, the de-

gree of underactuation equals one. Let us assume the

stance leg tip is acting as a pivot on the ground, i.e.,

there is no slipping and no take off of the stance leg tip.

Then the biped’s model in single support phase between

successive impacts can be written:

(
D11 D12

D21 D22

)(
q̈1

q̈a

)
+

(
H1

H2

)
=

(
0

Γ

)
+

(
w1

w2

)
(58)

where q = (q1, q2, q3, q4, q5)> the 5×1 vector of general-

ized coordinates, qa = (q2, q3, q4, q5)> the 4×1 vector of

actuated joint angles, Γ = (Γ1, Γ2, Γ3, Γ4)> is the 4× 1
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Fig. 2 Left: Five-link bipedal planar robot Rabbit
(Chevallereau et al, 2003). Right: 2D Representation, joint
positions (qi) placement and geometrical interpretation of the
virtual leg angle θ.

vector of joint torques (see Fig. 2), H = C(q, q̇)q̇ + G(q)

= [H1,H2
>]> and wc is the 5 × 1 vector of distur-

bances, with components w1 and w2 representing the

disturbances in the underactuated and actuated sub-

systems, respectively. D11 and H1 are scalars, D12 is a

1× 4 vector, D21 and H2 are 4× 1 vectors and D22 is

a 4× 4 matrix.

The double support phase is instantaneous, so an

impact appears when the swing leg tip touches the

ground, at an a priori unknown collision time instant

t = TI ; for this time the swing leg touches the ground.

It is assumed that the impact is passive, absolutely in-

elastic, and that the legs do not slip. The correspond-

ing algebraic equations for the velocities jumps, i.e. the

restitution law (2), can be obtained through integration

of biped’s equations of motions, taking into account the

ground reactions, for the infinitesimal time from T−I to

T+
I . Its analytic expression can be found in (Djoudi

et al, 2005).

Model (1) was written taking into account implic-

itly the contact between the stance leg and the ground,

without take-off nor sliding. Since just after the impact,

the legs exchange their role, the former swing leg must

now become the stance leg and vice versa, a change

of coordinates after the impact is necessary. This co-

ordinate swap is included as part of the impact map

(Chevallereau et al, 2003). The overall bipedal robot

model can be expressed as a nonlinear system with im-

pulse effects (5), where F (q) being the altitude of the

swing leg tip, and wd accounts for external disturbances

in the impact phase, such as modelling errors, uneven

ground, etc.

5.2 Motion Planning

The control of the biped for the walking gait, consists

in tracking a reference trajectory (q?(θ)
>, q̇?(θ, θ̇)>)>.

The under-actuation characteristic of the biped in sin-

gle support phase has to be taken into account because

it is not possible to prescribe the five generalized coor-

dinates independently of the biped’s dynamic with only

four torques. An instantaneous double support phase is

considered. The trajectory is then obtained using a non-

linear dynamics optimization (Chevallereau et al, 2003;

Miossec and Aoustin, 2006; Tlalolini et al, 2011)

The well known approach of virtual constraints (Griz-

zle et al, 2001; Aoustin and Formalsky, 2003; Westervelt

et al, 2007) was used for the definition of the motion.

These virtual constraints are imposed as reference tra-

jectories over the actuated coordinates qa, and they are

chosen to be functions of the geometric variable

θ = q1 + 0.5q2 (59)

instead of time (Aoustin et al, 2006). This variable θ

represents the angle of the line connecting the stance

leg end to the hip against the floor, and is strictly mono-

tonic along each step. These functions are chosen as

Bézier polynomials of fifth order (Bezier, 1972). The

specific choice of the Bézier polynomial coefficients is

accomplished on the basis of achieving invariance of

the biped’s hybrid zero dynamics (32), (36), and the

minimization of a sthenic criterion (minimization of the

motors energy) in order to reduce the torques peak de-

mands over a step. The solution of this optimization

problem also takes into account a set of nonlinear con-

straints that ensures that there is no take off of the

support leg end, that the support leg end does not slide

on the floor, and that the swing leg end height ensures

that a contact with the ground will appear only at the

end of the step. For more details, the interested reader

can consult the work by Westervelt et al (2004).

5.3 H∞ Control synthesis

The objective of this section is to apply the results

of section IV to orbitally stabilize the underactuated

bipedal robot to the desired motion presented in the

previous section, supposing that both positions and ve-

locities are measured. Afterwards, assuming that only

positions are available for measurements, H∞ output

feedback synthesis is involved to estimate the missing

velocities.
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5.3.1 State Feedback Synthesis

The control objective for the 5-link bipedal robot is to

design a nonlinearH∞ position feedback controller that

follows a pre-specified periodic motion

q?(θ) = Φ(θ) = [φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ)]> (60)

q̇?(θ, θ̇) = Φ′(θ) =
∂Φ(θ)

∂θ
θ̇ (61)

q̈?(θ, θ̇, θ̈) = Φ′′(θ) =
∂Φ(θ)

∂θ
θ̇2 +

∂2Φ(θ)

∂θ2
θ̈ (62)

Let us define the error variables

η1 = q2 − φ2(θ), . . . η4 = q5 − φ5(θ) (63)

and the error vector η = [η1, . . . , η4]>. Introducing the

control transformation

Γ =

(
H2 −

D21

D11
H1

)
+ DT(Φ′′a(θ) + v), (64)

specified with DT = D22−D21D12

D11
and Φ′′a(θ) = [φ′′2(θ),

. . . , φ′′5(θ)]>, the dynamics (44) can be represented in

the form of the disturbed double integrator

η̈ = v + D−1T w2, (65)

where w2 is the disturbance, affecting the actuated sub-

system of (58).

By left-multiplying (58) by the ortogonal matrix

B⊥(q) = [1, 0, 0, 0, 0], and combining it with (62), one

can obtain the dynamics (32), (36) as follows

θ̈ =

−
(
D11

2

∂2φ2(θ)

∂θ2
+ D12

∂2Φa(θ)

∂θ2

)
θ̇2 −H1

D11

(
1− 1

2

∂φ2(θ)

∂θ

)
+ D12

∂Φa(θ)

∂θ

(66)

[
θ+

θ̇+

]
= ∆θ(θ

−, θ̇−) = θ ◦ µ(q?(θ)
−, q̇?(θ)

−) (67)

with Φa(θ) = [φ2(θ), . . . , φ5(θ)]>. ¿From (66), one can

clearly identify the terms ᾱ(θ), β̄(θ) and γ̄(θ). The de-

nominator term of (66), which corresponds to ᾱ(θ) in

(32), is a virtual inertia of the biped with respect to

the contact point between the leg tip and the ground

(Chevallereau et al, 2003). This virtual inertia term can

cross zero during a walking gait. However the optimiza-

tion algorithm of getting the reference trajectory qa?(θ)

involves a constraint that ensures this term to be non-

zero.

Therefore, by using the transverse coordinates x⊥ =

[I.η>, ˙η>]>, one can rewrite the biped dynamics in the

form (50), (51), being specified with

f(x⊥,t) =

− 2θ̇β̄(θ)
ᾱ(θ) I

η̇

0

 , (68)

g1(x⊥,t) =

 2θ̇
ᾱ(θ) 01×4
04×1 04×4
04×1 D−1T

 , (69)

g2(x⊥, t) =

 2θ̇
ᾱ(θ) (D11K⊥ −D12)

04×4
I4×4

 , (70)

K⊥ =

[
1

2
, 0, 0, 0

]
, (71)

F = P+
n(0)dµ(q, q̇)P−n(Ts) (72)

with θ, θ̇ taken along the predefined solution of (66),

and the matrices P+
n(0), P−n(Ts) come from the instant

transformation (52)-(54) applied to the restitution func-

tion µ(q−, q̇−) (Freidovich et al, 2008). The matrices

0n×m and In×m represent zero and identity matrices

of dimensions n×m.

It remains to define the output to be controlled (6).

Inspired by the work of Isidori and Astolfi (1992), such

an output can be written as

z =
[
01×4 ρ0I ρ1η

> ρ2η̇
> ]>+ v>

[
I4×4 0>9×4

]>
(73)

which satisfies (9), with ρ0, ρ1, ρ2 being positive scalars.

Finally, the controller v can be synthesized by applying

theorem 3 to the transverse system (50), (51) specified

with (68)-(72), considering the output (73).

Since the feedback transformation (64) and the H∞
controller (57) make use of the measurements of po-

sitions and velocities, in the next section, the output

feedback synthesis is developed in order to estimate the

non-measured velocities.

5.3.2 Output feedback synthesis

According to (1)-(2), the desired periodic motion cor-

responding to the orbit O? is governed by

D(q?)q̈? + H(q?, q̇?) = BΓs
?. (74)

The input torque Γs
? is designed as (64), which forces

the dynamics of (1), (2), (43), (57) to stay on the peri-

odic orbit O? when the system is started on O?. Since

Γs
? relies on the measurement of the generalized posi-

tions and velocities (the latter not available), Γ is sub-

stituted by the dynamic controller

Γ = Γs
? + u(ξ, t) (75)
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where u(ξ, t) has the form (10), and its internal state

ξ provides an estimation of the non-measured variables.

This can be done by defining the state vectors x1 = q− q?,

x2 = q̇− q̇?, and combining (1), (4) and (74), the error

dynamics can be rewritten as

ẋ1 = x2

ẋ2 = D(x1 + q?)
−1[D(q?)q̈? + H(q?, q̇?)

−H(x1 + q?,x2 + q̇?) + Bu + wc]− q̈? (76)

with an output to be controlled (6) inspired by the work

of Isidori and Astolfi (1992), which satisfies (9) and can

be written as

z = ρ3

[
01×4 x12

x13
x14

x15

]>
+ u>

[
I4×4 04×4

]>
(77)

where x1i = qi − qi?, i = 2, 3, 4, 5 (so only the actu-

ated coordinates error qa − qa? is considered), ρ3 is a

positive scalar, and with the set of measurements

y = x1 + wy (78)

where wy is a 5×1 vector of measurement disturbances

(for a practical application, in order to estimate the

absolute orientation, and thus q1 and θ, the use of an

inertial measurement unit is introduced section 5.4.2).

Thus, the generic system (5)-(7) can be specified with

f(x, t) =

[
x2

D(x1 + q?)
−1[H(q?, q̇?) + D(q?)q̈?]

]
+

[
05×1

−D(x1 + q?)
−1[H(x1 + q?,x2 + q̇?)]− q̈?

] (79)

g1(x, t) =

[
05×5 05×5
05×5 D(x1 + q?)

−1

]
, (80)

g2(x, t) =

[
05×4

D(x1 + q?)
−1B

]
, h1(x) =

[
04×1
ρ1Kox1

]
,

(81)

k12(x) =

[
I4×4
04×4

]
, Ko =

[
04×1 I4×4

]
, (82)

h2(x) = x1, k21(x) =
[
I5×5 05×5

]
, (83)

∆(x, t) = µ(x1 + q?,x2 + q̇?)− µ(q?, q̇?), (84)

F (x, t) = F0(x1 + q?), ω(x, t) = I5×5 (85)

where the function F0(q) is given by the swing foot

height.

If the output (6) specified with (82) is driven to zero,

the system will be driven to the zero dynamics manifold

Z = {(q, q̇)|qa = qa?(θ), q̇a =
∂qa?(θ)

∂θ
θ̇} (86)

and the dynamic behavior of θ (restriction dynamics)

will be given by the hybrid zero dynamics (66), (67).

Finally, the last theorem of this work is presented

below.

Theorem 4 Let conditions C1)-C4) be satisfied for the

hybrid system (5)-(8) specified with (79)-(85). Then,

the dynamic control (21)-(22) is a solution to the H∞-

control problem for the closed-loop mechanical system

(1)-(2), (75).

Proof The rigorous proof, following the Hamilton-Jacobi-

Isaacs approach applied in the transversal coordinates,

is rather technical and too lengthy to present it within

the scope of the present paper. Instead, in section 6

we present numerical evidences by computing the cor-

responding Poincare map.

This method has been successfully implemented to

orbitally stabilize periodic orbits in unrestricted me-

chanical systems of underactuation degree 1 (see Meza-

Sanchez et al (2011)).

Thus, in the disturbed case, even if the output (6),

(77) is not driven to zero, the L2-gain (11) of the system

is still locally less than the specified value γ, keeping the

output bounded around zero.

It is important to remark that θ̇ and θ̈, necessaries

to define the desired velocities q̇? and accelerations q̈?,

need to be estimated, since only position measurements

are considered; this estimation is effectuated using the

states from (21).

This result will be used in the next section to ro-

bustly stabilize a planar and underactuated biped robot

on a desired periodic orbit.

5.4 Numerical tests

The parameters considered in this section are those of

”Rabbit” (Chevallereau et al, 2003). Here the applica-

tion of the control law (75) is considered to track a

geometrical-reference trajectory defined using a virtual

constraints approach. The period and the length of the

nominal walking gait, which is obtained by optimiza-

tion, are 0.56 s and 0.45 m. The average walking veloc-

ity is 0.80 m · s−1. This cyclic walking gait was tested

in closed loop for several steps.

The control synthesis is performed in two steps.

The first step consists in designing the state feedback

control (57), (64) via the application of Theorem 3 to

the transverse dynamics (50), (51), specified with (68)-

(72). The matrices A, B1, B2 and C1 used in (16)

come from the transverse linearization (12), (13) of this

transversal system. By iterating on γ and ε, a mini-

mal value γmin is to be found among all γ such that

on the period Ts, (16) possesses a positive definite so-

lution Pε(t) for some ε > 0 provided that relation

(23)) holds true for the solution values at the initial

time instant t0 and at the first impact time instant
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t1 = t0 +Ts. Then, this solution should be continued to

the right with the periodicity Ts. Since generally speak-

ing, Pε(t0) 6= Pε(t1), the resulting Ts-periodic function

Pε(t) is expected to undergo discontinuities at the im-

pact time instants ti = t0 + iTs, i = 1, 2, . . .. Specifying

the values ρ0 = 1, ρ1 = 200, ρ2 = 10 and following

the above iteration procedure, a value γmin ≈ 8000 is

found for ε = 0.001. To avoid dealing with high con-

troller gains, the value γ = 10000 is subsequently used

in the simulation runs.

Figure 3 illustrates the eigenvalues of the periodic

solution Pε(t), thus obtained. It is observed from the

figure that the periodic eigenvalues, also undergoing

discontinuities at the impact time instants, remain pos-

itive definite along the period. The positive definiteness

of Pε(t) is thus confirmed for all t ≥ 0.
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Fig. 3 The eigenvalues of the solution Pε(t) of (16), plotted
for two steps. Due to the multiplicity of the eigenvalues, only
four distinct eigenvalues among nine are plotted.

The second step consists of the design of the output

feedback synthesis (75), where Γs
? is the state feedback

control (64) designed in the previous step, and u(ξ, t) is

calculated applying Theorem (4) to the hybrid system

(5)-(8) specified with (79)-(85). The controller param-

eters to be used in (16) and (17) are chosen to enforce

C1)- C4) through setting a positive value for ρ3 and γ

is set to the value found in the previous step. Also, it

is important to consider that a higher value of ρ3 pro-

vides faster stabilization (which is important in order

to reach the smallest possible vicinity of the reference

trajectory, fast enough before the next impact appears),

but as it increases it also leads to increase the controller

gain of u. Variable ε in (16)-(17) is set to once again set

to a small value, only to guarantee asymptotical stabil-

ity. Using the value ρ3 = 100, and setting ε = 0.001,

and γ = 10000, (16)-(17) are verified to have a sym-

metric positive definite and periodic solution, and u is

calculated from (21)-(22). The non-measured velocities

needed for step 1, are estimated using (21).

For every case in the following subsections, the re-

action forces were verified in order to ensure that the

legs do not slip nor take off.

5.4.1 Undisturbed case

Figure 4 presents the phase plane θ, θ̇ for the undis-

turbed plant dynamics (1)-(2) (w0 = wc = wd = 0),

where the initial conditions of the plant (positions and

velocities) were deviated 5% from the reference motion

initial condition (the estimator (21) initial conditions

were the reference motion initial condition, so an ini-

tial estimation error also exists). It can be seen that

the plant evolution converges asymptotically to a limit

cycle (depicted in blue), which represents the reference

motion limit cycle. This asymptotical convergence can

also be appreciated from the Poincaré map presented in

Fig. 5, where a Poincaré section is taken at θ = π/2 rad

(black line in Fig. 4), where it is clear that the plant

dynamics evolves towards a fixed point, given by the

blue line. It is important to remark that this Poincaré

section is chosen instead of the predefined impact con-

figuration (θ = θf ), since in the disturbed scenario this

configuration may be different due to the influence of

the external disturbances.

When the dynamics of variable θ converge to the

limit cycle, all of the joints positions will converge as

well, as can be seen from Fig. 6 for the first four steps;

after a short transitory response (evident during the

first step, i.e. between t = 0 and t = 0.55 s), all the

joints attain a periodic behavior. This fact will be taken

into account to present the results of the following sec-

tions.

5.4.2 Noise in orientation measurement

In the case of the measurement of q1, which is needed

for developing the present algorithm, the biped Rabbit

is not equipped with a sensor that measures this coor-

dinate accurately (Chevallereau et al, 2003). An alter-

native way to estimate q1 would be from the measure-

ment of orientation from an inertial measurement unit

(IMU). IMUs are very useful sensors that can report

measurements about three axes, reducing the number of

independent sensors needed on the robot. However, the

use of an IMU may present some problems rising from

nonlinearities or systematic error in the sensor as well

as random sensor noise (Angelosanto, 2008). Whereas

the Kalman filter has been used to reduce the effect of
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Fig. 4 Phase plane of θ for the undisturbed plant dynam-
ics, with non-zero initial conditions, for 18 steps. Red: Plant
evolution converging to a limit cycle. Blue: Reference motion
limit cycle. The initial point is indicated by the black square.
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Fig. 5 Poincaré Mapping at θ = π/2 rad, of the undisturbed
plant dynamics, with non-zero initial tracking errors, for 18
steps. Red: Plant evolution converging to a fixed point. Blue:
Reference motion fixed point.
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Fig. 6 Joint positions for the undisturbed system, with non-
zero initial conditions. After a transitory evolution, evident
during the first step, all the joints converge to a periodic
motion.

the noise in the measurements in many robotic applica-

tions (see for example the work from Alcaraz-Jiménez

et al (2013)), in this work the estimator (21), included

in the synthesis presented in theorem 1, was used.

Fig. 7 IMU connection to the H∞-controller.

By simulating an IMU similar to the presented at

Alcaraz-Jiménez et al (2013), with 1% precision in the

range of ±2G accelerations, the controller was tested

(see Fig. 7) considering that the plant is started at

the same initial conditions as the reference motion (so

the effects of the disturbances introduced by the IMU

are separately analyzed). The IMU is considered to be

placed at the hip (as shown in Fig. 7); when the biped

is in simple support, by considering the measurements

of the horizontal and vertical accelerations, ax and ay,

passing both by a double integrator, the unmeasurable

coordinate q1 (and in consequence, θ) is estimated us-

ing the knowledge of the geometrical relations (see Fig.

2) between the position of the IMU (hip), the lengths of

the legs and the measurable angle q2; then white noise

was introduced in order to attain the desired precision.

The dynamics of θ after several steps, achieve the cy-

cle shown in Fig. 8. It can be seen that a stable cycle,

around the nominal cycle, is attained even after 8 steps.

Then, it was tested again, considering a 10% of er-

ror in the measurement considering again white noise.

The behavior of the estimator (21) is shown in Fig. 9,

where it can clearly be seen the attenuation effect of

the H∞-estimator. The resulting Poincaré map after 8

steps of this disturbed system is shown in Fig. 10, where

a maximum deviation of 0.23 rad/sec is obtained and

stable walking is achieved.

5.4.3 Floor height variation

As it was done in the work by Dai and Tedrake (2013),

an analysis of the biped walking over uneven terrain is

made (see Fig. 11). In the former article, the virtual
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Fig. 8 Phase plane of θ, θ̇, for the behavior obtained by esti-
mating q1 from an IMU with 1% precision, under the presence
of white noise, for 8 steps. Blue: nominal cycle. Red: actual
cycle.
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Fig. 9 Estimation of q1 using the H∞-estimator (21), along
one step.

slope for the same biped robot was varied from −2◦ to

2◦. Also, a perfect knowledge of the generalized posi-

tions and velocities was assumed. A direct comparison

cannot be made for two reasons: first, the introduction

of the estimator (21) increases the minimum value of

γ that can be achieved (in Dai and Tedrake (2013), a

γ ∈ [5000, 6000] is used, whereas in the present work a

minimum value of γmin = 9800 is obtained using the it-

erative process described at the beginning of section 4).

The second is that in (Dai and Tedrake, 2013), the au-

thors do not use reference trajectories based on the vir-

tual constraint approach, but rather trajectories defined

as functions of time. It has been demonstrated that if
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Fig. 10 Poincaré Map for the system with noise measure-
ments, for 8 steps, with 10% error in q1. Blue: nominal cycle.
Red: actual cycle.

trajectories defined as a function of time are compared

against trajectories defined using the virtual constraints

approach, the latter exhibits better disturbance attenu-

ation than the former, even without the use of a robust

controller (Montano et al, 2015b). Therefore, in this

work, the combination of virtual constraints with the

robust control synthesis, allows one to vary the slope

up to 10◦, and stable walking is still achieved. The

results are shown in Fig. 12 for three different cases:

disturbance of the first step with a virtual slope of 5◦

(red); disturbance at the first two steps with virtual

slopes of −2◦ and 10◦ respectively (black); and alter-

nating virtual slopes of −5◦ and 5◦ (magenta). Again,

as predicted by the theory, when the disturbances dis-

sapear (black and red cases), the system returns to the

reference cycle (blue line), whereas if the disturbance

is sustained (magenta case), the systems will stay in a

neighborhood of the reference cycle.

Fig. 11 A simple humanoid walking over uneven terrain. α
represents the virtual slope.
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Fig. 12 Poincaré Maps for the system under different virtual
slopes, during 12 steps. Blue: nominal cycle (plain ground).
Red: Virtual slope of 5◦ in the first step, 0◦ for the rest. Black:
Virtual slope of −2◦ for the first step, 10◦ for the second and
0◦ for the rest. Magenta: Alternating −5◦ and 5◦.

5.4.4 Friction

Another important effect to consider is friction, spe-

cially at the knee joints, since the phasing variable θ

depends on the behavior of q2. Therefore, the Coulomb

friction vector

F =[F1, . . . , F5]> (87)

is subtracted to the right side of (58), with

Fi = F ci sign(q̇i), i = 1, . . . , 5. (88)

The numerical tests were performed under an assump-

tion that only the active joints q2, . . . , q5 were affected

by friction forces, which is why the friction coefficients

were selected as F c2 = F c5 = −2.1, F c3 = F c4 = −1.02

and F c1 = 0. The results are shown in Fig. 13. Even in

the presence of the Coulomb friction, stable walking is

still achieved after several steps, as can be seen from

the phase plane of θ, where the evolution falls into a

new orbit, represented in red.

5.4.5 Imperfect detection of the impact

Due to the practical implementation of the controller,

there is an inherent delay between the moment of the

impact and the switching of the control law, which

won’t occur at the same time. The effect that this gener-

ates increases as the time step used for implementation

increases.

¿From Fig. 14 it can be seen that for a time step

small enough, the walking cycle does not suffer an evi-

dent deviation from the nominal biped cycle. This de-

viation is mainly present due to the fact that the con-

troller has not been switched, and the error begins to
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Fig. 13 Phase plane of θ, θ̇ for the introduction of Coulomb
friction at the actuated joints. Blue: nominal cycle. Red: ac-
tual cycle.

increase between the time the actual impact happens

and the time the control law restarts. This effect be-

comes more and more evident as the time of detection

increases: in Fig. 15, the sample time is increased ten

times, so the degradation of the walking cycle becomes

evident, but is still in a neighborhood around the nom-

inal cycle, as shown in the figure.

‘
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Fig. 14 Phase plane of θ, θ̇ for a time step of 1 ms. Blue:
nominal cycle. Red: actual cycle.

5.4.6 External forces and impact disturbances

As shown in Fig. 1, the system was tested under the ap-

plication of a step disturbance (5 Nm at the hip, along

the x axis) during the single support phase, starting

from the first step; disturbances at each impact, modi-

fying the impact function ∆ in 5% from its original val-

ues, were applied as well. The measurements were dis-

turbed by a sinusoidal disburbance of 0.05 sin(2t) rads,

and the initial estimation of the biped velocity is devi-

ated 5% of its designed trajectory’s initial velocity.
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Fig. 15 Phase plane of θ, θ̇ for a time step of 10 ms. Blue:
nominal cycle. Red: actual cycle.

Just after the impact, the biggest error amplitude

appears due to the disturbance in the impact phase,

and this is rapidly attenuated to a lower level, where the

new error is due to the disturbance on the continuous

dynamics. The new orbit obtained is depicted in Fig. 16

by the red line. Due to the robustness of the controller,

this new orbit is close and evolves around the nominal

orbit. Even though the evolution of θ does not con-

verge to a limit cycle, due to the effect of the persistent

time-varying disturbances, it still remains oscillating in

a neighborhood of the nominal cycle. Since the velocity

was not measurable, Fig. 17 presents the behavior of

the estimator (21) while estimating the missing veloci-

ties, where it can be seen that in spite of the persistent

time-varying disturbances in the measurements, the er-

ror does not diverge.
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Fig. 16 Phase plane of θ, θ̇ for the disturbed system with
persistent perturbations. The blue line represents the limit
cycle for the undisturbed system, whereas the red represents
the orbit of the system under the perturbations. The black
line indicates the Poincaré section.
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Fig. 17 Velocity estimation errors ξ2 = (ξ21, . . . , ξ25)> for
the estimator (21), for the disturbed system with persistent
perturbations. The estimation error does not diverge under
the presence of disturbances in both the measurements and
the plant dynamics.

Finally, the previous results were compared against

the implementation of a PD-controller, similar to the

one presented in the work of Hamed et al (2014). In

order to make a fair comparison, the same structure as

(4) was used, but u was replaced with:

ξ̇ = f(ξ, t)− g2(ξ, t)Kξ + L[y − h2(ξ, t)]

ξ+ = ∆(ξ−, ti) (89)

u = −Kξ (90)

where (89) has the form of a nonlinear Luenberger ob-

server, and (90) of a standard PD-control, with L and

K = (K>p ,K
>
v )> constant gain matrices. To obtain the

values of both matrices, first the Differential Riccati

Equations (16)-(17) are solved along the nominal tra-

jectory q?, using the same method and parameters as

in Sect. 5.4. Then, the undisturbed closed loop system

(1)-(2), (4), (21)-(22) is simulated (with zero initial con-

ditions) for just one step, that ends at time t1. Thus,

the gain matrices L and K for the PD-control are cal-

culated as:

L =
1

t1

∫ t1

0

Zε(t)C2
>(t)dt (91)

K =
1

t1

∫ t1

0

B2
>(t)Pε(t)dt (92)

so they become the average values of the time-varying

gains of the H∞-controller (21)-(22). The transversal

control v in (64) is replaced by v = K⊥x⊥, and K⊥ is

obtained following the same idea. Once these values are

obtained, the system is tested again with the same dis-

turbances as the ones presented at the beginning of this
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section, but replacing (21)-(22) with (89)-(90), and the

results were compared against the previously exposed.

Figure 18 compares the evolution of the Poincaré

maps for both cases. It can be seen that the imple-

mentation of the proposed H∞-control exhibits better

velocity tracking, since its map evolution is closer to

the nominal fixed point than in the case of the PD-

controller. Also, Fig. 19 compares the cumulative track-

ing error for both implementations: after three steps,

the H∞-control performance is better than that of the

PD-control, and stays better for successive steps. This

is also reflected in the time shifting from the reference

trajectory: whereas for the undisturbed case, it takes

5.6 s to complete 10 steps, it took 4.6 s to the H∞
implementation, and 3.69 s to the PD implementation,

so the behavior of the former is closer to the nominal

behavior than that of the latter. Thus, better perfor-

mance can be concluded for the implementation of the

proposed synthesis.
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Fig. 18 Comparison of the Poincare Maps for the H∞ and
PD-controller implementations, for the disturbed system un-
der persistent disturbances. Red: H∞. Black: PD; Blue:
Nominal behavior

6 Conclusion

The robust H∞ output feedback synthesis was devel-

oped for underactuated mechanical systems with uni-

lateral constraints. When only imperfect position mea-

surements were available, the synthesis was applied to

an underactuated bipedal robot, operating under ex-

ternal disturbances, affecting both the impact-free mo-

tion and the transition dynamics. Once a nominal feasi-

ble periodic trajectory to follow was prescribed for the

bipedal robot, the analysis of the transversal dynamics

allowed to carry out sufficient conditions for attenuat-

ing the plant disturbances around the prescribed trajec-

tory. The resulting synthesis was tested in the numeri-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time (s)

‖q
−

q ⋆
‖ L

2

 

 
PD
H∞

Fig. 19 Comparison of the cumulative tracking errors of the
H∞ vs PD-controller, for the disturbed system under persis-
tent disturbances.

cal study made for a five-link planar bipedal emulator

to be stabilized around a periodic nominal trajectory.

Good performance of the closed-loop system was ob-

tained in spite of external disturbances, affecting the

single support phase and the impact phase, and under

imperfections in the position measurements.
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H (2013) Robust feedback control of zmp-based gait

for the humanoid robot nao. The International Jour-

nal of Robotics Research 32(9-10):1074–1088

Ames A, Galloway K, Grizzle J (2012) Control lya-

punov functions and hybrid zero dynamics. In: De-

cision and Control (CDC), 2012 IEEE 51st Annual

Conference on, IEEE, pp 6837–6842

Angelosanto G (2008) Kalman filtering of imu sensor

for robot balance control. PhD thesis, Massachusetts

Institute of Technology

Aoustin Y, Formalsky A (2003) Control design for a

biped: reference trajectory based on driven angles as

functions of the undriven angle. Journal of Computer

and Systems Sciences International 42(4):645–662

Aoustin Y, Chevallereau C, Formalsky A (2006)

Numerical and experimental study of the virtual

quadrupedal walking robot-semiquad. Multibody

System Dynamics 16(1):1–20



18 Oscar Montano et al.

Aoustin Y, Chevallereau C, Orlov Y (2010) Finite time

stabilization of a perturbed double integrator-part

ii: applications to bipedal locomotion. In: Decision

and Control (CDC), 2010 49th IEEE Conference on,

IEEE, pp 3554–3559

Arai H, Tanie K, Shiroma N (1998) Time-scaling con-

trol of an underactuated manipulator. In: Robotics

and Automation, 1998. Proceedings. 1998 IEEE In-

ternational Conference on, IEEE, vol 3, pp 2619–2626

Basar T, Bernhard P (1995) H∞-optimal control and

related minimax design problems: a dynamic game

approach. Boston: Birkhaeuser

Bezier P (1972) Numerical control: Mathematics and

applications. Wiley and Sons

Brogliato B (1999) Nonsmooth Mechanics.: Models,

Dynamics and Control. Springer

Bullo F, Lynch K (2001) Kinematic controllability for

decoupled trajectory planning in underactuated me-

chanical systems. Robotics and Automation, IEEE

Transactions on 17(4):402–412

Chevallereau C, Abba G, Aoustin Y, Plestan F, West-

ervelt E, Canudas De Wit C, Grizzle J (2003) Rabbit:

A testbed for advanced control theory. IEEE Control

Systems Magazine 23(5):57–79

Chevallereau C, Grizzle J, Shih C (2009) Asymptoti-

cally stable walking of a five-link underactuated 3-

d bipedal robot. Robotics, IEEE Transactions on

25(1):37–50

Dai H, Tedrake R (2012) Optimizing robust limit cy-

cles for legged locomotion on unknown terrain. In:

Decision and Control (CDC), 2012 IEEE 51st An-

nual Conference on, IEEE, pp 1207–1213

Dai H, Tedrake R (2013) L2-gain optimization for

robust bipedal walking on unknown terrain. In:

Robotics and Automation (ICRA), 2013 IEEE In-

ternational Conference on, IEEE, pp 3116–3123

Djoudi D, Chevallereau C, Aoustin Y (2005) Optimal

reference motions for walking of a biped robot. In:

Robotics and Automation, 2005. ICRA 2005. Pro-

ceedings of the 2005 IEEE International Conference

on, IEEE, pp 2002–2007

Freidovich L, Shiriaev A (2009) Transverse linearization

for mechanical systems with passive links, impulse

effects, and friction forces. In: Decision and Control,

2009 held jointly with the 2009 28th Chinese Con-

trol Conference. CDC/CCC 2009. Proceedings of the

48th IEEE Conference on, IEEE, pp 6490–6495

Freidovich L, Shiriaev A, Manchester I (2008) Stabil-

ity analysis and control design for an underactu-

ated walking robot via computation of a transverse

linearization. In: Proc. 17th IFAC World Congress,

Seoul, Korea, pp 10–166

Goebel R, Sanfelice R, Teel A (2009) Hybrid dynamical

systems. Control Systems, IEEE 29(2):28–93

Grizzle J, Abba G, Plestan F (2001) Asymptotically

stable walking for biped robots: Analysis via sys-

tems with impulse effects. Automatic Control, IEEE

Transactions on 46(1):51–64

Haddad W, Kablar N, Chellaboina V, Nersesov S

(2005) Optimal disturbance rejection control for non-

linear impulsive dynamical systems. Nonlinear Anal-

ysis: Theory, Methods & Applications 62(8):1466–

1489

Hamed K, Grizzle J (2013) Robust event-based stabi-

lization of periodic orbits for hybrid systems: Appli-

cation to an underactuated 3d bipedal robot. In: Pro-

ceedings of the 2013 American Control Conference

Hamed K, Grizzle J (2014) Event-based stabilization of

periodic orbits for underactuated 3-d bipedal robots

with left-right symmetry. Robotics, IEEE Transac-

tions on 30(2):365–381

Hamed K, Buss B, Grizzle J (2014) Continuous-time

controllers for stabilizing periodic orbits of hybrid

systems: Application to an underactuated 3d bipedal

robot. Proceedings of the 53rd IEEE Conderence on

Decision and Control

Hobbelen D, Wisse M (2007) A disturbance rejection

measure for limit cycle walkers: The gait sensitivity

norm. Robotics, IEEE Transactions on 23(6):1213–

1224

Isidori A, Astolfi A (1992) Disturbance attenuation and

H∞-control via measurement feedback in nonlinear

systems. Automatic Control, IEEE Transactions on

37(9):1283–1293

La Hera P, Shiriaev A, Freidovich L, Mettin U, Gusev

S (2013) Stable walking gaits for a three-link pla-

nar biped robot with one actuator. Robotics, IEEE

Transactions on 29(3):589–601

Leonov G (2006) Generalization of the andronov-vitt

theorem. Regular and chaotic dynamics 11(2):281–

289

Manamani N, Gauthier N, MSirdi N (1997) Sliding

mode control for pneumatic robot leg. In: Proceed-

ings European Control Conference

Mettin U, La Hera P, Freidovich L, Shiriaev A (2007)

Planning human-like motions for an underactuated

humanoid robot based on the virtual constraints ap-

proach. In Proc 13th International Conference on Ad-

vanced Robotics, Jeju, Korea, pp 585–590

Meza-Sanchez I, Aguilar L, Shiriaev A, Freidovich L,

Orlov Y (2011) Periodic motion planning and non-

linear H∞ tracking control of a 3-dof underactuated

helicopter. International Journal of Systems Science

42(5):829–838



Orbital stabilization of an underactuated bipedal gait via nonlinear H∞-control using measurement feedback 19

Miossec S, Aoustin Y (2005) A simplified stability study

for a biped walk with underactuated and overactu-

ated phases. The International Journal of Robotics

Research 24(7):537–551

Miossec S, Aoustin Y (2006) Dynamical synthesis of a

walking cyclic gait for a biped with point feet. In:

Fast motions in biomechanics and robotics, Springer,

pp 233–252

Montano O, Orlov Y, Aoustin Y (2014) Nonlinear H∞-

control of mechanical systems under unilateral con-

straints. In: Proceedings of the 19th World Congress

of the International Federation of Automatic Control,

IFAC, pp 3833–3838 (extended journal version was

submitted to Control Engineering Practice under the

title ”Nonlinear H∞–stabilization of fully actuated

bipedal locomotion under unilateral constraints”)

Montano O, Orlov Y, Aoustin Y (2015a) Nonlinear

output feedback H∞-control of mechanical systems

under unilateral constraints. Proceedings of the 1st

IFAC Conference on Modelling, Identification and

Control of Nonlinear Systems pp 284–289

Montano O, Orlov Y, Aoustin Y, Chevallereau C

(2015b) Nonlinear orbital H∞-stabilization of un-

deractuated mechanical systems with unilateral con-

straints. Proceedings of the 14th European Control

Conference pp 800–805

Morris B, Grizzle J (2005) A restricted poincaré map for
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