
Supplementary material for

Cut Pursuit: fast algorithms to learn piecewise constant functions

Loic Landrieu, Guillaume Obozinski

1 A working set algorithm for total variation regularization

1.1 Proof of Proposition 1

Proposition. For x ∈ Rn, if we set S = S(x) then

Q′(x, 1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x), 1B〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x, 1B).

Proof. For B ⊂ V we have that Q′(x,1B) = 〈∇QS(x),1B〉 + supε∈∂TV|Sc (x)〈ε,1B〉. It can be shown using
the chain rule for subgradients that we have

∂TV|Sc(x) =
{

1
2D

ᵀδ | δS = 0, ‖δSc‖∞ ≤ 1, ∀(i, j) ∈ E, δij = −δji
}
,

with D ∈ R2m×n the matrix whose only non-zero entries are D(i,j),i = wij and D(i,j),j = −wij for all
(i, j) ∈ E, and with the notations δS ∈ R2m and δSc ∈ R2m for the vectors whose entries are equal to those
of δ respectively on S and Sc and equal to zero otherwise.

Therefore if ε = 1
2D

ᵀδSc then

〈ε,1B〉 = 〈1
2
δSc , D1B〉 =

1

2

∑
(i,j)∈Sc

δijwij([1B]i − [1B]j)

so that sup
ε∈∂TV|Sc (x)

〈ε,1B〉 = wSc(B,Bc).

For the second statement, we have that

Q′(x, uB) = 〈∇QS(x), uB〉+ sup
ε∈∂TV|Sc (x)

〈ε, uB〉.

But letting g = QS(x), and given that 〈g, 1〉=0 implies that 〈g, 1Bc〉 = 〈g, 1− 1B〉 = −〈g, 1B〉, we have

〈g, uB〉 = γB〈g, 1B〉 − γBc〈g, 1Bc〉 = (γB+γBc)〈g, 1B〉.
Similarly, 〈ε, uB〉 = 〈 12δSc , DuB〉 = 1

2γB〈δSc , D1B〉 − 1
2γBc〈δSc , D1Bc〉 = 1

2 (γB +γBc)〈δSc , D1B〉 because
D1B = −D1Bc . Taking the supremun over ε then proves the result.

1.2 Proof of Proposition 2

Proposition. Let S = S(x) then (C, Vflow\C) is a minimal cut in Gflow if and only if C\{s}, and its
complement in V are minimizers of B 7→ Q′(x,1B).

This result is a well know result that was first discussed in Picard and Ratliff (1975). We refer the reader
to Kolmogorov and Zabih (2004) for a proof.

1

1.3 Proof of Proposition 3

Proposition. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and Q′(x,1V) = 0.

Proof. (⇒) If x is the solution of problem (1), the directional derivative of Q along any direction must be
nonnegative, which implies that Q′(x,1B) ≥ 0 for all B. But minB⊂V Q

′(x,1B) ≤ Q′(x,1∅) = 0, which
proves the first part. Then since w(V,∅) = 0 we have Q′(x,1V) = 〈∇QS(x),1V 〉, and, in fact, since all
elements of the subgradient of TV|Sc are orthogonal to 1V we also have Q′(x,−1V) = −〈∇QS(x),1V 〉. So
0 ≤ Q′(x,−1V) = −Q′(x,1V) ≤ 0.

(⇐) Conversely we assume that minB⊂V Q
′(x,1B) = 0 and Q′(x,1V) = 0.

Since Q′(x,1V) = 0 and since wSc(V,∅) = 0 we have 〈∇QS(x),1V 〉 = 0. Now, for any set A which is a
maximal connected component of G|Sc := (V, Sc), we also have wSc(A,Ac) = 0 so that 0 ≤ Q′(x,1A) =
〈∇QS(x),1A〉 but the same holds for the complementAc and 〈∇QS(x),1A〉+〈∇QS(x),1Ac〉 = 〈∇QS(x),1V 〉 =
0 so that 〈∇QS(x),1A〉 = 0.

As a consequence the capacities of the graph Gflow defined in (3) of the article are such that, for any set
A which is a maximal connected component of G|Sc , we have∑

i∈∇+∩A
csi =

∑
i∈∇−∩A

cit. (1)

Then since Q′(x,1∅) = 0 and since minB⊂V Q
′(x,1B) = 0 it is a minimizing argument. The character-

ization of the steepest partition as a minimal cut then guarantees that there exists a minimal cut in Gflow
which does not cut any edge in Sc and isolates the source and the rest of the graph. Given equality (1), the
set of minimal cuts are the cuts that remove indifferently for each maximal connected component A either
all edges {(s, i)}i∈A or the edges {(i, t)}i∈A.

A consequence of the max-flow/min-cut duality is that to this cut corresponds a maximal flow e ∈ R2m

in Gflow. This flow is such that it is saturated at the minimal cut, and we thus have esi = csi for all i ∈ ∇+

and eit = cit for all i ∈ ∇−, again because of equation (1).
Writing flow conservation yields{

esi +
∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇+

−eit +
∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇−,
(2)

with Ni = {j|(i, j) ∈ Sc}.
By replacing esi and eit by their value, the flow conservation (2) at node i rewrites

∇iQS(x) +
∑
j∈Ni

λwijδij = 0

∇iQS(x) +
1

2

∑
j∈Ni

λwij (δij − δji) = 0, (3)

with δij =
eji−eij
λwij

for (i, j) ∈ Sc(x) and δij = δji = 0 for all edges (i, j) ∈ S(x). The flow e must respect the

capacity at all edges and hence 0 ≤ eij ≤ cij = λwij for all edges in Sc(x). Since the flow is maximal, only
one of eij or eji is non zero. Hence δ we naturally have δij = −δji, and |δij | ≤ 1. But we can rewrite (3) as
∇QS(x) = 1

2λD
ᵀδ with δS = 0 and ‖δSc‖ ≤ 1 with D as in the characterization of the subgradient of TV|Sc

which shows that − 1
λ∇QS(x) ∈ ∂TV|Sc(x) thus that 0 ∈ ∂Q(x), and finally that x minimizes Q.

1.4 Proof of Proposition 4

Proposition 1. If BΠ 6= ∅, Q(xΠnew
) < Q(xΠ).

2

node of V

edge of E

node of V

edge of E

n1

n2

n3

n4

n5

1

2

1

2

3

1
3 5

{n1} {n2,n3} {n3,n4}

Figure 1: Exemple of reduced graph. Left : graph G, middle : partition Π of G into connected components,
right : reduced graph G

Proof. We clearly have
span(Π) ⊂ span(1A1

, . . . ,1Ak
,1BΠ

) ⊂ span(Πnew),

so that
Q(xΠnew

) = min
x∈span(Πnew)

Q(x) ≤ min
x∈span(Π)

Q(x) = Q(xΠ).

Moreover, if BΠ 6= 0, then Q′(xΠ, 1B) < 0, which entails that there exists ε > 0 such that Q(xΠnew
) ≤

Q(xΠ + ε1B) < Q(xΠ). This completes the proof.

1.5 Reduced graph

Figure 1 shows an example of graph reduction on a small graph. Remark how the weights of the edges of the
reduced graph are equal to the sum of the weights of the edges of the original linking the node they contains.

1.6 Proof of Proposition 5

Proposition 2. For x =
∑
A∈Π cA1A ∈ span(Π) we have TV(x) = TVG(c) with

TVG(c) =
∑

(A,B)∈E

w(A,B) |cA − cB |.
Proof.

TV(x) =
∑

(i,j)∈E

wij |xi − xj |

=
∑

(i,j)∈E

wij
∑

(A,B)∈Π2

1{i∈A,j∈B} |cA − cB |

=
∑

(A,B)∈Π2

|cA − cB |
∑

(i,j)∈E∩(A×B)

wij ,

hence the result using the definition of w(A,B).

2 A greedy algorithm for the minimal partition problem

2.1 Implementation details

Similarily as in the convex case, `0-Cut Pursuit maintain a current partition Π that is recursively split and
computes optimal values for each of its components. It is comprised of three main steps: the splitting of
the current partition; the computation of the connected components and their values; and a potential merge
step, when necessary.

3

Splitting. For each component, we compute an optimal binary partition B by finding a solution to (5)
as described in section 3.1.1: we alternatively solve the equation with B fixed and with (h, h′) fixed until
either convergence or a maximum number of iterations is reached. In practice 3 steps seem to always suffice
to reach a local minimum (the algorithm necessarily converges after a finite number of iterations since 2V is
a finite set). The partition B needs to be initialized, which we chose to do by computing the solution of the
problem for λ = 0, as it simplifies greatly the problem. For the squared difference the problem reduces to
k-means with k = 2 and an exact solution can be computed efficiently by dynamic programming (Bellman,
1973; Wang and Song, 2011). As described in section 3.1.2, the partition Π is updated by computing its
connected components after it is split by (B,Bc). Subroutine 1 describes the procedure algorithmically.
It is important to note that this is the only operation that involves the original graph G, and hence will
be the computational bottleneck of the algorithm. Fortunately since f is separable, this procedure can be
performed on each component in parallel.

Merge step. This backward step consists in checking for each neighboring components A and B in Π
whether merging them into a single component decreases the energy. If we denote Π−(A,B) the partition
obtained by merging A and B, the decrease in energy is denoted:

δ−(A,B) = f(xΠ)− f(xΠ−(A,B)) + λw(A,B).

This value is computed for each neighboring components, and stored in a priority queue. Each pair that
provides a non negative decrease is merged, and δ− is updated for the neighbors of A and B to reflect the
change in value and graph topology. This operation scales with the size of the reduced graph only, and
therefore can be performed efficiently for problems with a coarse solution.

Components saturation. We say that a component is saturated if the empty cut is an optimal binary
cut. A saturated component will no longer be cut (because the separability of f entails that other cuts do
not change the fact that it is saturated) unless it is first involved in a merge step.

Subroutine 1: [Π, E]← split(Π, E , A)

Split component A with a binary cut.
Π← Π \ {A}
B ← arg minB⊂A,h,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′)

while not converged do
x← arg minh

∑
i∈B fi(h)

x′ ← arg minh
∑
i∈A\B fi(h)

B ← arg minB⊂A
∑
i∈B fi(x) +

∑
i∈Bc fi(x

′) + λw(B,Bc)

[B1, · · · , Bk]← connected components of B and A \B
Π← Π ∪ {B1, · · · , Bk}
E ← updated adjacency structure return Π;

Subroutine 2: [Π, E]← merge(Π, E , A,B)

Merges components A and B
Π← Π \ {A,B} ∪ {A ∪B}
E ← E \

{
{A,B}

}
for C neighbors of A or B do
E ← E ∪

{
{A ∪B,C}

}

4

PGFB FB+ CP CPFW
0%

20%

40%

60%

80%

100%

FFT Forward-Backward Maxflow Other

Figure 2: Time breakdown for the different algorithms over 60 seconds of optimization

Algorithm 1: `0-Cut Pursuit

Initialization: Π0 = {V }, E = ∅
while Π is not saturated do

for A ∈ Π in parallel do
if A is not saturated then

[Π, E]← split (Π, E , A)

Compute δ−(A,B) for all (A,B) ∈ E
while max(A,B)∈E δ−(A,B) > 0 do

(A,B) = arg max(A′,B′)∈E δ−(A′, B′)
[Π, E]← merge (Π, E , A,B)
Update δ−(A,B) for all (A,B) ∈ E

3 Experiments

We report in Figure 2 the fraction of computation time spent computing FFTs, proximal splitting updates,
computing max-flows and performing other computations, for each algorithm solving the deconvolution
problem with over 60 seconds of computation. For PGFB, the forward-backward updates naturally dominate
computation time, as well FFTs needed to compute the gradient at each iteration. For FB+, the computation
of the proximal operator of the partial solution through parametric maximum flows is by far the most costly.
CP and CPFW share a similar breakdown of computation time because their structures are similar. The
maximum flow represents the highest fraction of time, with the fast Fourier transforms needed to compute
KᵀAᵀAK a close second. Finally diverse operations such as computing the reduced graph takes a small
fraction of the time. More interestingly, the solving of the reduced problem (with PGFB) takes comparatively
very little time (roughly 3%) when this is the only step that actually decreases the objective function. This is
expected because even in the last iteration, the reduced graph had only 300 components so that the reduced
problem is solved very rapidly.

5

(a) Original Shepp-Logan phantom (b) Noisy blur. PSNR : 12.1 (c) Deblured image. PSNR : 20.1

(d) Original toy image (e) Noisy blur. PSNR : 15.9 (f) Deblured image. PSNR : 27.2

(g) Original Lena (h) Noisy blur. PSNR : 23.3 (i) Deblured image. PSNR : 24.5

Figure 3: Benchmark on the deblurring task. Left column : original images, middle column : blurred images,
right column : images retrieved by Cut Pursuit (CP)

6

(a) Noisy image. PSNR : 24.8 (b) Denoised image. PSNR : 38.1

(c) Noisy image. PSNR : 18.8 (d) Denoised image. PSNR : 34.8

(e) Population density of Paris (f) 69% of variance with 1.2% of contours length

Figure 4: Benchmark on the denoising task. First two lines: Left column : noisy images, right column :
images retrieved by Cut Pursuit (CP). Last line: left : rasterized population density of Paris area, left :
simplified map obtained by Greedy Cut Pursuit (GCP)

7

References

Bellman, R. (1973). A note on cluster analysis and dynamic programming. Mathematical Biosciences,
18(3):311–312.

Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159.

Picard, J.-C. and Ratliff, H. D. (1975). Minimum cuts and related problems. Networks, 5(4):357–370.

Wang, H. and Song, M. (2011). Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic
programming. The R Journal, 3(2):29–33.

8

