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Cut Pursuit: fast algorithms to learn piecewise constant functions

We propose working-set/greedy algorithms to efficiently find the solutions to convex optimization problems penalized respectively by the total variation and the Mumford Shah boundary size. Our algorithms exploit the piecewise constant structure of the level-sets of the solutions by recursively splitting them using graph cuts. We obtain significant speed up on images that can be approximated with few level-sets compared to state-of-the-art algorithms.

Introduction

Estimation or approximation with piecewise constant functions has many applications in image and signal processing, machine learning and statistics. In particular, the assumption that natural images are well modeled by functions with bounded total variation motivates the use of the latter as a regularizer, which leads to piecewise constant images for discrete approximations. Moreover a number of models used in medical imaging (El-Zehiry and Elmaghraby, 2007) assume more directly piecewise constant images. More generally piecewise constant models can be used for compression, for their interpretability and finally because they are typically adaptive to the local regularity of the function approximated [START_REF] Wang | Trend filtering on graphs[END_REF]. Piecewise constant functions display a form of structured sparsity since their gradient is sparse.

Both convex and non-convex formulations have been proposed to learn function with sparse gradients, the most famous being (a) the formulation of [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], hereafter referred to as ROF, who proposed to regularize with the total variation, and (b) the formulation of [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] who proposed to penalize with the total length of discontinuities of piecewise smooth functions. A fairly large literature is devoted to these formulations mainly in the image processing and optimization literature. Although the connection between the total variation, the Mumford-Shah energy and graph cuts is today well established, algorithms that leverage this connection are relatively recent. In particular, for ROF, [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF]; [START_REF] Goldfarb | Parametric maximum flow algorithms for fast total variation minimization[END_REF] use the fact that the problem can be formulated as a parametric max-flow. El-Zehiry and Grady (2011) use graph cuts to solve the formulation of Mumford and Shah for the case of two components.

The literature on sparsity in computational statistics and machine learning has shown how the sparsity of the solutions sought can be exploited to design algorithms which use parsimonious computations to solve the corresponding large scale optimization problem with significant speed-ups [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. Our work is motivated by the fact that this has to the best of our knowledge not been fully leveraged to estimate and optimize with piecewise constant functions. In the convex case, the algorithm proposed to exploit sparsity are working set algorithms and the related Frank-Wolfe. In the non-convex case forward selection algorithms such as OMP, OLS, CoSamp, FoBa and others have been proposed [START_REF] Mallat | Adaptive timefrequency decomposition with matching pursuits[END_REF][START_REF] Needell | CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[END_REF][START_REF] Zhang | Adaptive forward-backward greedy algorithm for sparse learning with linear models[END_REF] 1 .

It is well understood that algorithms for the convex and non-convex case are in fact fairly related. In particular, for a given type of sparsity the forward step of working set methods, Frank-Wolfe or greedy algorithms is typically the same, and followed by the resolution of a reduced problem.

Given their similarity, we explore in this paper both greedy and working set strategies to solve respectively the problems penalized by the Mumford-Shah penalty for piecewise constant functions (aka minimal partition problem) and the optimization problem regularized by the total variation. In the convex case, our algorithms do not apply only to the case where the data fitting term is the MSE or a separable smooth convex function, for which some efficient algorithms implicitly exploiting sparsity exist [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF][START_REF] Bach | Learning with submodular functions: a convex optimization perspective[END_REF][START_REF] Kumar | Active-set methods for submodular optimization[END_REF], but also to a general smooth convex term.

Our algorithms are very competitive for deblurring and are applicable for the estimation of piecewise constant functions on general weighted graphs.

Notations

We will denote G = (V, E, w) an unoriented weighted graph whose edge set is of cardinality

m and V = [1, • • • , n].
For convenience of notation and proofs we encode the undirected graph G as a directed graph with oriented edges in both directions in place of unoriented edges. For a set of nodes A ⊂ V we denote 1 A the vector of {0, 1} n such that [1 A ] i = 1 if and only if i ∈ A. For F ⊂ E a subset of edges we denote w(F ) = (i,j)∈F w ij .By extension for two subsets A and B of V we denote w(A, B) = w(A × B ∩ E) the weight of the boundary between those two subsets. Finally we denote C 2 V the set of all partition of V into connected components in the graph G.

General problem considered

Problem formulation

We consider in this work the problem of minimizing functions Q of the form Q(x) := f (x) + λΦ(x) with f differentiable and Φ(x) a penalty function that decomposes as : Φ(x) = ij∈E w ij φ(x i -x j ) with φ : R → R + a sparsity inducing function such that φ(0) = 0. The general problem writes

min x ∈ R n f (x) + λ 2 (i,j)∈E w ij φ(x i -x j ).
(1)

The function φ is typically the absolute value, which corresponds to the total variation, or one minus the Kronecker delta at 0, which leads to the Mumford-Shah penalty for piecewise constant functions. More generally, for functions φ that have a nondifferentiability at 0, the solution of (1) has sparse gradient and is thus constant on the elements of a certain coarse partition of V . We therefore reformulate the problem for candidate solution that have that property.

Decomposition on a partition

Any x ∈ R n can be written as

x = k i=1 c i 1 Ai with Π = {A 1 , • • • , A k } ∈ C a partition of V into k connected components and c ∈ R k . Con- versely we say that x can be expressed by parti- tion Π = (A 1 , • • • , A k ) if it is in the set span(Π) := span(1 A1 , • • • , 1 A k ) = { k i=1 c i 1 Ai | c ∈ R k }.
We denote x Π = arg min z∈span(Π) Q(z) the solution of (1) when x is constrained to be in span(Π). With this notation, we can rewrite problem (1) as the problem of finding an optimal partition Π :

Π = arg min Π∈C Q(x Π ) (2)
We say that a partition Π is coarse if its cardinality k is such that k n.

Before presenting our approach, we review some of the main ideas relevant in the related literature.

1.3 Related work [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF] describe an image as simple if it can be expressed as a piecewise-smooth function, i.e. if the domain of the image can be partitioned into regions with short contours and such that the image varies smoothly inside of each region. The socalled minimal partition problem refers to the particular case where the functions are taken to be constant inside of each region. The setting in which the number of regions is known prior to the optimization, typically two, is known as the Chan-Vese problem and was first solved using active contour methods [START_REF] Kass | Snakes: Active contour models[END_REF]. [START_REF] Chan | Active contours without edges[END_REF] propose a level-set based method for the binary case, which has the advantage of foregoing edges and gradient completely, as they are typically very sensitive to noise. This method has since been extended to the so called multiphase setting where the number of phases, that is of level-sets of the function is a power of two [START_REF] Vese | A multiphase level set framework for image segmentation using the Mumford and Shah model[END_REF]. The resolution of those problems was considerably sped up by the introduction of graph-cut methods, for binary phase [START_REF] El-Zehiry | Brain MRI tissue classification using graph cut optimization of the Mumford-Shah functional[END_REF] and in the multiphase setting (El-Zehiry and Grady, 2011).

A formulation which can be considered a posteriori very related to the one of Mumford and Shah was proposed by [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], and consists in regularizing the estimated image with the total variation. Their celebrated approach boasts numerous applications in various fields such as vision and signal processing, and is solved in the recent literature using proximal splitting [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Raguet | A generalized forward-backward splitting[END_REF].

The relation between graph-cuts and the total variation goes back to [START_REF] Picard | Minimum cuts and related problems[END_REF] but has been only fully exploited recently, when [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF] and [START_REF] Goldfarb | Parametric maximum flow algorithms for fast total variation minimization[END_REF] among others, have exploited the fact that the ROF model can be reformulated as a parametric maximum flow problem; the latter entails that it can be solved by a divide-and-conquer strategy which requires to solve a sequence of max-flow problems on the same graph, thus allowing for efficient reuse of partial computation with a push-relabel algorithm. These results on the total variation are actually an instance of results that apply more generally to submodular functions [START_REF] Bach | Learning with submodular functions: a convex optimization perspective[END_REF]. Indeed, the intimate relation existing between the total variation and graph-cuts is due fundamentally to the fact that the total variation is the Lovász extension of the value of the cut which is a submodular function. Recent progress made on efficient optimization of submodular function produced new fast algorithm for the total variation [START_REF] Kumar | Active-set methods for submodular optimization[END_REF][START_REF] Jegelka | Reflection methods for user-friendly submodular optimization[END_REF].

Problems regularized by the total variation or the Mumford-Shah energy are both related to Potts model. Indeed, if the values of the level-sets are quantized, the corresponding energy to minimize is that of a discrete valued conditional random field (CRF), with as many values as there are quantization levels [START_REF] Ishikawa | Exact optimization for Markov random fields with convex priors[END_REF][START_REF] Chambolle | An introduction to total variation for image analysis[END_REF]. A number of optimization techniques exist for CRFs [START_REF] Szeliski | A comparative study of energy minimization methods for Markov random fields[END_REF]. One of the fastest is the α-expansion algorithm of [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], which is relying on graph-cut algorithms of [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF].

In the sparsity literature a number of algorithms have been proposed to take advantage computationally of the sparsity of the solution. In the convex setting notable examples are the LARS homotopy algorithms [START_REF] Efron | Least angle regression[END_REF] to compute the regularization path of the Lasso problem or working set algorithms such Glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] that computes efficiently the solutions to 1 regularized problems. The Frank-Wolfe algorithm has also be used to exploit the sparsity of solution of optimization problem in the constrained setting [START_REF] Jaggi | Revisiting Frank-Wolfe: projectionfree sparse convex optimization[END_REF] as well as in the regularized setting [START_REF] Harchaoui | Conditional gradient algorithms for normregularized smooth convex optimization[END_REF].

In the non-convex setting greedy approaches that are used to compute sparse partial solutions count forward selection algorithms such as orthogonal matching pursuit [START_REF] Mallat | Adaptive timefrequency decomposition with matching pursuits[END_REF], orthogonal least squares [START_REF] Chen | Orthogonal least squares learning algorithm for radial basis function networks[END_REF] and related algorithms [START_REF] Needell | CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[END_REF], and algorithms such as SBR [START_REF] Soussen | From Bernoulli-Gaussian deconvolution to sparse signal restoration[END_REF] and FoBa [START_REF] Zhang | Adaptive forward-backward greedy algorithm for sparse learning with linear models[END_REF], which use backwards steps to remove previously introduced variables that are no longer relevant. See [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] for a review.

A working set algorithm for total variation regularization

We propose to solve the minimization of a differentiable function f regularized by a weighted total variation of the form TV(x) = 1 2 ij∈E w ij |x i -x j |. Our working set algorithm alternates between solving a reduced problem of the form min x∈span(Π) Q(x) for Q(x) = f (x) + λTV(x), and refining the partition Π. We will discuss in Section 2.3 how to solve the reduced problem efficiently, but first present a criterion to refine the partition Π. The propositions of the next section are proved in the appendix.

Steepest binary cut

To obtain a new partition, and given the current solution x Π = arg min x∈span(Π) Q(x) of the reduced problem we consider updates of x of the form

x Π +h u B with u B = γ B 1 B -γ B c 1 B c
for some set B ⊂ V and some scalars h, γ B and γ B c such that u B 2 = 1. We discuss later (in section 2.2) how the choice of B leads to a new partition and focus first on a rationale to choose B. A natural criterion is to choose the set B such that

Q decreases the most in the direction of u B . If we let Q (x, v) = lim h→0 h -1 (Q(x+hv)-Q(x)) so that, when d ∈ R n is a unit vector, Q (x, d) denotes the directional derivative of Q at x ∈ R n in the direction d, then this criterion requires to solve min B⊂V Q (x Π , u B ). Note that since Q (x, 1 ∅ ) = 0 then min B⊂V Q (x, 1 B ) ≤ 0.
To further characterize Q we decompose the objective function. For a current value of x, we denote by S(x) := {(i, j) ∈ E | x i = x j } the set of edges connecting nodes with different values, which is arguably the appropriate notion of support for our setting, and S c (x) := E\S(x). Setting S := S(x Π ) and given that the absolute value is differentiable everywhere except at zero, we can split Q into two parts, Q S and TV |S c , which are respectively differentiable and non-differentiable at

x Π Q S (x) = f (x) + λ 2 (i,j)∈S w ij |x i -x j | TV |S c (x) = λ 2 (i,j)∈S c w ij |x i -x j |
TV |S c is a weighted total variation on the graph G but with weights w S c such that [w S c ] i,j = w ij for (i, j) ∈ S c and 0 else. We extend the previous notations and define

w S c (A, B) = w S c (A × B) = w((A × B) ∩ S c ). Proposition 1. For x ∈ R n , if we set S = S(x) then Q (x, 1 B ) = ∇Q S (x), 1 B +λw S c (B, B c ). Moreover if ∇f (x), 1 B = 0 then Q (x, u B ) = (γ B + γ B c ) Q (x, 1 B ).
Considering the case of x = x Π then for S = S(x Π ) clearly ∇Q S (x Π ) is orthogonal to span(Π) and thus to 1. Therefore, by the previous lemma, finding the steepest descent direction of the form u B requires to solve min

B⊂V (γ B + γ B c ) Q (x Π , 1 B ).
To keep a formulation which remains amenable to efficient computations, we will assume that γ B + γ B c is constant or ignore this factor2 . This leads us to define a steepest binary cut as any cut (B Π , B c Π ) such that

B Π ∈ arg min B⊂V ∇Q S (x Π ), 1 B +λw S c (B, B c ).
If ∅ is a solution, we set B Π = ∅. As formulated, this problem can be interpreted as a minimum cut problem in a suitably defined flow graph. Indeed consider G f low = (V ∪ {s, t}, E f low ) where s and t are respectively a source node and a sink node, and where the edge set E f low and the associated nonzero (undirected) capacities c ∈ R |S c |+n are defined as follows:

E flow =      (s, i), ∀i ∈ ∇ + c si = ∇ i Q S (x) (i, t), ∀i ∈ ∇ - c it = -∇ i Q S (x) (i, j), ∀(i, j) ∈ S c c ij = λw ij , (3) with ∇ + = {i ∈ V | ∇ i Q S (x) > 0} and ∇ -= V \∇ + . Proposition 2. Let S = S(x) then (C, V f low \C) is a minimal cut in G f low if and only if C\{s}, and its complement in V are minimizers of B → Q (x, 1 B ).
We can now characterize the optimality of the partition Π with its steepest binary partition B Π .

Proposition 3. We have x = arg min z∈R n Q(z) if and only if min B⊂V Q (x, 1 B ) = 0 and Q (x, 1 V ) = 0.
This guarantees that if we fail to find a steep cut, the algorithm has reached its optimum.

Induced new partition in connected sets

For Π = (A 1 , • • • , A k )
we motivated the choice of B Π by the best addition of a term for the form hu B to x = k i=1 c i 1 Ai . At the next iteration, we could thus consider minimizing Q under the constraint that x ∈ span(1 A1 , . . . ,

1 A k , 1 B ) with B = B Π . But, on this set, the values x i1 , x i2 , x i3 and x i4 with i 1 ∈ A j ∩ B, i 2 ∈ A j ∩ B c , i 3 ∈ A j ∩ B and i 4 ∈ A j ∩ B c
are a priori coupled; also, if A j ∩ B has several connected components, i → x i must take the same value on these components. These constraints are unnecessarily restrictive. Indeed, since the right notion of sparsity of the model is arguably the set of edges that can be non zeros S new = S(x) ∪ (B × B c ), it makes sense to only constrain the variables to stay in the set X Snew = {x | S(x ) = S new }. If we define Π new as the collection of all connected components in G of all sets A j ∩ B Π and A j ∩ B c Π for A j ∈ Π then it can be easily shown that span(Π new ) = X Snew .

Proposition 4. If B Π = ∅, Q(x Πnew ) < Q(x Π ). Algorithm 1: Working set scheme Initialize Π ← {V }, x Π ∈ arg min z=c1 V ,c∈R Q(z) while min B⊂V Q (x Π , 1 B ) < 0 do Pick B Π ∈ arg min B⊂V Q (x Π , 1 B ) Π ← {B Π ∩ A} A∈Π ∪ {B c Π ∩ A} A∈Π Π ← connected components of elements of Π Pick x Π ∈ arg min z∈span(Π) Q(z) return (Π, x Π )
We thus obtain Algorithm 1, illustrated on Figure 1. Based on the previous propositions, this algorithm guarantees monotonic convergence to the optimum Π . In terms of complexity, at each iteration Π new has at least one more component than Π, so that the algorithm converges in at most n steps. We now discuss how to exploit the sparse structure of x Π to solve the reduced problem efficiently.

A reduced graph for the reduced problem

Let Π be a coarse3 partition of V into connected components. We argue that min z∈span(Π) Q(z) can be solved on a weighted graph whose nodes are associated with the elements of the partition Π. Indeed, consider the graph

G = (V, E) with V = Π and E = {(A, B) ∈ V 2 | ∃(i, j) ∈ (A × B) ∩ E}. For x ∈ span(Π) we can indeed express TV(x) simply. Proposition 5. For x = A∈Π c A 1 A and 2TV G (c) := (A,B)∈E w(A, B) |c A -c B | we have TV(x) = TV G (c).
Note that if TV is the total variation associated with the weighted graph G with weights (w ij ) (i,j)∈E then TV G is the total variation associated with the weighted graph G and the weights w(A, B) (A,B)∈E . Denoting f : c → f ( A∈Π c A 1 A ), the reduced problem is equivalent to solving min c∈R k f (c) + λTV G (c) on G. Since Π is coarse, we have |E| m and hence computations involving TV G are much cheaper than those involving TV. As discussed in Section 2.4 the structure of f can often be exploited as well. G is cheap to compute comparatively to the speed ups allowed, as it is obtained by computing the connected components of the graph (V, E\S(x)), which can be done in linear time by depth-first search.

Solving linear inverse problems with TV

A number of classical problems in image processing such as deblurring, blind deconvolution and inpainting are formulated as ill-posed linear inverse problems [START_REF] Chan | Recent developments in total variation image restoration[END_REF], where a low TV prior on the image provides appropriate regularization. Typically if x 0 is the original image, H a blurring linear operator typically computed as a convolution on the image, additive noise and y = Hx 0 + the degraded image, this leads to problems of the form

x = arg min x∈R n 1 2 Hx -y 2 + λTV(x). ( 4 
)
Since n is large, manipulating directly the matrices H or H should be avoided, but if the forward operator x → Hx is a convolution, it can be computed quickly using e.g. the fast Fourier transform. In the case of a blurring operator with adequate symmetry H Hx is also a blurring operator. These fast computations of x → Hx can be exploited in our algorithm to compute very efficiently the Hessian and loading vector of the reduced problem. Indeed, For a k-partition Π of V we denote by K ∈ {0, 1} n,k the components matrix whose columns are the vectors 1 A for A ∈ Π. Any x ∈ span(Π) can be rewritten as Kc with c ∈ R k . The gradient of the discrepancy function with respect to c writes: ∇ c 1/2 HKc -y 2 = K H HKc -K Hy As a result, the reduced problem can be solved by a similar forward backward scheme of much smaller size, with parameter K H HK and K Hy, which are of size k × k and k respectively.

Minimal partition problems

We consider now a generalization of the minimal partition problem of the form min

x∈R n Q(x) with Q(x) = f (x) + λΓ(x) where Γ(x) = 1 2 (i,j)∈S(x) w ij
the Mumford-Shah penalty. This non-convex nondifferentiable problem being significantly harder than the previous one, we restrict the functions f we consider to be separable functions of the form f (x) = i∈V f i (x i ) with f i : R → R continuously differentiable and convex. Inspired by greedy algorithms in the sparsity literature such as OMP, and by the working set algorithm we presented for TV regularization, we propose to exploit that |Π * | is not too large to construct an algorithm that greedily optimizes the objective by adding and removing cuts in the graph.

A greedy algorithm

As for the working set algorithm, we propose to gradually build an expansion of x of the form x = k i=1 c i 1 Ai for Π = (A 1 , • • • , A k ) a partition of V , by recursively splitting some of the existing sets A ∈ Π. As a first remark, given the separability assumption on f the choice of a global binary cut of a current partition Π reduces to cut individually all elements of Π, and the optimal cut for each A ∈ Π considered does furthermore not depend on x A c or Π\{A}. We should thus focus on cutting a single set A at a time. Without loss of generality, we consider the case Π = {V }.

Optimal binary cut

The optimal binary partition (B,

B c ) of V is such that Q optimized over span(1 B , 1 B c ) is as small as possi- ble. Since Γ(h1 B + h 1 B c ) = Γ(1 B ) = w(B, B c ) the corresponding optimization problem is of the form min B⊂V, h,h ∈R i∈B f i (h) + i∈B c f i (h ) + λw(B, B c ). ( 5 
)
This problem is a priori hard to solve in general

(B → min h,h ∈R f (h1 B + h 1 B c ) is not submodular).
However, when h, h are fixed the assumption that f is separable entails that B → f (h1 B + h 1 B c ) is a modular function, so that the objective can be optimized with respect to B by solving a max-flow problem similar to (3) where f i (x i ) is substituted for ∇ i Q S (x). The smoothness and convexity of f w.r.t. h and h guarantee that the objective can be minimized efficiently w.r.t. these variables. A local minimum of the objective can thus be obtained efficiently by alternatively minimizing with respect to B and (h, h ) as suggested by [START_REF] Bresson | Fast global minimization of the active contour/snake model[END_REF] or El-Zehiry et al. (2011). One issue is again the fact that the binary partition B obtained as a solution of ( 5) and its complement are not necessarily connected sets, and it would be intractable to optimize only over pairs of sets (B, B c ) that are connected. However, splitting B and B c into their connected components will not increase the contour length Γ and can only decrease f . Consequently, given the collection of connected components A 1 , . . . , A k of B and B c we set

x = h 1 1 A1 + . . . + h k 1 A k with h j the minimizer of h → i∈Aj f i (h).

Recursive splitting and merging

Like for the working set algorithm, we recursively split the components of the current partition Π, however, in this case, as discussed earlier, only one connected component is cut at a time and the new boundary introduced is within that component. Our algorithm is structured by the following observations: Optimal cuts of existing components are independents. Given the separability assumption on f the problem of the choice of an optimal cut in each component are independent and need to be recomputed only for the newly created components.

Merging components. We consider a form of backward step, which merges a pair (A, B) of elements of Π and therefore removes the boundary between A and B. The step is taken if the increase of f induced is smaller than λw(A, B). This step is similar to the backward step of the Single Best Replacement algorithm by [START_REF] Soussen | From Bernoulli-Gaussian deconvolution to sparse signal restoration[END_REF] which considers at each iteration the addition or removal of a single variable, whichever reduces most the value of the objective. Our approach differs in the sense that the merge we consider has no reason to correspond to a previous cut, since we consider all pairs of adjacent components. Saturated components. If the optimal binary partition of a component is the empty set, this component is said to be saturated. The separability of the fidelity function ensures that this component will not longer be split and can be ignored for the rest of the computation, unless it is involved in a mergeing step. The resulting algorithm, 0 Cut Pursuit is detailed in the supplementary material.

Experiments

Deblurring experiments with TV

To assess the performance in terms of speed of our working set algorithm we compare it with several state-of-the-art algorithms on a deblurring task of the form presented in section 2.4. Specifically, given an image x, we compute y = Hx + , where H is a Gaussian blur matrix, and is some Gaussian additive noise, and we solve (1) with a total variation regularization based on the 8-neighborhood graph built on image pixels. We use three 512 × 512 images of increasing complexities to benchmark the algorithms: the Shepp-Logan phantom, a simulated example and Lena represented in Figure 2 and 5 (all figures are represented in full size in the appendix). For all images the standard deviation of the blur is set at 5 pixels. 

Competing methods

Preconditioned Generalized Forward Backward (PGFB). As a general baseline, we consider a recent preconditioned generalized forward-backward splitting algorithm by [START_REF] Raguet | Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[END_REF] whose prior non-preconditioned version was shown to outperform state-of-the art convex optimization on deblurring tasks in [START_REF] Raguet | A generalized forward-backward splitting[END_REF].

Accelerated FB with parametric max-flows (FB+). Since efficient algorithms that solve the ROF problem have been the focus of recent work, and given that the ROF problem corresponds to the computation of the proximal operator of the total variation, we also make a comparison with an implementation of the accelerated forward-backward algorithm of [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF]. To compute the proximal operator, we use an efficient solver of the ROF problem based on a reformulation as a parametric max-flow proposed by [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF]. The solver we used is the one made publicly available by the authors.

Cut Pursuit with Frank-Wolfe descent directions (CP-FW). We consider an alternative to the steepest binary partition to split the existing components of the partial solution. Inspired by a version of the Frank-Wolfe algorithm for regularized problems proposed by [START_REF] Harchaoui | Conditional gradient algorithms for normregularized smooth convex optimization[END_REF], we add the cut corresponding to the point of the set {x ∈ R n | Φ(x) ≤ 1} with minimal dot product with the gradient direction, which is itself computed as the solution of a maximum flow problem.

Cut Pursuit. To implement our algorithm (CP), we solve the min-cut problems with the solver of [START_REF] Kohli | Efficiently solving dynamic Markov random fields using graph cuts[END_REF] which itself is based on [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] and [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF]. The problems on the reduced graph are solved using the PGFB algorithm. This last choice is motivated by the fact that the preconditioning is quite useful as it compensates for the fact that the weights on the reduced graph can be quite imbalanced.

Results

Figure 3 shows the speed of the different algorithms on the three test images on a quad core CPU at 2.4 Ghz. We represent the relative primal suboptimality gap (Q t -Q ∞ )/Q ∞ where Q ∞ is the lowest value obtained by CP in 100 seconds. We can see that our algorithm speeds up significantly the direct optimization approach (PGFB) when the solution is sparse, and that it remains competitive in the case of a natural image with strong regularization. Indeed since the reduced problems are of much smaller size than the original, our algorithm can perform many more forward-backward iterations in the same allotted time.

The variant of Cut Pursuit using Frank-Wolfe directions (CP-FW) is as efficient over the first few iterations but then stagnates. The computation of a new Frank-Wolfe direction does not take into account the current support S(x), that provides a set of edges that are "free"; this entails that it overestimates the cost of adding new boundaries, resulting in too conservative updates. Accelerated forward-backward with parametric max-flow FB+ is slower in this setting, which is explained by the small number of updates the algorithm can afford in the allotted time given the cost of solving parametric max-flows; PGFB can make more than 50 updates during each iteration of FB+.

We report and discuss in the appendix the breakdown of computation time for each algorithm. Most notably the actual time spent by Cut Pursuit solving the reduced problem (with PGFB) takes comparatively very little time (around 3%) when this is the only step actually decreasing the objective function.

Experiments on minimal partitions

Denoising experiment

We now present experiments demonstrating the efficiency of the 0 -Cut Pursuit presented in section 3. We assess its performance against two state-of-the-art algorithms to minimize the Mumford-Shah energy of two noisy 512 × 512 images: the phantom of [START_REF] Shepp | The Fourier reconstruction of a head section[END_REF] and another simulated example. In order to illustrate the advantage of our algorithm over alternatives that discretize the value range, we make a small random shift of grey values to both images.

We also test the algorithms on a spatial statistic aggregation problem which corresponds to the design of a simplified map of the population density in the Paris area. We use raster open-source data 4 producing the map of Figure 5. The raster is partitionned using constrained Delaunay triangulation [START_REF] Chew | Constrained Delaunay triangulations[END_REF] to obtain a graph with 252,183 nodes and 378,258 edges. We use the squared loss weighted by the surface of each triangle as a fidelity term. 

Competing methods

α-expansions on quantized models. Following [START_REF] Ishikawa | Exact optimization for Markov random fields with convex priors[END_REF], we use the fact that if the range of values of x i is discretized, the MPP and TV problems reduce to maximum a posterior inference in a Potts model. More precisely it is a Potts model in which each value taken by the class variable c i is associated with a (non necessarily connected) level-set, and that has pairwise terms of the form 1 {ci =cj } w ij . We use α-expansions [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF] to minimize the corresponding energy. More precisely we use the α-expansions implementation of [START_REF] Fulkerson | Class segmentation and object localization with superpixel neighborhoods[END_REF], which uses the same max-flow code [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF] as our algorithm. We denote the resulting algorithm (CRFi) where i is the number of quantization levels.

Non-convex relaxation. We implemented a nonconvex relaxation of the Mumford-Shah functional which is a "concave" version of the total variation, such as the adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] with t → ( + t) in lieu of t → |t|. The resulting functional can be minimized locally using a reweighted TV [START_REF] Ochs | On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision[END_REF]. We use our Cut Pursuit algorithm to solve each reweighted TV problems, since it was the fastest implementation. This algorithm is denoted TV 0.5 .

Results

We report on Figure 4 the energy obtained by the different algorithms normalized by the energy of the best constant approximation. We can see that our algorithms find faster local optima that are essentially as good or better than the ones obtained using αexpansions on the discretized problem, as long as the solutions are sufficiently sparse. For the population density data our algorithm performs roughly as well as CRF40 but is outperformed by CRF60.

Conclusion

We proposed two algorithms to minimize functions penalized respectively by the total variation and by the Mumford-Shah boundary size. They exploit that the solution typically has a sparse gradients, which entails that it has a small number of connected level-sets. constructing a sequence of approximate solutions that have the same property, they operate on reduced problems that can be solved efficiently, and require only to perform a number of graph cuts on the original graph, which are the bottleneck for further speed-ups. Like other working set schemes, our algorithms are not competitive if the solution has too many connected levelsets. In future work, we intend to extend the approach presented in this paper to approximate efficiently the total variation regularization path. It would also be interesting to find guarantees similar toS those existing for α-expansions to our greedy algorithm.

Figure 1 :

 1 Figure 1: Two first iterations of cut pursuit for the ROF problem on image (a). Image (b) and (d) represent the new cut at iterations 1 and 2, (c) and (e) the partial solution, with the current set of contours S in red.

Figure 2 :

 2 Figure 2: (a) Simulated example with Gaussian blur (b) deblurred image obtained by Cut Pursuit (CP).

Figure 5 :

 5 Figure 5: (a) Noisy Shepp-Logan phantom, (b) the result of 0 -CP, (c) triangulated population density in Paris area and (d) the simplified map obtained by 0 -CP (69% of the variance explained with 1.2% of the contour length).

4Figure 3 :

 3 Figure 3: Relative primal suboptimality gap Q t /Q ∞ -1 at time t (in seconds) for different algorithms on the deblurring task: FB+: , PGFB: , CP: CPFW: , for three 512 × 512 images and different regularization values: Shepp-Logan phantom (left), our simulated example (middle) and Lena (right).Each marker corresponds to a cut computation for CP, CPFW, and a proximal operator computation for FB+.

Figure 4 :

 4 Figure 4: Mumford-Shah energy at time t (in seconds) divided by the same energy for the best constant image obtained with: Non-convex relaxation (TV 0.5 ), 0 cut pursuit ( 0 -CP) and α-expansions (CRFi), for the Shepp-Logan phantom (left), our simulated example (middle) and the map simplification (right). Markers corresponds respectively to one reweighting, one α-expansion cycle and one cut for (TV 0.5 ), (CRF) and ( 0 -CP).

Figure 6 :

 6 Figure 6: PSNR at convergence and time to converge in seconds for the four algorithms as well as the noisy image for the first two denoising experiments.
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Proximal methods that perform soft-thresholding or the non-convex IHT methods maintain sparse solutions as well, but typically need to update a full dimensional vector at each iteration, which is why we do not include them here. They blend however very well with active set algorithms.

γB and γBc could otherwise be determined by requiring that 1, uB = 0. More rigorously, descent directions considered could be required to be orthogonal to span(Π), but this leads to even less tractable formulations, that we therefore do not consider here.

A coarse partition corresponds to a sparse solution.