
HAL Id: hal-01306779
https://hal.science/hal-01306779v4

Submitted on 21 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Cut Pursuit: fast algorithms to learn piecewise constant
functions on general weighted graphs

Loic Landrieu, Guillaume Obozinski

To cite this version:
Loic Landrieu, Guillaume Obozinski. Cut Pursuit: fast algorithms to learn piecewise constant func-
tions on general weighted graphs. SIAM Journal on Imaging Sciences, 2017, Vol. 10 (No. 4), pp.
1724-1766. �hal-01306779v4�

https://hal.science/hal-01306779v4
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Cut pursuit: fast algorithms to learn piecewise constant functions on general
weighted graphs∗

Loic Landrieu ‡† and Guillaume Obozinski ‡

Abstract. We propose working-set/greedy algorithms to efficiently solve problems penalized respectively by the
total variation on a general weighted graph and its `0 counterpart the total level-set boundary size
when the piecewise constant solutions have a small number of distinct level-sets; this is typically
the case when the total level-set boundary size is small, which is encouraged by these two forms
of penalization. Our algorithms exploit this structure by recursively splitting the level-sets of a
piecewise-constant candidate solution using graph cuts. We obtain significant speed-ups over state-
of-the-art algorithms for images that are well approximated with few level-sets.

Key words. working-set, total variation, sparsity, Mumford-Shah, greedy algorithm

AMS subject classifications. 90C25, 90C27, 65K10, 90C59, 68U10, 90C99, 62H11

1. Introduction. Estimation or approximation with piecewise constant functions has many
applications in image and signal processing, machine learning and statistics. In particular, the
assumption that natural images are well modeled by functions whose total variation is bounded
motivates its use as a regularizer, which leads to piecewise constant images for discrete approx-
imations. Moreover a number of models used in medical imaging [25] assume directly piecewise
constant images. More generally, piecewise constant models can be used for compression, for
their interpretability and finally because they are typically adaptive to the local regularity
of the function approximated [69]. Piecewise constant functions display a form of structured
sparsity since their gradient is sparse.

Both convex and non-convex formulations have been proposed to learn functions with
sparse gradients. The most famous being the formulation of [62], hereafter referred to as ROF,
which proposed to minimize the total variation subject to constraints of approximation of
the noisy signal in the least squares sense, as well as the formulation of Mumford and Shah
[46], which proposed to penalize the total perimeter of discontinuities of piecewise smooth
functions. A fairly large literature is devoted to these formulations mainly in the fields of
image processing and optimization. Although the connection between the total variation, the
Mumford-Shah energy and graph cuts is today well-established, algorithms that leverage this
connection are relatively recent. In particular for ROF, [13, 30] use the fact that the problem
can be formulated as a parametric max-flow. [23] use graph cuts to solve the formulation of
Mumford and Shah for the case of two constant components.

The literature on sparsity in computational statistics and machine learning has shown how
the sparsity of the solution sought can be exploited to design algorithms which use parsimo-
nious computations to solve the corresponding large-scale optimization problem with significant

∗Submitted to the editors 24/01/2017.
† Université Paris-Est, LASTIG MATIS, IGN, ENSG, F-94160 Saint-Mande, France (loic.landrieu@ign.fr.)
‡Université Paris-Est, LIGM, Laboratoire d’Informatique Gaspard Monge (UMR 8049), CNRS, ENPC, ESIEE

Paris, UPEM (guillaume.obozinski@enpc.fr).

1

mailto:loic.landrieu@ign.fr
mailto:guillaume.obozinski@enpc.fr

2 L. LANDRIEU AND G. OBOZINSKI

speed-ups [3]. Our work is motivated by the fact that this has to the best of our knowledge
not been fully leveraged to estimate and optimize with piecewise constant functions. In the
convex case, the algorithms proposed to exploit sparsity are working set1 algorithms and the
related (fully corrective) Frank-Wolfe algorithm [31]. In the non-convex case, forward selection
algorithms such as OMP, FoBa and others have been proposed [45, 47, 70]2.

It is well understood that algorithms for the convex and non-convex cases are in fact fairly
related. In particular, for a given type of sparsity, the forward step of working set methods,
Frank-Wolfe and greedy algorithm is typically the same, and followed by the resolution of a
reduced problem.

Given their similarity, we explore in this paper both greedy and working set strategies. The
working set approach is used to solve optimization problems regularized by the total variation
while the greedy strategy solves problems penalized by the boundary size for piecewise constant
functions. In the convex case, our algorithms do not apply only to the cases in which the
data fitting term is the MSE or a separable smooth convex function, for which some efficient
algorithms implicitly exploiting sparsity exist [13, 2, 41], but also to a general smooth convex
term. Our algorithms are very competitive for deblurring and are applicable to the estimation
of piecewise constant functions on general weighted graphs.

1.1. Notations. Let G = (V,E,w) be an unoriented weighted graph whose edge set is of
cardinality m and V = [1, · · · , n]. For convenience of notations and proofs, we encode the
undirected graph G, as a directed graph with for each pair of connected nodes a directed edge
in each direction. Thus E denotes a collection of couples (i, j) of nodes, with (i, j) ∈ E if
and only if (j, i) ∈ E. We also have w ∈ R2m and wij = wji. For a set of nodes A ⊂ V we
denote 1A the vector of {0, 1}n such that [1A]i = 1 if and only if i ∈ A. For F ⊂ E a subset of
edges we denote w(F) =

∑
(i,j)∈F wij . By extension, for two subsets A and B of V we denote

w(A,B) = w
(
(A×B)∩E

)
the weight of the boundary between those two subsets. Finally we

denote C the set of all partitions of V into connected components.

1.2. General problem considered.

1.2.1. Problem formulation. In this work we consider the problem of minimizing func-
tions Q of the form f(x) + λΦ(x) with f : Rn → R convex and differentiable, and Φ : Rn → R
a penalty function that decomposes as Φ(x) =

∑
(i,j)∈E wij φ(xi − xj) with φ : R → R+ a

sparsity-inducing function such that φ(0) = 0. The general problem writes minx∈Rn Q(x)
with

(1) Q(x)
.
= f (x) +

λ

2

∑
(i,j)∈E

wij φ(xi − xj).

1We distinguish working set algorithms (aka column generation algorithm) that maintain an expansion of
the solution which may have zero coefficients from active set algorithms that maintain an expansion using only
non-zero coefficients and discard all other directions (or variables). This distinction can also be understood in
the dual, where working set algorithms (which are dually cutting plane algorithms) maintain a superset of the
active constraints, while active set algorithms maintain the exact set of active constraints.

2Proximal methods that perform soft-thresholding or the non-convex IHT methods maintain sparse solu-
tions, but typically need to update a full dimensional vector at each iteration, which is why we do not cite
them here. They blend however very well with active set algorithms.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 3

Energies of this form were first introduced by [29] for image regularization, and are widely
used for their inducing spatial regularity as well as preserving discontinuities. In this paper,
we consider the case φ equal to the absolute value, which corresponds to the total variation
(denoted TV), and the case φ equal to one minus the Kronecker delta at 0, which leads to the
total boundary size penalty for piecewise constant functions. For these functions, the solution
x? of (1) has a sparse gradient {x?i − x?j | (i, j) ∈ E}. As a consequence, these solutions are
constant on the elements of a certain partition of V that is typically coarse, i.e. such that has
much fewer elements than |V |. We therefore reformulate the problem for candidate solutions
that have that property. We define the support of a vector x ∈ Rn as the set S(x) of edges
supporting its gradients

(2) S(x)
.
= {(i, j) ∈ E | xi 6= xj},

and we will use Sc(x)
.
= E\S(x) for the set on which the gradients are zero.

1.2.2. Decomposition on a partition. Any x ∈ Rn can be written as x =
∑k

i=1 ci1Ai

with Π = {A1, · · · , Ak} ∈ C a partition of V into k connected components and c ∈ Rk.
Conversely we say that x can be expressed by partition Π = (A1, · · · , Ak) if it is in the set
span(Π) = span(1A1 , · · · ,1Ak

) = {
∑k

i=1 ci1Ai | c ∈ Rk}. We denote

(3) xΠ
.
= arg min

z∈span(Π)
Q(z),

the solution of (1) when x is constrained to be in span(Π). Assuming that the regularization
strength is such that the solution x? decomposes over a coarse partition, and that the con-
strained problem (3) is easy to solve for such a partition, problem (1) boils down to finding an
optimal partition Π?:

(4) Π? .
= arg min

Π∈C
Q(xΠ).

An additional motivation to consider a sequence of partitions and solve sequentially problems
with x constrained to span(Π) is that the vectors of the form w(B,Bc)−11B are extreme points
of the set {x|TV(x) ≤ 1}. In fact, the total variation is an atomic gauge in the sense of [17]
and the vectors of the form w(B,Bc)−11B are among the atoms of the gauge. We do not
develop this more abstract point of view in the paper, but provide a discussion in Appendix A.

Before presenting our approach we review some of the main relevant ideas in the related
literature.

1.3. Related work. [46] describe an image as simple if it can be expressed as a piecewise-
smooth function with few and small discontinuities, that is if the space can partitioned in a
finite number regions with short contours and such that the image varies smoothly in each of
these regions.

Given an observed noisy image modeled as a function J : Ω → R whose domain Ω is
an open, bounded and connected subset of R2, and assuming J ∈ L∞, Mumford and Shah
propose to obtain a denoised version I of the image via the minimization of an energy which
we can write as

(MS)
∫

Ω

(
I(x)− J(x)

)2
dx+ µ

∫
Ω\Γ
‖∇I(x)‖2 dx+ λH1(Γ),

4 L. LANDRIEU AND G. OBOZINSKI

where µ and λ are two nonnegative regularization coefficients. It is composed of three terms: a
fidelity term quantifying the distortion between I and J , a term measuring the smoothness of I
outside of a one-dimensional set of discontinuities Γ, and finally the one-dimensional Hausdorff
measure of this set H1(Γ). David Mumford and Jayant Shah conjectured that this problem
admitted a solution (I∗,Γ∗) such that I∗ was continuously differentiable on a finite number k
of open sets Ri with Γ∗ = Ω\

⋃
iRi a one dimensional set consisting of points connected by

rectifiable arcs.
In subsequent formalisations of the Mumford-Shah problem, I is constrained to the set

C1(Ω\Γ) of continuously differentiable functions on Ω\Γ, where Γ is a closed set of Hausdorff
dimension 1. Ennio De Giorgi proposed a relaxed Mumford-Shah problem in which I is
constrained to the set SBV(R2) of special bounded total variation functions and Γ = SI is the
jump set of I (for detailed presentations of the different formulations of the Mumford-Shah
problem and their connections, see [28, 5]). When µ → ∞, the smoothness term forces I to
be constant on the connected components of Ω\Γ.

If the number k of regions Ri (also called phases) on which I is constant is fixed to k, the
corresponding problem is referred to as the piecewise constant Mumford-Shah problem and can
be reformulated as:

(PC-MS) min
Γ,I

k∑
i=1

∫
Ri

(
Ii − J(x)

)2
dx+ λH1(Γ),

with Ii the constant value of I on Ri and Ω = R1 ∪ . . . Rk ∪ Γ. Note that when k is fixed, the
sets Ri are not necessarily connected sets. Note that both (MS) and (PC-MS) extend naturally
to d-dimensional images by replacing H1 by the d− 1-dimensional Hausdorff measure Hd−1.

The setting in which k = 2 is known as the Chan-Vese problem and was first approached
algorithmically using active contour methods [36, 1]. [16] propose a level-set based method for
the binary case, which has the advantage of foregoing edges and gradient completely, as they
are typically very sensitive to noise. This method has since been extended to the so called
multiphase setting where the number of phases, that is of level-sets of the function, is a power
of two [68]. The resolution of those problems is substantially sped up by the introduction of
graph-cut methods, for the binary phase [25] and in the multiphase setting [23].

Clearly, a counterpart of (PC-MS) in which the number of phases is not set a priori (and
can possibly be infinite) is also of interest. It has been introduced in the discrete setting by
[42] and has been studied in the continuous setting using the theory of Caccioppoli partitions
[66, 43].

Independently of the work of Mumford and Shah, [62] proposed the idea that the class of
functions with bounded variation is a good model for images, and relied on this idea to motivate
the minimization of the total variation under MSE approximation constraint as an approach
for image denoising. The introduction of the total variation had a lasting impact in imaging
sciences and was used for various tasks including denoising, deblurring and segmentation [12].
The variant3 of the problem of Rudin, Osher and Fatemi (ROF) where the total variation is
used as a regularizer—corresponding to the proximal problem of the total variation—can be

3In [62] the TV is minimized under a constraint on the L2 distance between I and J .

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 5

written

(ROF) min
I∈BV

∫
Ω

(
I(x)− J(x)

)2
dx+ λTV(I),

where TV is the total variation and BV is the space of functions with bounded total variation.
In this paper we consider discretized versions of these formulations, in which the function

takes its value on the node set of a weighted graph G = (V,E,w). Such discretizations are
for example naturally obtained if an a priori fine grained partition of the space in a collection
of elementary regions4 is chosen and the image or function I is constrained to be constant
on each of these regions. The edge set E captures adjacencies between the elements, and the
weights w the size of the boundary between each pair of regions.

The ROF problem can be solved very efficiently for chain graphs using dynamic program-
ming [35] or exploiting the structure of the optimality conditions [19]. See [38] for a broader
discussion. In the general case, a first approach is to consider explicitly the set of edges pre-
senting discontinuities and iteratively update this set using calculus of variations based on the
Euler-Lagrange equations [1]. This class of methods is known as active contours. The level-
sets approach [54, 67] takes an opposite point of view and defines the discontinuity set as the
zero set of an auxiliary function. This allows for an indirect and continuous handling of the
evolution of the curve, thereby avoiding complications associated to making discrete changes
in the structure of the contours. In the recent literature, problems regularized with the total
variation are typically solved using proximal splitting algorithms [14, 57].

Some of the connections between graph-cuts and the total variation were already known
in [55] but some of these connections have been only fully exploited recently, when [13] and
[30] among others, exploited the fact that the ROF model can be reformulated as a para-
metric maximum flow problem, which, in these papers, is moreover shown to be solved by a
divide-and-conquer strategy: This algorithm entails to solve a sequence of max-flow problems
on the same graph, and the algorithm makes it possible to efficiently reuse partial computa-
tions performed in each max-flow problem with a push-relabel algorithm. These results on
the total variation are actually an instance of results that apply more generally to submodular
functions [2]. Indeed, the intimate relation existing between the total variation and graph-cuts
is due fundamentally to the fact that the former is the Lovász extension of the value of the
cut, which is a submodular function. Beyond the case of the total variation, [4] considers regu-
larizers that are obtained as Lovász extensions of symmetric submodular functions and recent
progress made on the efficient optimization of submodular functions produces simultaneously
new fast algorithms to compute proximal operators of the Lovász extension of submodular
function [41, 34].

In the discrete setting, problems regularized by the total variation or the total boundary
size are also related to the Potts model. Indeed, if the values of the level-set are quantized, the
corresponding energy to minimize is that of a discrete valued conditional random field (CRF),
with as many values as there are quantization levels [32, 67]. A number of optimization
techniques exist for CRFs [65]. One of the fastest is the α-expansion algorithm of [10], which
relies on graph-cut algorithms [9].

4In the context of images these could be though of as super-pixels, for example.

6 L. LANDRIEU AND G. OBOZINSKI

In the literature on sparsity, a number of algorithms have been proposed to take advantage
computationally of the sparsity of the solution. In the convex setting, these algorithms include
homotopy algorithms such as the LARS [21] or working set algorithms [52, 61, 26]. It should
be noted that the Frank-Wolfe algorithm [33], which has been revived and regained popular-
ity in recent years, is closely-related to working set methods and also provides a rationale to
algorithmically exploit the sparsity of solution of optimization problems. Although originally
designed to solve constrained optimization problems, [31] have shown how a variant can be nat-
urally constructed for the regularized setting, and can be applied to the case of total variation
regularization. The counterparts of these algorithms in the `0 setting are (a) greedy forward
selection approaches that compute a sequence of candidate solutions by iteratively decreasing
the sparsity of the candidate solutions, such as orthogonal matching pursuit [45], orthogonal
least squares [18] and related algorithms [47], (b) forward-backward selection approaches such
as the Single Best Replacement (SBR) algorithm [64], based on an `0 penalization or the FoBa
algorithm [70], which add backwards steps to remove previously introduced variables that are
no longer relevant. See [3] for a review. [2] proposes a number of algorithms to minimize sub-
modular functions, compute the associated proximal operators of the corresponding Lovász
extensions. In particular, generic primal and dual active set algorithms are proposed to solve
a linear regression problem regularized with the Lovász extension of a submodular function [2,
Chap. 7.12].

2. A working set algorithm for total variation regularization. In this section, we consider
the problem of solving the minimization of a convex, differentiable function f regularized
by a weighted total variation of the form TV(x) = 1

2

∑
(i,j)∈E wij |xi − xj | with wij some

nonnegative weights5.
Based on the considerations of Section 1.2.2, we propose a working set algorithm which

alternates between solving a reduced problem of the form minx∈span(Π)Q(x) for Q(x) = f(x)+
λTV(x), and refining the partition Π. In Section 2.3, we will discuss how to solve the reduced
problem efficiently, but first we present a criterion for refining the partition Π.

2.1. Steepest binary cut. Given a current partition Π and the solution of the associated
reduced problem xΠ = arg minx∈span(Π)Q(x), our goal is to compute a finer partition Πnew

leading to the largest possible decrease of Q. To this end we consider updates of x of the
form xΠ + huB with uB = γB1B − γBc1Bc for some set B ⊂ V and some scalars h, γB and
γBc such that ‖uB‖2 =1. We postpone to Section 2.2 the precise discussion of how the choice
of B leads to a new partition and focus first on a rationale for choosing B, but essentially,
introducing uB in the expansion of x will lead to a new partition in which the elements of Π
are split along the boundary between B and Bc. A natural criterion is to choose the set B
such that uB is a descent direction which is as steep as possible, in the sense that Q decreases
the most, at first order. We denote Q′(x, v) = limh→0 h

−1(Q(x + hv) − Q(x)) so that, when
d ∈ Rn is a unit vector, Q′(x, d) denotes the directional derivative of Q at x ∈ Rn in the
direction d. Consequently, choosing B for which the direction uB is steepest requires solving
minB⊂V Q

′(xΠ, uB).

5In particular, this is the form taken by the anisotropic total variation for images if the weights are deter-
mined by the Cauchy-Crofton formula (see e.g. [30]).

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 7

To further characterize Q′ we decompose the objective function: Since the absolute value
is differentiable on R∗, setting S

.
= S(xΠ) allows us to split Q into two parts QS and TV|Sc

which are respectively differentiable and non-differentiable at xΠ:{
QS(x)

.
= f(x) + λ

2

∑
(i,j)∈S wij |xi − xj |,

TV|Sc(x)
.
= λ

2

∑
(i,j)∈Sc wij |xi − xj |.

TV|Sc is a weighted total variation on the graphG but with weights wSc such that [wSc]i,j
.
= wij

for (i, j) ∈ Sc and 0 for (i, j) ∈ S. We extend the previous notations and define wSc(A,B)
.
=

wSc(A×B) = w((A×B) ∩ Sc).
Proposition 1. For x ∈ Rn, if we set S = S(x) then the directional derivative in the direction

of 1B is
Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. See Appendix B.

Considering the case x = xΠ, then for S = S(xΠ), ∇f(xΠ) is clearly orthogonal to span(Π)
and thus to 1V . Therefore, by the previous proposition, finding the steepest descent direction
of the form uB requires solving

min
B⊂V

(γB + γBc)Q′(xΠ,1B)

To keep a formulation which remains amenable to efficient computations, we will ignore the
factor6 γB + γBc . This leads us to define a steepest binary cut as any cut (BΠ, B

c
Π) such that

(5) BΠ ∈ arg min
B⊂V

〈∇QS(xΠ),1B〉+λwSc(B,Bc).

Note that since Q′(x,1∅) = 0, we have minB⊂V Q
′(x,1B) ≤ 0. If ∅ is a solution to (5), we

set BΠ = ∅. As formulated, it is well-known, at least since [55], that problem (5) can be
interpreted as a minimum cut problem in a suitably defined flow graph.

Indeed consider the graph Gflow = (V ∪ {s, t}, Eflow) illustrated in Figure 1, where s and
t are respectively a source and sink nodes, and where the edge set Eflow and the associated
nonzero (undirected) capacities c ∈ R|Sc|+n are defined as follows

Eflow =

(s, i), ∀i ∈ ∇+, with csi = ∇iQS(x) ,

(i, t),∀i ∈ ∇−, with cit = −∇iQS(x) ,

(i, j), ∀(i, j) ∈ Sc, with cij = λwij ,

(6)

6γB and γBc could otherwise be determined by requiring that 〈1V , uB〉 = 0. More rigorously, descent
directions considered could be required to be orthogonal to span(Π), but this leads to even less tractable
formulations, that we therefore do not consider here.

8 L. LANDRIEU AND G. OBOZINSKI

where∇+
.
= {i ∈ V | ∇iQS(x) > 0} and∇−

.
= V \∇+. The vector∇QS(x) is directly computed

as ∇QS(x) = ∇f(x) + 1
2λD

>y, with D ∈ R2m×n the weighted edge incidence matrix whose
entries are equal to D(i,j),k

.
= wij(1{i=k} − 1{j=k}) and y ∈ R2m is the vector whose entries

are indexed by the elements of E and such that y(i,j)
.
= sign(xi−xj) with the convention that

sign(0) = 0. As stated in the next proposition, finding a minimal cut in this graph provides

s

t

i

j
λwij

∂QS(x)
∂xi

−∂QS(x)
∂xi

nodes in ∇−
nodes in ∇+

edge in Sc

Figure 1: Directed graph for which finding a maximal flow is equivalent to solving (5). Neigh-
boring nodes with different values of x in the original graph are linked by an undirected edge
with capacity λwij , nodes with non-negative gradient are linked to the source, and nodes with
negative gradient to the sink with capacity |∇QS(x)|.

us with the desired steepest binary cut.

Proposition 2. Let S = S(x) then (C, Vflow\C) is a minimal cut in Gflow if and only if
C\{s}, and its complement in V are minimizers of B 7→ Q′(x,1B).

This result is a well-know result which was first discussed in [55]. We refer the reader to [39]
for a proof.

Note that the min-cut/max-flow problem of Figure 1 decouples on each of the connected
components of the graph G|Sc

.
= (V, Sc) and that as a result solving (5) is equivalent to solving

separately
min
C⊂A
〈∇QS(xΠ), 1C〉+ λw(C,A\C)

for each set A that is a connected components of G|Sc . The binary steepest cut thus actually
reduces to computing a steep cut in each connected component of the graph, and they can all
be computed in parallel. Let us insist that the connected components of G|Sc are often but
not always the elements of Π since they can be unions of adjacent elements of Π when they
share the same value.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 9

We can now characterize the optimality of xΠ or of the corresponding partition Π, based
on the value of the steepest binary partition:

Proposition 3. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and

Q′(x,1V) = 0.

Proof. See Appendix B

Note that the rationale we propose to choose the new direction 1B is different than the one
typically used for working-set algorithms in the sparsity literature and variants of Frank-Wolfe.
When considering the minimization of an objective of the form f(x)+λΩ(x), where f : Rn → R
is a differentiable function and Ω is a norm, the optimality condition in terms of subgradient
is − 1

λ∇f(x) ∈ ∂Ω(x), where ∂Ω(x) is the subgradient of the norm Ω at x. A classical result
from convex analysis is that ∂Ω(x) = {s ∈ Rn | 〈s, x〉 = Ω(x) and Ω◦(s) ≤ 1} where Ω◦

denotes the dual norm [60, Thm. 23.5]. In particular, the subgradient condition is not satisfied
if Ω◦(−∇f(x)) ≥ λ and since Ω◦(s) = maxΩ(ξ)≤1〈s, ξ〉 then argmaxΩ(ξ)≤1〈−∇f(x), ξ〉 provides
a direction in which the inequality constraint is most violated. This direction is the same
as the Frank-Wolfe direction for the optimization problem minx:Ω(x)≤κ f(x), also the same
as the direction proposed in a variant of the Frank-Wolfe algorithm proposed by [31] for the
regularized problem, and again the same as the direction that would be used in the primal
active set algorithm of [2, Chap. 7.12] for generic Lovász extensions of submodular function,
which is essentially a fully corrective and active-set version of the algorithm of [31]. This
rationale extends to the case where Ω is more generally a gauge and is most relevant when it
is an atomic norm or gauge [17], which we discuss in Appendix A. For decomposable atomic
norms [48] that have atoms of equal Euclidean norm, one can check that the steepest descent
direction that we propose and the Franck-Wolfe direction are actually the same. However,
for the total variation the two differ. The Frank-Wolfe direction leads to the choice B? =
arg maxB⊂V −w(B,Bc)−1〈∇f(xΠ),1B〉. We show in Section 2.7 and via results presented in
Figure 6 that using the steepest cut direction outperforms the Frank-Wolfe direction.

2.2. Induced new partition in connected sets and new reduced problem. For Π =
(A1, · · · , Ak), BΠ is chosen so that the addition of a term of the form huB = hγB1B−hγBc1Bc

to x =
∑k

i=1 ci1Ai decreases the objective function Q the most. At the next iteration, we could
thus consider solving a reduced problem that consists of minimizing Q under the constraint
that x ∈ span(1A1 , . . . ,1Ak

,1B) with B = BΠ. But there is in fact a simpler and more
relevant choice. Indeed, on the set span(1A1 , . . . ,1Ak

,1B), the values xi1 , xi2 , xi3 and xi4 with
i1∈Aj ∩B, i2∈Aj ∩Bc, i3∈Aj′∩B and i4∈Aj′∩Bc are a priori coupled; also, if Aj ∩B has
several connected components i 7→ xi must take the same value on these components. These
constraints seem unnecessarily restrictive.

Consider SΠ
.
=
⋃

(A,A′)∈Π2 ∂(A,A′) with ∂(A,A′)
.
= (A × A′) ∩ E. With the notion of

support S(x) that we defined in (2) we actually have span(Π) = {x ∈ Rn | S(x) ⊂ SΠ}.
Now, if x ∈ span(1A1 , . . . ,1Ak

,1B), we have in general S(x) ⊂ Snew
.
= SΠ ∪ ∂(B,Bc), which

corresponds to allowing a larger support. But then it makes sense to allow x to remain in the
largest set with this maximal support Snew, that is equivalent to staying in the vector space
XSnew

.
= {x′ | S(x′) ⊂ Snew}. But, if we now define Πnew as the partition of V defined as

the collection of all connected components in G of all sets Aj ∩ BΠ and Aj ∩ Bc
Π for Aj ∈ Π,

10 L. LANDRIEU AND G. OBOZINSKI

then it is relatively immediate that span(Πnew) = XSnew . The construction of Πnew from Π is
illustrated in Figure 2.

A1 A2

(a) Initial partition
Π = {A1, A2}

B

B

(b) Steepest binary
cut B

A1 A2

A3 A4

A5

(c) Πnew =
{A1, A2, A3, A4, A5}

Figure 2: Illustration of the induced new partition. From an initial partition Π, the steepest
binary cut B induced a new partition Πnew. The solid line represent the initial contours
S, and the dashed line the new contours Snew\S introduced by B. Note that the binary
partition induced by B can more than double the number of resulting components.

We therefore set Πnew to be the new partition and solve the reduced problem constrained
to span(Πnew). Note that in general we do not have S(xΠ) = SΠ, because the total variation
regularization can induce that the value of xΠ on several adjacent elements of Π is the same.
The following result shows that if a non-trivial cut (BΠ, B

c
Π) was obtained as a solution to

(5) then the new reduced problem has a solution xΠnew = arg minx∈span(Πnew)Q(x) which is
strictly better than the previous one.

Proposition 4. If BΠ 6= ∅, Q(xΠnew) < Q(xΠ).

Proof. We clearly have

span(Π) ⊂ span(1A1 , . . . ,1Ak
,1BΠ

) ⊂ span(Πnew),

so that
Q(xΠnew) = min

x∈span(Πnew)
Q(x) ≤ min

x∈span(Π)
Q(x) = Q(xΠ).

Moreover, if BΠ 6= 0, then Q′(xΠ,1B) < 0, which entails that there exists ε > 0 such that
Q(xΠnew) ≤ Q(xΠ + ε1B) < Q(xΠ). This completes the proof.

We summarize the obtained working set scheme as Algorithm 1, and illustrate its two first
steps on a ROF problem in Figure 3. The following proposition provides a formal proof of
convergence.

Proposition 5. The scheme presented in Algorithm 1 converges to the a global minimum x?

of Q in a finite a finite amount of steps bounded by n.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 11

Algorithm 1 Cut pursuit
Initialize Π← {V }, xΠ ∈ arg minc∈R Q(c1V), S ← ∅
while minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc) < 0 do
Pick BΠ ∈ arg minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc)
Π← {BΠ ∩A}A∈Π ∪ {Bc

Π ∩A}A∈Π

Π← connected components of elements of Π
Pick xΠ ∈ arg minz∈span(Π)Q(z)
S ← S(xΠ)

end while
return (Π, xΠ)

(a) (b) (c) (d) (e)

Figure 3: Two first iterations of cut pursuit for the ROF problem on the picture in (a). Images
(b) and (d) represent the new cut at iterations 1 and 2 with BΠ and Bc

Π respectively in black
and white, and (c) and (e) represent the partial solution in levels of gray, with the current set
of contours S in red. The contours induced by the cut in (b) (resp. (d)) are superimposed on
(c) (resp. (e)).

Proof. At the beginning of each iteration, if minB⊂V Q
′(xΠ,1B) < 0 then the steepest

binary partition is not trivial, that is BΠ 6= ∅. Consequently the new partition Πnew will have
at least one more component than Π, and Proposition 4 states that the solution associated
with Πnew will be strictly better than xΠ. This ensures that the objective function is strictly
decreasing along iterations of the algorithm. If minB⊂V Q

′(xΠ,1B) = 0, then Proposition 3
ensures that optimality is reached, because for each value of Π, by construction xΠ is such that
Q′(xΠ, 1V) = 0. Since the number of components of Π is strictly increasing and bounded by
n, the algorithm converges in at most n steps, in the worst case scenario. Provided that each
constrained problem xΠ ∈ arg minz∈span(Π)Q(z) is solved exactly in finite time, this proves
that xΠ converges to the optimum x?. In the next section we discuss how to exploit the
sparse structure of xΠ to solve the reduced problem efficiently.

Case of a non-convex function f . We assumed in all this section that f is a differ-
entiable convex function. However, from a theoretical point of view, a number of results still
hold even if f is non-convex provided it is assumed strictly differentiable in the sense of [8,
Chapter 6.2], or more simply if f is assumed to be continuously differentiable, since continuous
differentiability implies strict differentiability. Indeed, it can be shown in that case that the

12 L. LANDRIEU AND G. OBOZINSKI

calculations on subgradient and directional derivative that prove our results are still valid for
such a function f for an appropriate generalization of the subgradient. As discussed in more
details in Appendix C, Propositions 1 and 2 then still hold. In the non-convex case, Algo-
rithm 1 has to be modified since it is no longer reasonable to assume that a global optimum
can be found when solving the reduced problem (3), and we could assume instead that the
solver called on the reduced problem finds a local optimum which strictly reduces the value of
the objective. In the previous sections, proofs of Proposition 3 and Proposition 5 essentially
showed that some first order subgradient conditions hold and relied on the fact that first order
subgradient conditions are sufficient characterize minima of convex functions. For non-convex
functions, the same first order subgradient conditions still hold (although they are no longer
sufficient to characterize global minima) and these proposition can be extended, but new suf-
ficient conditions are needed to guarantee that the algorithm converge to a local minimum of
the objective (see the appendix for details).

From a practical point of view, we however do not recommend to use the algorithm for
non-convex functions, because the low dimensional constraints of the active set algorithm could
lead to find very suboptimal local minima of the function. Instead, we would recommend when
possible to use majorization-minimization (MM) algorithms, based on convex upper bounds
of f . For instance, it is of interest to be able to solve problem (1) for non-convex functions
φ and in particular so-called concave penalties such as MCP, SCAD and others; for these
formulations, MM schemes requiring to solve a sequence of TV are efficient ([53]) and can be
advantageously combined with cut pursuit, since the latter will leverage the partition of the
previous iterate as a warm-start for the next iteration. This is the scheme we use in Section 3.2.

2.3. A reduced graph for the reduced problem. Let Π be a coarse partition of V into
connected components. We argue that minz∈span(Π)Q(z) can be solved efficiently on a smaller
weighted graph whose nodes are associated with the elements of partition Π, and whose edges
correspond to pairs of adjacent elements in the original graph. Indeed, consider the graph
G = (V, E) with V = Π and E = {(A,B) ∈ V2 | ∃(i, j) ∈ (A×B) ∩ E}. Figure 4 shows an
example of graph reduction on a small graph. For x ∈ span(Π) we can indeed express TV(x)
simply:

Proposition 6. For x =
∑

A∈Π cA1A we have TV(x)=TVG(c) with

TVG(c)
.
=

1

2

∑
(A,B)∈E

w(A,B) |cA − cB|.

Proof.

2TV(x) =
∑

(i,j)∈E

wij |xi − xj | =
∑

(i,j)∈E

wij
∑

(A,B)∈Π2

1{i∈A,j∈B} |cA − cB|

=
∑

(A,B)∈Π2

|cA − cB|
∑

(i,j)∈E∩(A×B)

wij ,

hence the result using the definition of w(A,B).

Note that if TV is the total variation associated with the weighted graph G with weights
(wij)(i,j)∈E then TVG is the total variation associated with the weighted graph G and the

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 13

node of V

edge of E
node of V
edge of E

n1

n2

n3

n4

n5

1

2

1

2

3

1
3 5

{n1} {n2,n3} {n3,n4}

Figure 4: Example of reduced graph. Left: graph G with weights (wij)(i,j)∈E on the edges,
middle: partition Π of G into connected components, right: reduced graph G with weights
(wAB)(A,B)∈E on the edges.

weights
(
w(A,B)

)
(A,B)∈E . Denoting f̃ : c 7→ f(

∑
A∈Π cA1A), the reduced problem is equivalent

to solving minc∈Rk f̃(c) + λTVG(c) on G. If Π is a coarse partition, we have |E| � 2m and
computations involving TVG are much cheaper than those involving TV. As illustrated in
Section 2.4, the structure of f̃ can often be exploited as well to reduce the computational cost
on the reduced problem. The construction of the reduced graph itself G is cheap compared
to the speed-ups allowed, as it is obtained by computing the connected components of the
graph (V,E\S(x)), which can be done in linear time by depth-first search. Note that once the
reduced problem is solved, if cΠ ∈ arg minc f̃(c) + λTVG(c), then S(xΠ) is directly computed
as S(xΠ) =

⋃{
∂(A,A′) | (A,A′) ∈ E , cA 6= cA′

}
.

2.4. Solving linear inverse problems with TV. A number of classical problems in image
processing such as deblurring, blind deconvolution, and inpainting are formulated as ill-posed
linear inverse problems [15], where a low TV prior on the image provides appropriate regular-
ization. Typically if x0 ∈ Rn is the original signal, H a p× n linear operator, ε additive noise,
and y = Hx0 + ε ∈ Rp the degraded observed signal, this leads to problems of the form

x? = arg min
x∈Rn

1

2
‖Hx− y‖2 + λTV(x)(7)

First order optimization algorithms, such as proximal methods, only require the computation
of the gradient HᵀHx−Hᵀy of f and can be used to solve (7) efficiently. However the reduced
problem can be computed orders of magnitude faster provided that the current partition is
coarse. Indeed, for a k-partition Π of V , we denote K ∈ {0, 1}n×k the matrix whose columns
are the vectors 1A for A ∈ Π. Any x ∈ span(Π) can be rewritten as Kc with c ∈ Rk and
the gradient of the discrepancy function with respect to c then writes: ∇c1/2 ‖HKc− y‖2 =
KᵀHᵀHKc−KᵀHᵀy.

As a result, the reduced problem can be solved by a similar first-order scheme of much
smaller size, with parametersKᵀHᵀHK andKᵀHᵀy, which are of size k×k and k respectively.
Given the sparsity of the matrix K, HK is computed in time O(pn); consequently KᵀHᵀHK
can be precomputed in O(k2 p + p n) and KᵀHᵀy in O(pn). Solving the reduced problem is
then very quick provided k is small compared to n.
In the case of a blur operatorH with adequate symmetry, for which p = n is large, manipulating
the matrices H or Hᵀ directly should be avoided. However x 7→ Hx being a convolution, it

14 L. LANDRIEU AND G. OBOZINSKI

can be computed quickly using the fast Fourier transform and, in that case, KᵀHᵀHK and
KᵀHy can be precomputed in O(n log n) time.

2.5. Complexity analysis. The computational bottlenecks of the algorithm could a priori
be (a) the computation of the steepest binary cut which requires to solve a min cut/max flow
problem, (b) the cost of solving the reduced problem, (c) the computation of the reduced graph
itself, (d) the number of global iterations needed.

(a) The steepest binary cut is obtained as the solution of a max-flow/min-cut optimization
problem. It is well-known that there is a large discrepancy between the theoretical
upper bound on the complexity of many graph-cut algorithms and the running times
observed empirically, the former being too pessimistic. In particular, the algorithm of
[10] has a theoretical exponential worst case complexity, but scales essentially linearly
with respect to the graph size in practice. In fact, it is known to scale better than
some algorithms with polynomial complexity, which is why we chose it.

(b) Solving the reduced problem can be done with efficient proximal splitting algorithms
such as [58], which is proved to reach a primal suboptimality gap of ε in O(1/ε2) it-
erations; in practice, the observed convergence rate is almost linear. Preconditioning
greatly speeds up convergence in practice. Moreover, the problems induced on the
reduced graph can typically be solved at a significantly reduced cost: in particular,
as discussed in section 2.4, for a quadratic data fitting term and H a blurr operator,
the gradient in the subgraph can be computed in O(k2) time, based on a single ef-
ficient FFT-based computation of the Hessian per global iteration which itself takes
O(k2n log n) time. For problems with coarse solutions, this algorithm is only called for
small graphs so that this step only contributes to a small fraction of the the running
time.

(c) Computing the reduced graph, requires computing the connected components of the
graph obtained when removing the edges in S, and the weights w(A,B) between all
paris of components (A,B). This can be efficiently performed in O(m+ n) through a
depth-first exploration of the nodes of the original graph.

(d) The main factor determining the computation time is the number of global iterations
needed. In the worst case scenario, this is O(n). In practice, the number of global
iterations seems to grow logarithmically with the number of constant regions at the
optimum. If for simple images or strongly regularized natural images 4 or 5 cuts seems
to suffice, a very complex image with very weak regularization might need many more.
In the end, our algorithm is only efficient on problems whose solutions do not have too
many components. E.g. in the deblurring task, it is competitive for solutions with up
to 10, 000 components for a 512× 512 image.

2.6. Regularization path of the total variation. Since the regularization coefficient λ is
difficult to choose a priori, it is typically useful to compute an approximate regularization path,
that is the collection of solutions to (1) for a set of values λ0 > · · · > λj > 0. For `1 sparsity,
[21] showed how a fraction of the exact regularization path can be computed in a time of the
same order of magnitude as the time need to compute of the last point. In general, when
the path is not piecewise linear, the exact path cannot be computed, but similar results have
been shown for group sparsity [61, 52]. The case of total variation has been studied as well for

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 15

1-dimensional signals in [7]. We propose a warm-start approach to compute an approximate7

solution path for the total variation.
The rationale behind our approach is that, if λi and λi+1 are close, the associated solutions

x?i and x
?
i+1 should also be similar, as well as their associated optimal partition, which we will

refer to as Π?
i and Π?

i+1. Consequently, it is reasonable to use a warm-start technique which
consists of initializing Algorithm 1 with Π?

i to solve the problem associated with λi+1 and
to expect that it will converge in a small number of binary cuts. It is important to note
that while our algorithm lends itself naturally to warm-starts, to the best of our knowledge
similar warm-start techniques do not exist for proximal splitting approaches such as [57] or
[14]. Indeed solutions whose primal solutions are close can have vastly different auxiliary/dual
solutions, and in our experiments no initialization heuristics consistently outperformed a naive
initialization.

(a) Original (b) PSNR : 12.1 (c) PSNR : 20.1

(d) Original (e) PSNR : 15.9 (f) PSNR : 27.2

(g) Original (h) PSNR : 23.3 (i) PSNR : 24.5

Figure 5: Benchmark on the deblurring task. Left column: original images, Middle column:
blurred images, Right column: images retrieved by cut pursuit (CP)

2.7. Numerical experiments: deblurring with TV. To assess the performance in terms
of speed of our working set algorithm for the total variation regularization, we compare it with

7In fact for a quadratic data fitting term regularized by the total variation, the regularization path is
piecewise linear and could thus in theory computed exactly, with a scheme similar to the LARS algorithm [21].
It should however be expected that this path has many point of discontinuity of the gradient, which entails
that the cost of computation of the whole path is likely to be prohibitively high. We therefore do not consider
further this possibility.

16 L. LANDRIEU AND G. OBOZINSKI

several state-of-the-art algorithms on a deblurring task of the form presented in section 2.4.
Specifically, given an image x, we compute y = Hx + ε, where H is a Gaussian blur matrix,
and ε is some Gaussian additive noise, and we solve (1) with a total variation regularization
based on the 8-neighborhood graph built on image pixels. We use three 512 × 512 images of
increasing complexity to benchmark the algorithms: the Shepp-Logan phantom, a simulated
example, and Lena, all displayed in Figure 5. For all images the standard deviation of the blur
is set to 5 pixels.

A C++ implementation of the cut pursuit algorithm is available on the first author’s page8.

2.7.1. Competing methods.
Preconditioned Generalized Forward Backward (PGFB). As a general baseline,

we consider a recent preconditioned generalized forward-backward splitting algorithm by [58]
whose prior non-preconditioned version was shown to outperform state-of-the art convex op-
timization on deblurring tasks in [57], including among others the algorithm of [14]. [58]
demonstrate the advantages of the preconditioning strategy used over other adaptive metric
approaches, such as the preconditioning proposed in [56] and the inertial acceleration devel-
oped in [44].
Accelerated forward-backward with parametric max-flows (FB+). Since efficient al-
gorithms that solve the ROF problem have been the focus of recent work, and given that the
ROF problem corresponds to the computation of the proximal operator of the total variation,
we also compare with an implementation of the accelerated forward-backward algorithm of
[49]. To compute the proximal operator, we use an efficient solver of the ROF problem based
on a reformulation as a parametric max-flow proposed by [13]. The solver we use is the one
made publicly available by the authors, which is based on a divide and conquer approach that
works through the resolution of a parametric max-flow problem. This implies computing a
sequence of max-flow problems, whose order make it possible to re-use the search trees in the
[10] algorithm, thereby greatly speeding up computations.
Cut pursuit with Frank-Wolfe descent direction (CPFW). We consider an alternative
to the steepest binary partition to split the existing components of the partial solution: Inspired
by the conditional gradient algorithm for regularized problems proposed by [31], consider a
variant of cut pursuit in which we replace the steepest binary cut by the cut (B,Bc) such that
1B is the Frank-Wolfe direction for the total variation, i.e. minimizing w(B,Bc)−1〈∇f(x),1B〉
(see the discussion at the end of Section 2.1 and Appendix A). Note that the corresponding
minimization of a ratio of combinatorial functions can in this setting be done efficiently using
a slight modification of the algorithm of [20]. See Appendix D for more details. We chose
not to make direct comparisons with the algorithms of [31] and of [2, Chap. 7.12], since it is
clear that these algorithms will be outperformed by CPFW. Indeed, these algorithms include
a single term of the form 1A in the expansion of x at each iteration, while CP and CPFW
grow much faster the subspace in which x is sought (its dimension typically more than doubles
at each iteration). This entails that these algorithms must be slower than CPFW, because for
the former and for the latter, a single iteration requires to compute a Frank-Wolfe step, which
requires solving several graph-cuts on the whole graph, and, as we discuss in Section 2.7.2 and

8https://github.com/loicland/cut-pursuit

https://github.com/loicland/cut-pursuit

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 17

illustrate in Figure 7, the cost of graph-cuts already dominates the per iteration cost of CP
and CPFW.
Cut pursuit. To implement our algorithm (CP), we solve min-cut problems using the [37]
solver, which itself is based on [10] and [39]. The problems on the reduced graph are solved
using the PGFB algorithm. This last choice is motivated by the fact that the preconditioning
is quite useful as it compensates for the fact that the weights on the reduced graph can be
quite imbalanced.

0 5 10 15 20 25 30 35

10−5

10−4

10−3

10−2

10−1

time (in s)

Q
t/
Q
∞
−

1

0 5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

time (in s)

Q
t/
Q
∞
−

1

0 10 20 30 40 50

10−3

10−2

10−1

time (in s)

Q
t/
Q
∞
−

1 FB+
PGFB
CP
CPFW

Figure 6: Relative primal suboptimality gap Qt/Q∞− 1 at time t (in seconds) for differ-
ent algorithms on the deblurring task: accelerated forward backward (FB+), Preconditoned
Generalized Forward Backward (PGFB), Cut pursuit (CP) and a variant using Frank-Wolfe
directions (CPFW), and for different 512 × 512 images and different regularization values:
Shepp-Logan phantom (left), our simulated example (middle) and Lena (right). The marks in
(FB+), (CP) and (CPFW) corresponds to one iteration.

18 L. LANDRIEU AND G. OBOZINSKI

2.7.2. Results. Figure 6 presents the convergence speed of the different approaches on the
three test images on a quad-core CPU at 2.4 Ghz. Precisely, we represent the relative primal
suboptimality gap (Qt−Q∞)/Q∞ where Q∞ is the lowest value obtained by CP in 100 seconds.
We can see that our algorithm significantly speeds up the direct optimization approach PGFB
when the solution is sparse, and that it remains competitive in the case of a natural image
with strong regularization. Indeed since the reduced problems are of a much smaller size than
the original, our algorithm can perform many more forward-backward iterations in the same
allotted time.

The variant of cut pursuit using Frank-Wolfe directions (CPFW) is as efficient over the
first few iterations but then stagnates. The issue is that the computation of a new Frank-Wolfe
direction does not take into account the current support S(x) which provides a set of edges
that are “free”; this means that the algorithm overestimates the cost of adding new boundaries,
resulting in overly-conservative updates.

Accelerated forward-backward with parametric max-flow (FB+) is also slower than the cut
pursuit approach in this setting. This can be explained by the fact that the calls to max-flow
algorithms, represented by a mark on the curve, are better exploited in the cut pursuit setting.
Indeed in the forward-backward algorithm, the solutions of parametric max-flow problems
are exploited by performing one (accelerated) proximal gradient step. By contrast, in the
cut pursuit setting, the solution of each max-flow problem is used to optimize the reduced
problem. Since the reduced graph is typically much smaller than the original, a precise solution
can generally be obtained very quickly, yet providing a significant decrease in the objective
function. Furthermore, as the graph is split into smaller and smaller independent connected
components by cut pursuit, the call to the max-flow solver of [10] are increasingly efficient
because the augmenting paths search trees are prevented from growing too wide, which is the
main source of computational effort.

Figure 7 presents the breakdown of computation time for each algorithm over 60 seconds of
computation. In PGFB, the forward-backward updates naturally dominate the computation
time, as well as the fast Fourier transform needed to compute the gradient at each iteration.
In FB+, the computation of the proximal operator of the partial solution through parametric
maximum flows is by far the costliest. Our approach and CPFW share a similar breakdown
of computation time as their structures are similar. The maximum flow represents the highest
cost, with the fast Fourier transform needed to compute KᵀHᵀHK a close second. Finally
diverse operations such as computing the reduced graph takes a small fraction of the time.
More interestingly, solving the reduced problem (with the PGFB subroutine of CP) takes
comparatively very little time (roughly 3%) when this is the only step that actually decreases
the objective function. This is expected as, even at the last iteration, the reduced graph had
only 300 components so that the associated problem is solved very rapidly.

2.8. Numerical experiments: approximate TV regularization path. We now present the
computation of an approximate regularization path for the ROF minimization, using warm-
starts as described in Section 2.6. We consider the task of ROF-denoising on three natural
images presented in Figure 9. For each image we pick 20 values of λ evenly distributed
logarithmically in the range of parameters inducing from coarse to perfect reconstructions.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 19

PGFB FB+ CP CPFW
0%

20%

40%

60%

80%

100%

FFT Forward-Backward Maxflow Other

Figure 7: Time breakdown for the different algorithms over 60 seconds of optimization.

2.8.1. Competing methods. Parametric max-flows (PMF). We use the parametric
max-flow based ROF solver of [13] to compute each value. In our numerical experiments, it
was the fastest of all available solvers, and moreover returns an exact solution.
Cut pursuit (CP). We use the algorithm presented in this paper to separately compute the
solutions for each parameter value. The algorithm stops when it reaches a relative primal
suboptimality gap Qt/Q∞−1 of 10−5, with Q∞ the exact solution given by PMF.
Cut pursuit path (CPP). We use the warm start approach proposed in Section 2.6, with
the same stopping criterion.

2.8.2. Results. We report in Figure 9 the time in seconds necessary to reach a primal
suboptimality gap of 10−5 for the different approaches. We observe that, in general, cut
pursuit (CP) is slightly faster than the parametric max-flow. It should be noted, however,
that the latter finds an exact solution and remains from that point of view superior. Warm-
starts allow for a significant acceleration, needing at most two calls to the max-flow code to
reach the desired gap. Unlike the deblurring task, for high noise levels, cut pursuit remains
here very competitive for natural images which are not sparse, as illustrated in Table 10 and
Figure. 8.

As the regularization strength decreases, the coarseness of the solution decreases, and as
a consequence the cut pursuit approaches CP and CPP become less and less efficient. This is
because as the number of components increases, so does the time needed to solve the reduced
problem. We note however that for the values provided with the peak PSNR, the warm-start
approach is faster than PMF.

PMF and CP perform significantly worse on sparse images and for high values of λ. This
can be explained by the inner workings of the max-flow algorithm of [10]. Indeed for high

20 L. LANDRIEU AND G. OBOZINSKI

Original
PSNR:

λ = 3.16
20.0

λ = 1.62
24.6

λ = 0.83
29.2

λ = .43
31.3

λ = .25
29.4

Noisy
11.7

Original
PSNR:

λ = 0.79
23.2

λ = .55
24.5

λ = .38
25.6

λ = .27
26.2

λ = .20
25.1

Noisy
11.4

Original
PSNR:

λ = 0.79
22.7

λ = .55
23.4

λ = .38
23.9

λ = .27
23.7

λ = .20
22.0

Noisy
10.6

Figure 8: Illustration of the regularization path for the three images in the data set for 5 of
the 20 values in the regularization parameters in the path. The peak PSNR is reached for
λ = 0.53, 0.28 and 0.34 respectively.

values of λ or sparse images, the pairwise term of the corresponding Potts model will dominate,
which forces the algorithm to build deep search trees to find augmenting paths. Indeed as the
size of the regions formed by the cut increase, the combinatorial exploration of all possible
augmenting paths drastically increases as well. The warm-started path approach does not
suffer from this problem because the graph is already split in smaller components at the
warm-start initialization, which prevents the search trees from growing too large.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 21

10−0.6100100.5
0

10

20

30

λ

ti
m
e
(i
n
s)

10−0.710−0.410−0.1
0

2

4

6

λ

ti
m
e
(i
n
s)

10−0.710−0.410−0.1
0

2

4

6

8

λ

ti
m
e
(i
n
s)

CP
CPP
PMF
peak PSNR

Figure 9: Time in seconds necessary to solve the problem regularized with a given λ (from the
warm-start initialization when applicable) with a relative primal suboptimality gap of 10−5, for
regularly sampled values of λ along the regularization path. The competing methods are cut
pursuit (CP), cut pursuit with warm-start (CPP) and the parametric max-flow solver (PMF)
for different 512×512 noisy images: simulated example (left), Lena (middle) and eagle (right).
The computation times are averaged over 10 random degradations of the images by uniform
noise. The blue arrow indicates the best PSNR value.

3. Generalized minimal partition. We consider now a generalization of the minimal parti-
tion problem minx∈Rn Q(x) with Q(x) = f(x)+λΓ(x) where Γ(x)

.
= 1

2

∑
(i,j)∈S(x)wij the total

boundary size penalty for piecewise constant functions. This non-convex non-differentiable
problem being significantly harder than the previous one, we restrict the functions f we con-
sider to be separable functions of the form f(x) =

∑
i∈V fi(xi) with fi : R 7→ R continuous9.

9The algorithmic scheme we propose in this section does not require the functions fi to be convex, but
convexity will make subproblems easier to solve, and, as discussed later, can be helpful to establish sufficient
conditions for convergence (see Section 3.1.1 and Appendix E.1.2)

22 L. LANDRIEU AND G. OBOZINSKI

Method Simulated Lena Eagle
CPP 59 25 27
CP 194 62 70
PMF 356 67 91

Figure 10: Time in seconds necessary to compute the entire approximate regularization path
at a relative primal suboptimality gap of 10−5 for the different algorithms, averaged over 10
samplings of the noise.

Our formulation, like [42], but unlike most instances of the minimal partition problem in the
literature, does not constrain the number of components in advance. We call the corresponding
problem generalized minimal partition problem.

Inspired by greedy feature selection algorithms in the sparsity literature and by the working
set algorithm we presented for TV regularization, we propose to exploit the assumption that
the optimal partition Π∗ is not too large to construct an algorithm that greedily optimizes the
objective by adding and removing cuts in the graph.

Indeed, the problem that we consider has a fixed regularization coefficient λ, and so its
natural counterpart for classical sparsity is the problem of minimizing an objective of the form
f(x) + λ‖x‖0 which subsumes AIC, BIC and other information criteria. The algorithmic ap-
proach we consider is thus the counterpart of a very natural greedy algorithm to minimize the
former objective, which surprisingly is almost absent from the literature, perhaps for the fol-
lowing reasons: On the one hand, work on stagewise regression and forward-backward greedy
algorithms, which both add and remove variables, goes back to the 60ies [22], but the algo-
rithms then considered were based on sequences of tests as opposed to a greedy minimization
of a penalized criterion.

On the other hand, the literature on greedy algorithms for sparse models has almost ex-
clusively focused on solving the constrained problem minx f(x) s.t. ‖x‖0 ≤ k, with algorithms
such as OMP, Orthogonal least squares (OLS), FoBa, and CoSamp, which can alternatively
be viewed as algorithms that are greedily approximating the corresponding Pareto frontier. A
notable exception is IHT.

A very natural variant of OLS solving minx f(x) + λ ‖x‖0 can however be obtained by
adding the `0 penalty to the objective. This algorithm was formally considered in [64] under the
name Single Best Replacement (SBR), in reference to the similar Single Maximum Likelihood
Replacement (SMLR) of [40]. At each iteration, the algorithm considers adding (forward step)
or removing (backward step) a single variable, whichever reduces the value of the objective
most. It should be noted that while the similar OLS and OMP are forward algorithms, SBR is
a forward-backward algorithm, which can remove a variable provided doing so only increases
f by less than λ.

We argue in the following section that a similar algorithm can be designed for the general-
ized minimal partition problem, using a general scheme which is similar to that of cut pursuit.
We thus call this algorithm `0-cut pursuit. In particular, it follows a similar structure, in which
a partition is successively split into its constant connected components. The main differences is

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 23

an adapted rationale to split elements of the partition, and the addition of a explicit backward
step.

3.1. A greedy algorithm for generalized minimal partition. As in cut pursuit, we propose
an algorithm which greedily splits the elements of the current partition Π = (A1, · · · , Ak) in
forward steps, reoptimizes the value taken by x on each of the Aj , then, in backward steps,
possibly merges some regions (or moves some of the boundaries between regions), and iterates.

3.1.1. Forward step. Assume that we split the set of existing regions (Aj)1≤j≤k by in-
troducing a global cut (B,Bc) for some set B ⊂ V , so as to minimize the global objective,
i.e.

min
B⊂V

min
(hj ,h′j)1≤j≤k

k∑
j=1

[∑
i∈Aj∩B

fi(hj) +
∑

i∈Aj∩Bc

fi(h
′
j)
]

+ λ

k∑
j=1

w(Aj ∩B,Aj ∩Bc)

This cut induces a cut on each element Aj of the form (Aj ∩ B,Aj ∩ Bc). Two simple
properties should be noted: (a) the additional boundary perimeter incurred with the cut is
simply the sum of the perimeters of the cuts induced within each element Aj and is precisely
of the form

∑k
j=1w(Aj ∩ B,Aj ∩ Bc) — the boundary between pre-existing components is

“free” (cf Figure 2), (b) if the value of x is re-optimized under the constraint that it should be
constant on each of the elements Aj∩B and Aj∩Bc of the new partition, then the separability
of f and the fact that Γ(x) stays constant when the value of each of the regions is modified
together entail that the optimization can be done separately on each set Aj . So the choice of
an optimal cut reduces to independent choices of optimal cut on each set Aj as defined by the
objective

(8) min
Bj⊂Aj

min
(h,h′)

∑
i∈Bj

fi(h) +
∑

i∈Aj\Bj

fi(h
′) + λw(Bj , Aj\Bj).

This optimization problem is difficult to solve globally, because even if the functions fi
were assumed convex, it would not be a convex optimization problem. However, for Bj fixed,
the partial minimization with respect to h and h′ is an optimization problem in R2, and, for
(h, h′) fixed, the optimisation with respect to Bj is solved as a min-cut/max-flow problem
very similar to the one for the steepest binary cut of Section 2.1. We therefore propose
the alternating minimization algorithm presented in pseudo-code as Subroutine 2. Under
appropriate hypotheses on f detailed in Appendix E.1.2, this algorithm finds a local minimum
of the objective. In particular, these hypotheses hold if each fi is strictly convex and in general
position so to as to avoid ties in assignments of i to B or Bc, for example if fi(·) = (· − xi)2

with xi drawn i.i.d. from a continuous distribution, which corresponds to our case of interest.
In this algorithm, since the minimization with respect to Bj can lead to more than two

connected components, we use the same idea as presented in Section 2.2 and illustrated on
Figure 2, which is to treat each connected component as a new element of the partition.

Further details on Subroutine 2 and initialization strategies are discussed in Appendix E.1.

3.1.2. Saturated sets. A particular situation occurs when the optimal solution Bj of
problem (8) is equal to ∅ or Aj : in that case, any split of Aj would increase the objective.

24 L. LANDRIEU AND G. OBOZINSKI

We then say that the component Aj is saturated. The overall algorithm maintains a set Σ of
saturated components which do not need to be processed anymore in the splitting steps.

For cut pursuit (i.e. in the TV case), it was essentially sufficient to design the splitting step
to specify the algorithm: indeed, after splitting with a steepest binary cut, the problem solved
on the reduced graph involved in that case a total variation term penalizing the difference of
values between adjacent regions (cf Proposition 6), and this TV term could thus induce the
merge of two adjacent regions. By contrast, for `0 cut pursuit, given that the optimization of
the values on each region is independent and without any incidence on the definition of their
contours, merge steps and other steps to modify the shape of the regions should be added
explicitly. We discuss them in the next two sections.

3.1.3. Backward steps. In greedy algorithms for plain sparsity, backward steps remove
variables to reduce the support of the solution. In our case, the appropriate notion of support
is S(x) (cf Equation 2), which is formed as the union of the boundaries between pairs of
components. A backward step is a step that reduces the total boundary perimeter. The most
natural way to obtain this is by merging two adjacent components.

Simple merge step: For a region C, let f?C := minh
∑

i∈C fi(h). If a pair of adjacent
components (A,B) is merged into a single constant component, and the value of A ∪ B is,
reoptimized, the objective Q increases by

δ−(A,B) := f?A + f?B − f?A∪B + λw(A,B).

A merge effectively decreases the value of the objective and is thus worth it if δ−(A,B) > 0
i.e. if f?A∪B − (f?A + f?B) < λw(A,B).

It should be noted that the merge step considered does not, in general, correspond to
canceling exactly a previous cut, but can merge adjacent subregions that have each been
obtained by splitting different regions. The merge step is described in Subroutine 4.

A shortcoming of the simple merge step is that while the removal of boundaries between
components is considered, a simple change of the shape of the created boundaries that could
reduce total boundary length is not possible. However, since the optimal binary computation
only considers binary partitions, the shape of the components might be suboptimal. We
therefore propose another kind of step.

Merge-resplit: This step is a combination of a merge step immediately followed by a
new split step on the merged components. It is a “backward-then-forward” step, which can
be worth it even if the corresponding backward step taken individually is not decreasing the
objective. Given hA := argmin

∑
i∈A fi(A) and hB := argmin

∑
i∈B fi(B), the merge resplit

step amounts to solve the corresponding

min
A′,B′

∑
i∈A′

fi(hA) +
∑
i∈B′

fi(hB) + λw(A′, B′) s.t. B′ = (A ∪B)\A′.

But this problem can again be solved as a min-cut/max-flow problem on the region A∪B.
Note that this merge-resplit step is very similar to what [10] call an α-β swap in the context

of energy minimization in Markov random fields: nodes assigned to other components10 than

10In the context of MRFs the components correspond to a number of different classes fixed in advance and
are in general not connected.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 25

A or B keep their current assignments to components, but the nodes of A ∪B are reassigned
to A or B so that the boundary between A and B minimizes the above energy.

The merge-resplit step includes the possibility of a simple merge step (without resplitting),
since all elements can be “swapped” in the same set by the α-β swap , so that the new boundary
is effectively empty. Finally, note that during the merge-resplit step the values of xA and xB
are held constant and only updated upon completion of the step. In fact, in a number of cases,
it might be possible to iterate such steps for a given pair (A,B). We do not consider this
computationally heavier possibility.

3.1.4. The `0 cut pursuit algorithm. Given definitions of forward and backward steps,
different algorithms can be obtained by iterating and alternating these steps differently. We
propose to alternate between splitting all components at once (possibly in parallel) and then
iterating backward steps over all adjacent pairs of components. This allows for the splitting
to be done in parallel directly on the original flow graph, thus avoiding the memory overheads
associated with constructing a new flow graph for each new component. This leads to two
variants for the main algorithm which are presented as Algorithms 5 and 6, depending on
whether only simple merge or merge-resplit steps are used. Implementation details of the
algorithms and other possible variants are discussed in Appendix E.2.

Under mild assumptions, Algorithm 5 converges in a finite number of iterations and yields
a partition Π = (A1, · · · , An) such that xΠ

.
= arg minz∈span(Π)Q(z) is a local minimum of Q.

See in Appendix E.3 for a precise statement and a proof.

Subroutine 2 [Π, E ,Σ]← split(Π, E ,Σ, A)

[Splits the component A with a binary cut: updates the current partition Π, the component
adjacency structure E and the set of saturated components Σ]
for A ∈ Π do

Π← Π \ {A}
B ← arg minB⊂A,h,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′)
while not_converged do
x← arg minh

∑
i∈B fi(h)

x′ ← arg minh
∑

i∈A\B fi(h)

B ← arg minB⊂A
∑

i∈B fi(x) +
∑

i∈Bc fi(x
′) + λw(B,Bc)

end while
if B ∈ {∅, A} then

Σ← Σ ∪ {A}
end if
[B1, · · · , Bk]← connected components of B and A \B
Π← Π ∪ {B1, · · · , Bk}
E ← updated adjacency structure

end for

26 L. LANDRIEU AND G. OBOZINSKI

Subroutine 3 [Π, E ,Σ]← simple_merge(Π, E ,Σ, A,B)

[Merges components A and B]
Π← Π \ {A,B} ∪ {A ∪B}
E ← E \

{
{A,B}

}
Σ← Σ \ {A,B}
for C neighbors of A or B do
E ← E ∪

{
{A ∪B,C}

}
end for

Subroutine 4 [Π, E ,Σ]← resplit(Π, E ,Σ, A,B)

[Performs a merge-resplit step on components A and B.]
xA ← arg minh

∑
i∈A fi(h)

xB ← arg minh
∑

i∈B fi(h)
C ← arg minC⊂A∪B

∑
i∈C fi(xA) +

∑
i∈A∪B\C fi(xB) + λw(C,A ∪B \ C)

if C /∈ {A,B} then
Σ← Σ \ {A,B}

else
[C1, · · · , Ck]← connected components of C and A ∪B \ C
Π← Π \ {A,B} ∪ {C1, · · · , Ck}
E ← updated adjacency structure

end if

Algorithm 5 Simple merge variant
(`0-CPm)
Initialization: Π0 = {V }, E=Σ=∅
while Π 6= Σ do
for A ∈ Π \ Σ in parallel do

[Π, E ,Σ]← split (Π, E , A,Σ)
end for
Compute δ−(A,B) for all (A,B) ∈ E
while max{A,B}∈E δ−(A,B) > 0 do
{A,B} = arg max{A′,B′}∈E δ−(A′, B′)
[Π, E ′,Σ]← merge (Π, E ,Σ, A,B)
Update δ−(A,B) for {A,B} ∈ E ′ \ E
E ← E ′

end while
end while

Algorithm 6 Merge-resplit variant
(`0-CPs)
Initialization: Π0 = {V }, E = Σ = ∅
while Π 6= Σ do
for A ∈ Π \ Σ in parallel do

[Π, E ,Σ]← split (Π, E ,Σ, A)
end for
E ′ ← E
for {A,B} ∈ E ′ do
if {A,B} ∈ E then

[Π, E ,Σ]←resplit(Π, E ,Σ, A,B)
end if

end for
end while

3.2. Numerical experiments: denoising with `0 cut pursuit. We now present experiments
empirically demonstrating the superior performance of the `0-cut pursuit algorithm presented
in section 3. We assess its performance against two state-of-the art algorithms to minimize the
total boundary size of two noisy 512×512 images: the Shepp-Logan phantom [63] and another

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 27

simulated example. In order to illustrate the advantage of our algorithm over alternatives which
discretize the value range, we add a small random shift of grey values to both images. We also
test the algorithms on a spatial statistic aggregation problem using open-source data11 which
consists of computing the statistically most faithful simplified map of the population density
in the Paris area over a regular grid represented in Figure 12. The raster is triangulated to
obtain a graph with 252, 183 nodes and 378, 258 edges. We use the squared loss weighted by
the surface of each triangle as a fidelity term.

A C++ implementation of the `0-cut pursuit algorithm is available12.

3.2.1. Competing methods.
α-expansions on quantized models (CRFi). If the range of values of xi is quantized,
the MPP and TV problems reduce to a Potts model, in which each class c is associated with
a (non necessarily connected) level-set [32]. In the MPP case, the pairwise terms are of the
form 1{ci 6=cj}wij . We use α-expansions [10] to approximately minimize the corresponding
energy. More precisely, we use the α-expansions implementation of [27], which uses the same
max-flow code [9] as our algorithm. We denote the resulting algorithm CRFi where i is the
number of levels of quantization of the observed image value range. While this algorithm is
not theoretically guaranteed to converge, it does in practice and the local minima are shown
by [10] to be within a multiplicative constant of the global optimum.
Non-convex relaxation (TV0.5). We considered a non-convex counterpart of the total
variation, similar to the formulations considered in [51] or [71], but with t 7→ (ε + t)

1
2 in lieu

of t 7→ |t|. The resulting functional can be minimized locally using a reweighted TV scheme
described in [53]. We use our cut pursuit algorithm to solve each reweighted TV problem as
it is the fastest implementation.
`0-cut pursuitWe implemented three versions of `0 cut pursuit with different backward steps.
In the simplest instantiation, `0-CPf, no backward step is used and the reduced graph can only
increase in size. In `0-CPm, described in Algorithm 5, the simple merge step is performed after
each round of cuts. Finally in `0-CPs, described in Algorithm 6, merge steps are replaced by
merge-resplit steps but without priority queue.

After a few preliminary experiments, we chose not to include either level-set methods [16] or
active contour methods based on solving Euler-Lagrange equations [36] as their performances
were much lower than the algorithms we consider.

Comparing speed results of code is always delicate as the degree of code optimization varies
from one implementation to another. The α-expansion code uses the implementation of [27]
which is a highly optimized code, `0-CPf and `0-CPm are implemented in C++, while `0-CPs
and TV0.5 are implemented in Matlab with a heavy use of mex-files. Even if minor improve-
ments could be obtained on the latter, we believe that it would not change the performances
significantly. In particular, a justification for direct time comparisons here is that computation
time for each of the algorithms is mostly spent computing min cuts which is done in all codes
using the same implementation of [9] and which accounts for most of the computation time.

11https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population
12https://github.com/loicland/cut-pursuit

https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population
https://github.com/loicland/cut-pursuit

28 L. LANDRIEU AND G. OBOZINSKI

3.2.2. Results. Given that the MPP is hard, and that all the algorithms we consider only
find local minima, we compare the different algorithms both in terms of running time and in
terms of the objective value of the local minima found. The marks on the curves correspond
to one iteration of each of the considered algorithms: For TV0.5 there is a mark for each
reweighted TV problem to solve, for CRFk, a mark corresponds to one α-expansion step,
i.e. solving k max-flow problems. For `0-CP this corresponds to one forward (split) and one
backward step. For clarity, the large number of marks were omitted in the third experiment,
as well as for `0-CPs in the first experiment.

In Figure 11, we report the energy obtained by the different algorithms normalized by
the energy of the best constant approximation. We can see that our algorithms find local
optima that are essentially as good or better than α-expansions for the discretized problems
in less time, as long as the solutions are sufficiently sparse. For the population density data,
the implementation `0-CPm with simple merge is faster and finds a better local minimum
than CRF40, but is outperformed by CRF60. The implementation with swaps merge-resplit
(`0-CPs) is on par with CRF60 when it comes to speed, and finds a slightly better minimum.

The simple merge step provides a better solution than the purely forward approach at the
cost of a slight increase in computational time. The merge-resplit backward step improves the
quality of the solution further, but comes with a significant increase in computation.

We report in Table 13 performance in PSNR that shows that `0-CP outperforms the CRF
formulations for quantization levels that lead to comparable running time.

The comparison with CRF formulations is investigated in more details in Appendix F,
where we report the performance of approximations with CRFs solved with iterative α-expansions
for different numbers of quantization levels, as compared with the performance of `0-CPm. The
results show that the running time for the CRF formulations grows linearly with the num-
ber of classes, although the performance in PSNR does not increase monotonically, and has
oscillations which lead to results that are worse than `0-CPm for some number of classes.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 29

0 5 10 15 20

0.504

0.506

0.508

0.51

0.512

time (in s)

Q
t/
Q

0

CRF15
CRF30

0 2 4 6 8 10 12 14
0.082

0.083

0.084

0.085

0.086

time (in s)
Q
t/
Q

0

CRF15
CRF30

0 5 10 15 20 25
0.255

0.26

0.265

0.27

0.275

0.28

time (in s)

Q
t/
Q

0

CRF40
CRF60

TV0.5

`0-CPf
`0-CPm
`0-CPs

Figure 11: Generalized minimal partition energy at time t (in seconds) divided by the same
energy for the best constant approximation obtained by different algorithms: Non-convex
relaxation (TV0.5), `0-CPf with no backward step, `0-CPm with simple merge step, `0-CPs with
merge-resplit steps, and finally, α-expansions with different number of levels of quantization
(see image legends), for different images: the Shepp-Logan phantom (left), our simulated
example (middle) and the map simplification problem (right). Markers correspond respectively
to one reweighting, one α-expansion cycle and one cut for (TV0.5), (CRF) and (`0-CP).

30 L. LANDRIEU AND G. OBOZINSKI

(a) PSNR : 24.8 (b) PSNR : 38.1

(c) PSNR : 18.8 (d) PSNR : 34.8

(e) Population density of Paris (f) Simplified map

Figure 12: Benchmark on the denoising task. First two lines: (left) noisy images, (right)
images retrieved by `0-cut pursuit with simple merge steps(`0-CPm). Last line: (left) rasterized
population density of Paris area, (right) simplified map obtained by `0-CPm: 69% of variance
explained with 1.2% of contours perimeter.

Experiment Phantom Simulated
Algorithm PSNR time PSNR time
Noisy image 16.8 - 16.8 -
`0-CPm 33.5 4.3 37.0 4.6
CRF15 32.6 8.6 34.2 4.0
CRF30 33.3 25.3 34.8 11.4
TV0.5 32.2 16.4 33.6 18.0

Figure 13: PSNR at convergence and time to converge in seconds for the four algorithms as
well as the noisy image for the first two denoising experiments.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 31

4. Conclusion. We proposed two algorithms to minimize functions penalized respectively
by the total variation and by the total boundary size. They computationally exploit the fact
that for sufficiently large regularization coefficients, the solution is typically piecewise constant
with a small number of pieces, corresponding to a coarse partition. This is a consequence of the
fact that, in the discrete setting, both the total variation and total boundary size penalize the
size of the support of the gradient: indeed, functions with sparse gradients tend to have a small
number of distinct level sets, which are moreover connected. The sparsity that is optimized is
thus not exactly the same as the sparsity which is exploited computationally, although both
are related.

By constructing a sequence of approximate solutions that are themselves piecewise constant
with a small number of pieces, the proposed algorithms operate on reduced problems that can
be solved efficiently, and perform only graph cuts on the original graph, which are thus the
remaining bottleneck for further speed-ups. Like all working-set algorithms, the cut pursuit
variants are not competitive if the solution has too many connected level-sets.

In the convex case, cut pursuit outperforms all proximal methods for deblurring images
with simple solutions. For denoising with a ROF energy, it outperforms the parametric maxflow
approach when computing sequences of solutions for different regularization strengths. In
the `0 case, our algorithm can find a better solution in a shorter time than the non-convex
continuous relaxation approach as well as the approach based on α-expansions. Furthermore,
while the performance of the latter hinges critically on setting an appropriate number of level-
sets in advance, cut pursuit needs no such parametrization.

Future developments will consider the case of Lovász extensions of other symmetric sub-
modular functions [4] and to the multivariate case. It would also be interesting to determine
the conditions under which the alternating scheme presented in E.1 provides a globally optimal
solution of (13), as it would be a necessary step in order to prove approximation guarantees
to the solution of `0-cut pursuit itself.

Acknowlegment. The authors would like to thank Jalal Fadili for useful comments on an
early draft of the paper. This work was partly supported by ANR project Semapolis ANR-13-
CORD-0003.

32 L. LANDRIEU AND G. OBOZINSKI

REFERENCES

[1] G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-Besson, Image segmentation using active
contours: calculus of variations or shape gradients?, SIAM Journal on Applied Mathematics, 63
(2003), pp. 2128–2154.

[2] F. Bach, Learning with submodular functions: a convex optimization perspective, Foundations and Trends
in Machine Learning, 6 (2013), pp. 145–373.

[3] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing penalties,
Foundations and Trends in Machine Learning, 4 (2012), pp. 1–106.

[4] F. R. Bach, Shaping level sets with submodular functions, in Advances in Neural Information Processing
Systems, 2011, pp. 10–18.

[5] L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati, R. Mohieddine, N. Sochen, and L. A.
Vese, Mumford and Shah model and its applications to image segmentation and image restoration,
in Handbook of Mathematical Methods in Imaging, Springer, 2011, pp. 1095–1157.

[6] R. Bellman, A note on cluster analysis and dynamic programming, Mathematical Biosciences, 18 (1973),
pp. 311–312.

[7] K. Bleakley and J.-P. Vert, The group fused Lasso for multiple change-point detection, arXiv preprint
arXiv:1106.4199, (2011).

[8] J. Borwein and A. S. Lewis, Convex analysis and nonlinear optimization: theory and examples,
Springer Science & Business Media, 2010.

[9] Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for
energy minimization in vision., IEEE Transactions on Pattern Analysis and Machine Intelligence, 26
(2004), pp. 1124–1137.

[10] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), pp. 1222–1239.

[11] X. Bresson, S. Esedoḡlu, P. Vandergheynst, J.-P. Thiran, and S. Osher, Fast global mini-
mization of the active contour/snake model, Journal of Mathematical Imaging and Vision, 28 (2007),
pp. 151–167.

[12] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An introduction to total
variation for image analysis, in Theoretical foundations and numerical methods for sparse recovery,
De Gruyter, 2010, pp. 263–340.

[13] A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric
maximum flows, International Journal of Computer Vision, 84 (2009), pp. 288–307.

[14] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), pp. 120–145.

[15] T. Chan, S. Esedoḡlu, F. Park, and A. Yip, Recent developments in total variation image restoration,
in Mathematical Models of Computer Vision, Springer Verlag, 2005, pp. 17–31.

[16] T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing,
10 (2001), pp. 266–277.

[17] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, The convex geometry of linear
inverse problems, Foundations of Computational mathematics, 12 (2012), pp. 805–849.

[18] S. Chen, C. F. Cowan, and P. M. Grant, Orthogonal least squares learning algorithm for radial basis
function networks, IEEE Transactions on Neural Networks, 2 (1991), pp. 302–309.

[19] L. Condat, A direct algorithm for 1D total variation denoising, IEEE Signal Processing Letters, 20
(2013), pp. 1054–1057.

[20] W. Dinkelbach, On nonlinear fractional programming, Management Science, 13 (1967), pp. 492–498.
[21] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., Least angle regression, The Annals of

statistics, 32 (2004), pp. 407–499.
[22] M. Efroymson, Multiple regression analysis, Mathematical methods for digital computers, 1 (1960),

pp. 191–203.
[23] N. El-Zehiry and L. Grady, Discrete optimization of the multiphase piecewise constant Mumford-Shah

functional, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer,
2011, pp. 233–246.

[24] N. El-Zehiry, P. Sahoo, and A. Elmaghraby, Combinatorial optimization of the piecewise constant

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 33

Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation,
Image and Vision Computing, 29 (2011), pp. 365–381.

[25] N. Y. El-Zehiry and A. Elmaghraby, Brain MRI tissue classification using graph cut optimization of
the Mumford–Shah functional, in Proceedings of the International Vision Conference of New Zealand,
2007, pp. 321–326.

[26] J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via
coordinate descent, Journal of Statistical Software, 33 (2010), pp. 1–22.

[27] B. Fulkerson, A. Vedaldi, and S. Soatto, Class segmentation and object localization with superpixel
neighborhoods, in Proceedings of the International Conference on Computer Vision, IEEE, October
2009, pp. 670–677.

[28] N. Fusco, An overview of the Mumford-Shah problem, Milan Journal of Mathematics, 71 (2003), pp. 95–
119.

[29] D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, 14 (1992), pp. 367–383.

[30] D. Goldfarb and W. Yin, Parametric maximum flow algorithms for fast total variation minimization,
SIAM Journal on Scientific Computing, 31 (2009), pp. 3712–3743.

[31] Z. Harchaoui, A. Juditsky, and A. Nemirovski, Conditional gradient algorithms for norm-
regularized smooth convex optimization, Mathematical Programming, 152 (2015), pp. 75–112.

[32] H. Ishikawa, Exact optimization for Markov random fields with convex priors, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25 (2003), pp. 1333–1336.

[33] M. Jaggi, Revisiting Frank-Wolfe: projection-free sparse convex optimization, in Proceedings of the 30th
International Conference on Machine Learning, 2013, pp. 427–435.

[34] S. Jegelka, F. Bach, and S. Sra, Reflection methods for user-friendly submodular optimization, in
Advances in Neural Information Processing Systems, 2013, pp. 1313–1321.

[35] N. A. Johnson, A dynamic programming algorithm for the fused lasso and `0-segmentation, Journal of
Computational and Graphical Statistics, 22 (2013), pp. 246–260.

[36] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of
Computer Vision, 1 (1988), pp. 321–331.

[37] P. Kohli and P. H. Torr, Efficiently solving dynamic Markov random fields using graph cuts, in
International Conference on Computer Vision (ICCV), vol. 2, IEEE, 2005, pp. 922–929.

[38] V. Kolmogorov, T. Pock, and M. Rolinek, Total variation on a tree, SIAM Journal on Imaging
Sciences, 9 (2016), pp. 605–636.

[39] V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts?, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26 (2004), pp. 147–159.

[40] J. J. Kormylo and J. M. Mendel, Maximum likelihood detection and estimation of Bernoulli-Gaussian
processes, IEEE Transactions on Information Theory, 28 (1982), pp. 482–488.

[41] K. Kumar and F. Bach, Active-set methods for submodular optimization, arXiv preprint
arXiv:1506.02852, (2015).

[42] Y. G. Leclerc, Constructing simple stable descriptions for image partitioning, International journal of
computer vision, 3 (1989), pp. 73–102.

[43] G. P. Leonardi and I. Tamanini, On minimizing partitions with infinitely many components, Annali
dell’Università di Ferrara, 44 (1998), pp. 41–57.

[44] D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, Journal
of Mathematical Imaging and Vision, 51 (2014), pp. 311–325.

[45] S. Mallat and Z. Zhang, Adaptive time-frequency decomposition with matching pursuits, in Time-
Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium, IEEE,
1992, pp. 7–10.

[46] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated vari-
ational problems, Communications on pure and applied mathematics, 42 (1989), pp. 577–685.

[47] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples, Applied and Computational Harmonic Analysis, 26 (2009), pp. 301–321.

[48] S. Negahban, B. Yu, M. J. Wainwright, and P. K. Ravikumar, A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers, in Advances in Neural Informa-
tion Processing Systems, 2009, pp. 1348–1356.

34 L. LANDRIEU AND G. OBOZINSKI

[49] Y. Nesterov, Gradient methods for minimizing composite objective function, tech. report, Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2007.

[50] F. Nielsen and R. Nock, Optimal interval clustering: Application to Bregman clustering and statistical
mixture learning, Signal Processing Letters, 21 (2014), pp. 1289–1292.

[51] M. Nikolova, M. K. Ng, and C.-P. Tam, Fast nonconvex nonsmooth minimization methods for image
restoration and reconstruction, IEEE Transactions on Image Processing, 19 (2010), pp. 3073–3088.

[52] G. Obozinski, B. Taskar, and M. Jordan, Multi-task feature selection, Statistics Department, UC
Berkeley, Technical report 743, (2006).

[53] P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, On iteratively reweighted algorithms for nonsmooth
nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8 (2015), pp. 331–372.

[54] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), pp. 12–49.

[55] J.-C. Picard and H. D. Ratliff, Minimum cuts and related problems, Networks, 5 (1975), pp. 357–370.
[56] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex

optimization, in Proceeding of the International Conference on Computer Vision (ICCV), IEEE, 2011,
pp. 1762–1769.

[57] H. Raguet, J. Fadili, and G. Peyré, A generalized forward-backward splitting, SIAM Journal on
Imaging Sciences, 6 (2013), pp. 1199–1226.

[58] H. Raguet and L. Landrieu, Preconditioning of a generalized forward-backward splitting and applica-
tion to optimization on graphs, SIAM Journal on Imaging Sciences, 8 (2015), pp. 2706–2739.

[59] N. Rao, P. Shah, and S. Wright, Forward–backward greedy algorithms for atomic norm regularization,
IEEE Transactions on Signal Processing, 63 (2015), pp. 5798–5811.

[60] R. T. Rockafellar, Convex analysis, Princeton University Press, 1970.
[61] V. Roth and B. Fischer, The group-lasso for generalized linear models: uniqueness of solutions and

efficient algorithms, in Proceedings of the 25th international conference on Machine learning, ACM,
2008, pp. 848–855.

[62] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Physica D: Nonlinear Phenomena, 60 (1992), pp. 259 – 268, https://doi.org/http://dx.doi.org/10.
1016/0167-2789(92)90242-F, http://www.sciencedirect.com/science/article/pii/016727899290242F.

[63] L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Transactions on
Nuclear Science, 21 (1974), pp. 21–43.

[64] C. Soussen, J. Idier, D. Brie, and J. Duan, From Bernoulli–Gaussian deconvolution to sparse signal
restoration, IEEE Transactions on Signal Processing, 59 (2011), pp. 4572–4584.

[65] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,
and C. Rother, A comparative study of energy minimization methods for Markov random fields, in
Proceeding of the European Conference in Computer Vision (ECCV), Springer, 2006, pp. 16–29.

[66] I. Tamanini and G. Congedo, Optimal segmentation of unbounded functions, Rendiconti del Seminario
Matematico della Università di Padova, 95 (1996), pp. 153–174.

[67] Y.-H. R. Tsai and S. Osher, Total variation and level set methods in image science, Acta Numerica,
14 (2005), pp. 509–573.

[68] L. A. Vese and T. F. Chan, A multiphase level set framework for image segmentation using the
Mumford and Shah model, International Journal of Computer Vision, 50 (2002), pp. 271–293.

[69] Y.-X. Wang, J. Sharpnack, A. Smola, and R. J. Tibshirani, Trend filtering on graphs, Journal of
Machine Learning Research, 17 (2016), pp. 1–41.

[70] T. Zhang, Adaptive forward-backward greedy algorithm for sparse learning with linear models, in Advances
in Neural Information Processing Systems, 2009, pp. 1921–1928.

[71] H. Zou, The adaptive lasso and its oracle properties, Journal of the American Statistical Association,
101 (2006), pp. 1418–1429.

https://doi.org/http://dx.doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://www.sciencedirect.com/science/article/pii/016727899290242F

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 35

Appendix A. The total variation as an atomic gauge. It is well known that the total
variation is the Lovász extension of the submodular function F : B 7→ w(B,Bc) [2, chap. 6.2].
The base polytope associated with F is the set BF

.
= {s ∈ Rn | s(B) ≤ F (B), B ⊂ V, s(V) =

F (V)}, where s(B)
.
=
∑

i∈B si. For any submodular function F such that F (∅) = F (V) = 0,
which is true in particular for all symmetric submodular functions, the Lovász extension γF is
a gauge function which is the support function13 of BF : γF (x) = maxs∈BF 〈s, x〉 and its polar
gauge is the gauge of BF [4]. The total variation is thus a gauge function and its polar gauge
is TV◦ with

TV◦(s) =

 max
∅(B(V

s(B)

w(B,Bc)
if s(V) = 0

+∞ else.

Chandrasekaran et al. [17] have recently introduced the concept of atomic gauge. Given a
closed set A ⊂ Rn whose elements are called atoms, the associated atomic gauge is the gauge
γA of the convex hull CA of A ∪ {0}, i.e. γA(x)

.
= inf{t |x ∈ t CA}. The polar gauge is the

support function of A ∪ {0}, that is γ◦A(s) = supa∈A∪{0}〈a, s〉. Given that A ⊂ Rn, using
Caratheodory’s theorem, we have that

γA(x) = inf
{∑

a∈A ca | ∀a ∈ A, ca ≥ 0,
∑

a∈A ca a = x
}
.

Regularizing with an atomic gauge thus favors solutions that are sparse combinations of
atoms, which motivated the use of algorithms that exploit the sparsity of the solution com-
putationally [33, 59]. It is clear from previous definitions that Lovász extensions are atomic
gauges. In particular the total variation is the atomic gauge associated with the set of atoms
A =

{
w(B,Bc)−11B + µ1V

}
B/∈{∅,V }, µ∈R or equivalently the set A′ =

{
1
2w(B,Bc)−1(1B −

1Bc) + µ′1V
}
B/∈{∅,V }, µ′∈R. Expressing solutions to problem regularized with the total varia-

tion as combinations of set indicators or cuts as we propose to do in this paper is thus very
natural from this perspective.

For the total variation, the Frank-Wolfe direction associated to s = −∇f(x) such that
〈s,1V 〉 = 0 is

(9) arg max
ξ:TV(ξ)≤1

〈s, ξ〉 = arg max
1B :B/∈{∅,V }

1

w(B,Bc)
〈s,1B〉,

since the maximizer is necessarily an extreme point of the set {ξ | TV(ξ) ≤ 1} and therefore
among the atoms.

Appendix B. Proof of Propositions 1 and 3.

Proposition 1. For x ∈ Rn, if we set S = S(x) then

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

13See [60] for definitions of gauge, polar gauge and support function of a set.

36 L. LANDRIEU AND G. OBOZINSKI

Proof. For B ⊂ V we have that Q′(x,1B) = 〈∇QS(x),1B〉 + supε∈∂TV|Sc(x)〈ε,1B〉. This
can be shown using the chain rule for subgradients that we have:

∂TV|Sc(x) =
{

1
2D

ᵀδ | δS = 0, ‖δSc‖∞ ≤ 1, ∀(i, j) ∈ E, δij = −δji
}
,

with D ∈ R2m×n the matrix whose only non-zero entries are D(i,j),i = wij and D(i,j),j = −wij
for all (i, j) ∈ E, and with the notations δS ∈ R2m and δSc ∈ R2m for the vectors whose entries
are equal to those of δ respectively on S and Sc and equal to zero otherwise.

Therefore if ε = 1
2D

ᵀδSc then

〈ε,1B〉 = 〈12δSc , D1B〉 =
1

2

∑
(i,j)∈Sc

δijwij([1B]i − [1B]j).

The supremum is reached for δij = sign([1B]i−[1B]j) for (i, j) ∈ Sc, so that sup
ε∈∂TV|Sc(x)

〈ε,1B〉 =

wSc(B,Bc).
For the second statement, we have that

Q′(x, uB) = 〈∇QS(x), uB〉+ sup
ε∈∂TV|Sc(x)

〈ε, uB〉.

Letting g = ∇QS(x), and since 〈∇f,1〉 = 0, we have 〈g,1〉 = 0. Consequently 〈g,1Bc〉 =
〈g,1− 1B〉 = −〈g,1B〉, and we have:

〈g, uB〉 = γB〈g,1B〉 − γBc〈g,1Bc〉 = (γB+γBc)〈g,1B〉.

Similarly, 〈ε, uB〉 = 〈12δSc , DuB〉 = 1
2γB〈δSc , D1B〉− 1

2γBc〈δSc , D1Bc〉 = 1
2(γB+γBc)〈δSc , D1B〉

because D1B = −D1Bc . Taking the supremum over ε then proves the result.

Proposition 3. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and

Q′(x,1V) = 0.

Proof. (⇒) If x is the solution of problem (1), the directional derivative of Q along
any direction must be nonnegative, which implies that Q′(x,1B) ≥ 0 for all B. But since
minB⊂V Q

′(x,1B) ≤ Q′(x,1∅) = 0, this proves the first part. Then since w(V,∅) = 0 we
have Q′(x,1V) = 〈∇QS(x),1V 〉, and, in fact, since all elements of the subgradient of TV|Sc

are orthogonal to 1V we also have Q′(x,−1V) = −〈∇QS(x),1V 〉. So 0 ≤ Q′(x,−1V) =
−Q′(x,1V) ≤ 0.

(⇐) Conversely we assume that minB⊂V Q
′(x,1B) = 0 and Q′(x,1V) = 0.

Since Q′(x,1V) = 0 and since wSc(V,∅) = 0 we have 〈∇QS(x),1V 〉 = 0. Now, for any set
A which is a maximal connected component of G|Sc

.
= (V, Sc), we also have wSc(A,Ac) =

0 so that 0 ≤ Q′(x,1A) = 〈∇QS(x),1A〉 but the same holds for the complement Ac and
〈∇QS(x),1A〉+ 〈∇QS(x),1Ac〉 = 〈∇QS(x),1V 〉 = 0 so that 〈∇QS(x),1A〉 = 0.

As a consequence the capacities of the graph Gflow defined in (6) of the article are such
that, for any set A which is a maximal connected component of G|Sc , we have∑

i∈∇+∩A
csi =

∑
i∈∇−∩A

cit.(10)

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 37

Then since Q′(x,1∅) = 0 and since minB⊂V Q
′(x,1B) = 0 it is a minimizing argument.

The characterization of the steepest partition as a minimal cut then guarantees that there
exists a minimal cut in Gflow which does not cut any edge in Sc and isolates the source or the
sink from the rest of the graph. Given equality (10), the set of minimal cuts are the cuts that
remove indifferently for each maximal connected component A either all edges {(s, i)}i∈A or
the edges {(i, t)}i∈A.

A consequence of the max-flow/min-cut duality is that to this cut corresponds a maximal
flow e ∈ R2m in Gflow. This flow is such that it is saturated at the minimal cut, and we thus
have esi = csi for all i ∈ ∇+ and eit = cit for all i ∈ ∇−, again because of equation (10).

Writing flow conservation yields{
esi +

∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇+

−eit +
∑

j∈Ni
(eji − eij) = 0 ∀i ∈ ∇−,

(11)

with Ni = {j|(i, j) ∈ Sc}.
By replacing esi and eit by their value, the flow conservation (11) at node i rewrites

∇iQS(x) +
∑
j∈Ni

λwijδij = 0

∇iQS(x) +
1

2

∑
j∈Ni

λwij (δij − δji) = 0,(12)

with δij =
eji−eij
λwij

for (i, j) ∈ Sc(x) and δij = δji = 0 for all edges (i, j) ∈ S(x). The
flow e must respect the capacity at all edges and hence 0 ≤ eij ≤ cij = λwij for all edges
in Sc(x). Since the flow is maximal, only one of eij or eji is non zero. Hence δ we naturally
have δij = −δji, and |δij | ≤ 1. But we can rewrite (12) as ∇QS(x) = 1

2λD
ᵀδ with δS = 0

and ‖δSc‖ ≤ 1 with D as in the characterization of the subgradient of TV|Sc which shows that
− 1
λ∇QS(x) ∈ ∂TV|Sc(x) thus that 0 ∈ ∂Q(x), and finally that x minimizes Q.

Remark: We proved Proposition 3 using directly the flow formulation and the simplest
possible arguments. It is also possible to prove the result more directly using more abstract
results. We actually used the fact that x is a minimum of Q if and only if, for S = S(x),
− 1
λ∇QS(x) ∈ ∂TV|Sc(x). But it is possible to give another representation of ∂TV|Sc(x)

using that the subgradient of a gauge γ at x is ∂γ(x) = {s | 〈x, s〉 = γ(x), γ◦(s) ≤ 1}.
Indeed, for γ = TV, the set {γ◦(s) ≤ 1} is simply the submodular polytope PF of F : B 7→
w(B,Bc). As a result ∂TV|Sc(x) = {s ∈ Rn | 〈s, x〉 = 1, ∀B, s(B) ≤ wSc(B,B)}. But
having that minB⊂V 〈∇QS(x),1B〉 + λwSc(B,Bc) = 0 is equivalent to having − 1

λ∇QS(x) ∈
{s ∈ Rn | ∀B, s(B) ≤ wSc(B,B)}. There thus just remains to show that 〈∇QS(x), x〉 =
TV(x). Let ΠS denote the set of maximal connected components of G|Sc = (V, Sc), so that
we have x =

∑
A∈ΠS

cA1A. Since wSc(V,∅) = 0, we have 0 = Q′(x,1V) = 〈∇QS(x), 1V 〉.
Similarly for A ∈ ΠS , we have wSc(A,Ac) = 0, which entails that 〈∇QS(x), 1A〉 ≥ 0. But
then −〈∇QS(x), 1A〉 = 〈∇QS(x), 1Ac〉 ≥ 0 also, which proves 〈∇QS(x), 1A〉 = 0. Finally by
linearity 〈∇QS(x), x〉 =

∑
A∈ΠS

cA〈∇QS(x), 1A〉 = 0 = TV|Sc(x) which proves the result.

38 L. LANDRIEU AND G. OBOZINSKI

Appendix C. Theoretical results for cut pursuit with a non-convex function f .
This appendix discusses how the propositions of Section 2 can be extended to the case of

non-convex functions f .
It relies on the fact that notions of directional derivative and subgradient can be extended

to non-convex functions. This presents some difficulties in general and different definitions of
directional derivatives and subgradient have been introduced by Dini, by Clarke, and by Michel
and Penot [8, Chap. 6.1]. These extended subgradients do not behave like usual subgradients
in general and some of the rules of the calculus of subgradient are no longer valid. Fortunately,
for so-called regular functions, that is functions for which the Dini, Clarke and Michel-Penot
subgradient all coincide, the usual subgradient calculus applies [8, Chap. 6.2]. In particular,
a function Q = f + g with f strictly differentiable14 and g convex is regular at any point x of
the interior of its domain and ∂Q(x) = ∇f(x) + ∂g(x), where ∂· denotes here the generalized
subgradient for regular function (that coincides with the usual subgradient if the function is
convex). This is in particular true for g = TV. As a consequence, the proof of Propositions 1
and 2 only require f to be strictly differentiable. Similarly, Proposition 3 no longer holds as
stated because the first order subgradient condition is not sufficient for optimality, but we still
have

Proposition 7. For Q = f + TV with f strictly differentiable, 0 ∈ ∂Q(x) if and only if
minB⊂V Q

′(x,1B) = 0 and Q′(x,1V) = 0.

Proof. Since f is strictly differentiable, Q is regular so that the usual subgradient calculus
applies and the proof is the same as that of Proposition 3.

If f is non-convex, solving the subproblem on the reduced graph is more difficult, even
if only a local minimum is sought. To extend Algorithm 1 to the non-convex setting, it
seems appropriate to assume that reoptimizing on the reduced graph (at the end of the main
loop) yields a vector xΠt which is a local minimum of the reduced objective and such that
Q(xΠt) < Q(xΠt−1).

With that modification Proposition 4 remains true, and instead of Proposition 5, we have
that the algorithm converges in a finite number of iterations to a point x∗, which is a local
minimum of Q in the subspace span(Π) and satisfies 0 ∈ ∂Q(x∗). This is not sufficient in
general for x∗ to be a minimum of Q. However, if T (x∗) denotes the tangent cone of Q
at x∗, that is T (x∗) := {h ∈ Rn | Q′(x∗, h) = 0} (since there are no directions such that
Q′(x∗, h) < 0), and if ∇2f(x∗) denotes the Hessian of f at x∗ then, by standard arguments,
the condition ∀h ∈ T (x∗), 〈h,∇2f(x∗)h〉 > 0 is sufficient to guarantee that x∗ is a local
minimum of Q.

Appendix D. Computation of the Frank-Wolfe direction. The computation of the
Frank-Wolfe direction defined in (9) requires to optimize a ratio of combinatorial functions.
More precisely, it requires to solve

max
B/∈{∅,V }

N(B)

D(B)
with N(B)

.
= −〈∇f(x),1B〉, and D(B)

.
= w(B,Bc).

14f is strictly differentiable at x if there exists ϕ ∈ Rn such that ∀h ∈ Rn, limy→x,t↓0
f(y+th)−f(y)

t
= 〈ϕ, h〉.

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 39

Given that B 7→ N(B)
D(B) it is the ratio of a supermodular function (in fact a modular function)

and a nonnegative submodular function, it can be maximized efficiently by Algorithm 7 as
proved in Proposition 8.

Algorithm 7 Computation of
maxAN(A)/D(A)

Initialization: λ0 = 1, λ−1 = 0, t = 0
while λt 6= λt−1 do
St ← Arg maxA⊂V N(A)− λtD(A)
At ← arg minA⊂St D(A)

λt+1 ← N(At)
D(At)

t← t+ 1
end while
return At

Proposition 8. The sequence (λt)t generated by Algorithm 7 is monotonically increasing and
converges in a finite number of iterations to max∅(A⊂V

N(A)
D(A) .

Proof. As the maximum of a finite number non-increasing linear functions of a scalar
argument, the function ϕ : λ 7→ maxA⊂V

[
N(A) − λD(A)

]
is a non-increasing, continuous,

piecewise linear convex function. It is also non negative because N(∅) − λD(∅) = 0. It is
immediate to check that λ∗ := min{λ | ϕ(λ) = 0} = max∅(A⊂V

N(A)
D(A) . At each iteration, if

ϕ(λt) 6= 0, we must have λt+1 > λt, because the function λ 7→ N(At) − λD(At) is strictly
positive for λ = λt and equal to 0 for λ = λt+1. Moreover by construction, the sets At are all
distinct, as long as ϕ(λt) 6= 0. As a consequence we must reach ϕ(λT) = 0 after a finite number
of iterations T . At the end of the algorithm, ϕ(λT) = 0 entails that ∀A ⊂ V, N(A) ≤ λTD(A),
which entails that for all A 6= ∅, D(A)−1N(A) ≤ λT = D(AT−1)−1N(AT−1). This shows that
λT = max∅(A⊂V

N(A)
D(A) . This concludes the proof. The choice of taking the maximizer with

smallest value of D(A) on line 4 of the algorithm is not key to convergence of the algorithm,
but aims at computing the right-derivative which maximizes the step size in λ.

Note that this algorithm is closely related to the algorithm of [20] to maximize a ratio of
functions, and in fact applies to any functions N and D; but the minimization of the function
(A 7→ λD(A)−N(A)) can be done in polynomial here because, since D and N are respectively
sub- and super-modular, their difference is submodular. Moreover, when D is submodular and
N is modular, the number of iterations may be bounded by d, because the algorithm may be
reinterpreted as the divide-and-conquer algorithm to maximise submodular functions over the
submodular polytope [2, p. 160] (for the general case, it may only be bounded in general by
2d).

Appendix E. Details of the derivation, technical elements and proofs for `0 cut pursuit.

E.1. Splitting step. Since in Section 3.1.1 the problem of finding an optimal binary cut
of the component Aj is decoupled from the same problem on other components and leads to
formulation (8), we discuss the splitting step for the case of the optimal binary cut of the

40 L. LANDRIEU AND G. OBOZINSKI

initial component V .
In the same way that we defined the steepest binary cut in cut pursuit for the convex

formulation, we define the optimal binary partition (B,Bc) of V such that Q optimized over
span(1B,1Bc) is as small as possible. Ideally, we should impose that B and Bc have a single
connected component each, because as argued in section 2.3, it does not make sense to impose
that xi should have the same values in different connected components. However, since this
constraint is too difficult to enforce, we first ignore it and address it later with post-processing
described in Section E.1.3. Note however that the penalization of the perimeter of the boundary
between B and Bc should strongly discourage the choice of sets B with many connected
components.

E.1.1. Optimal binary cut with alternating minimization. Since Γ(h1B + h′1Bc) =
Γ(1B) = w(B,Bc), and ignoring the connectedness constraint, the corresponding optimization
problem is of the form

(13) min
B⊂V

min
h,h′∈R

∑
i∈B

fi(h) +
∑
i∈Bc

fi(h
′) + λw(B,Bc).

This problem is a priori hard to solve in general, because B 7→ minh,h′∈R f(h1B + h′1Bc) is
not a submodular function. However, when h, h′ are fixed, the assumption that f is separable
entails that B 7→ f(h1B+h′1Bc) is a modular function, so that the objective can be optimized
with respect to B by solving a max-flow problem. Similarly as for the flow problem (6) we
define the flow graph Gflow = (V ∪ {s, t}, Eflow) whose edge set and capacities are defined by:

Eflow =

(s, i), ∀i ∈ ∇+, with csi = fi(h)− fi(h′),
(i, t),∀i ∈ ∇−, with cit = fi(h

′)− fi(h),

(i, j), ∀(i, j) ∈ E, with cij = λwij ,

(14)

where ∇+
.
= {i ∈ V | fi(h) > fi(h

′)} and ∇−
.
= V \∇+.

The regularity and convexity of f with respect to h and h′ guarantee that the objective
can be minimized efficiently with respect to these variables. As suggested by [11] or [24],
ψ(B, h, h′) =

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′) + λw(B,Bc) can be efficiently minimized by alterna-
tively minimizing with respect to B and (h, h′) separately.

E.1.2. Proof of convergence of the alternating minimization scheme. The alternating
scheme used to compute the optimal binary cut provide a local minimum of ψ(B, h, h′) =∑

i∈B fi(h) +
∑

i∈Bc fi(h
′) + λw(B,Bc) with the following assumptions:

• (A0): the functions fi are continuous,
• (A1): the solution of min(h,h′) ψ(h, h′, B) exists and is unique for all sets B
• (A2): the minimizer with respect to B of ψ(hA, h

′
A, B) is unique for all A.

Note that (A1) holds if for example all functions fi are strictly convex. (A2) can be shown to
hold with probability one if fi is appropriately random, for example if fi(·) = (· − xi)2 with
xi drawn i.i.d. from a continuous distribution, which corresponds to our case of interest.

Proposition 9. Assuming that the assumptions (A0), (A1) and (A2) hold, the alternate min-
imization scheme converges in a finite number of iterations to a local minimum of ψ(h, h′, B) in

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 41

the sense that there exists a neighborhood NB of (hB, h
′
B) such that for all (h, h′, A) ∈ NB×2V ,

we have ψ(h, h′, A) ≥ ψ(hB, h
′
B, B).

Proof. Let ψ(B) = minh,h′ ψ(h, h′, B). By construction and with assumption (A1), the
sequence (ψ(Bt))t is strictly decreasing until minimization with respect to either (h, h′) or B
yields no progress, i.e. until a partial minimum with respect to both blocks is attained. Since
the set 2V is finite, the algorithm must converge in a finite number of iterations.

The point B attained must be a local minimum in the sense above: indeed for any set A
different than B, we must have φ(hB, h

′
B, B) < φ(hB, h

′
B, A) because the algorithm stopped

(which excludes φ(hB, h
′
B, B) > φ(hB, h

′
B, A)) and because an equality is excluded by (A2).

But then by assumption (A0), φ is continuous with respect to (h, h′) so that in a neighborhood
NB of (hB, h

′
B) we must have φ(h, h′, A) sufficiently close to φ(hB, h

′
B, A) for the inequality

characterizing a local minimum to hold.

E.1.3. From binary cut to partition in connected components. Like the working set
algorithm proposed for the total variation, `0-cut pursuit recursively splits the components of
the current partition Π. The sets B and Bc obtained as a solution of (13) are not necessarily
connected sets, but splitting B and Bc into their connected components and assigning each
connected component its own value obviously does not change the contour perimeter Γ and
can only decrease f . Given the collection of connected components A1, . . . , Ak of B and Bc

we therefore set x = h11A1 + . . . + hk1Ak
with hj the minimizer of h 7→

∑
i∈Aj

fi(h). Note
that each hi could possibly be computed in parallel given the separability of f .

E.2. Implementation. As in the convex case, `0-cut pursuit maintains a current partition
Π that is recursively split and computes optimal values for each of its components. It is
comprised of three main steps: the splitting of the current partition, the computation of the
connected components and their values, and a potential merging step, when necessary.

E.2.1. Splitting. For each component an optimal binary partition (B,Bc) is obtained by
solving (13) as described in section E.1.1: we alternatively minimize the objective with respect
to B and with respect to (h, h′) until either B does not change or a maximum number of
iterations is reached. In practice, the algorithm converges in 3 steps most of the time. The
choice of an appropriate initialization for B is non-trivial. Since the problem in which λ = 0
is often simpler, and can in a number of cases be solved analytically, we chose to use that
solution to initialize our alternating minimization scheme. Indeed, for λ = 0, and when f is a
squared Euclidean distance f : x 7→ ‖x−x0‖22 the objective of (13) is the same as the objective
of one-dimensional k-means with k = 2; in this particular setting, the problem reduces to a
change-point analysis problem, and an exact solution can be computed efficiently by dynamic
programming [6]. This can be generalized to the case of Bregman divergences and beyond [50].

As described in section E.1.3, the partition Π is updated by computing its connected com-
ponents after it is split by (B,Bc). Subroutine 2 gives the procedure algorithmically.
It is important to note that this is the only operation that involves the original graph G, and
hence will be the computational bottleneck of the algorithm. Fortunately since f is separable,
this procedure can be performed on each component in parallel.

42 L. LANDRIEU AND G. OBOZINSKI

E.2.2. Simple merge.. This backward step consists of checking for each neighboring com-
ponents A and B in Π whether merging them into a single component decreases the energy. If
we denote Π−(A,B) the partition obtained by merging A and B, the corresponding decrease
in energy δ−(A,B) is

δ−(A,B) = f(xΠ)− f(xΠ−(A,B)) + λw(A,B),

with Π−(A,B)
.
= Π \ {A,B} ∪ {A ∪B}.

The exact implementation of the while loop described in Algorithm 5 is in fact based on a
priority-queue. The value δ−(A,B) is computed for each neighboring components, and stored
in the priority queue. Each pair that provides a nonnegative decrease is merged, and δ− is
updated for the neighbors of A and B to reflect the change in value and graph topology. This
operation scales with the size of the reduced graph only, and therefore can be performed effi-
ciently for problems in which the partition Π does not get too large.

E.2.3. Merge-resplit.. This more complex backward step, already described in 3.1.3 is
significantly computationally more intensive as it is performed on the edges of the full graph,
by contrast with the simple merge which only considers the edges of the reduced graph. As a
consequence, while all potential simple merge steps can be precomputed and performed based
on a priority queue by merging first the pair of components yielding the largest decrease in
objective value, it would be too computationally heavy in the merge-resplit case and we thus
perform boundary changes only once for each pair of neighbors in the graph E . The pseudocode
of the procedure is detailed in subroutine 4

E.2.4. Other algorithmic variants. We discuss here the relevance of constructing more
greedy algorithms and of variants to tackle the problem in which the total boundary size is
constrained instead of penalized.

It would have been theoretically possible to implement a more greedy version of `0 cut
pursuit in which one performs a single forward step (corresponding to splitting a single region)
at a time or a single backward step at a time by maintaining a global priority queue and one
greedily chooses the most beneficial, but the overhead costs would have been prohibitive.

The `0 cut pursuit algorithms constructed in Section 3 is a greedy algorithm to solve
a formulation in which the total boundary size is penalized and not constrained. It is worth
pointing out that trying to solve directly the constrained case seems difficult: indeed, designing
algorithms that are only based on forward steps (e.g., in the style of OMP, OLS, etc) might
not succeed, because of the dependence between the cuts that need to be introduced to form
the final solution. Based on similar ideas as the ones used in `0-cut pursuit, we designed and
tested an algorithm generalizing the FoBa algorithm [70]. The obtained algorithm tended to
remain trapped in bad local minima and yielded solutions that were much worse than the ones
based on the penalized formulation.

E.3. Convergence to a local minimum of the generalized MP problem. We now prove
the local optimality of the solution provided by Algorithm 5.

Proposition 10. If assumption (A0) holds, then the `0 cut pursuit algorithm provides in a

CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 43

finite number of iterations a partition Π = (A1, · · · , An) such that xΠ
.
= arg minz∈span(Π)Q(z)

is a local minimum of Q.

Proof. The fact that f is separable ensures that xΠ can be minimized separately over each
connected component. We denote xAi ∈ arg minz

∑
i∈Ai

fi(z).
We denote Πt the partition at iteration t, and xtΠ the associated solution. We first prove

that the sequenceQ(xtΠ) is strictly decreasing. Indeed if the stopping criterion for the algorithm
is not met, then there exists at least one component Aj which is not saturated, i.e. such
that there exists a binary partitions B (Aj such that minh,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′) +
λw(B,Bc) <

∑
i∈Aj

fi(xAj). Consequently this component will be split in the next partition
to yield a strict decrease of the objective function Q, at least equal to the one provided by the
minimizing arguments (h, h′). Since the set of all partition is a finite set, the algorithm stops
in a finite number of steps. We now prove that the partition Π attained when the algorithm
stops is such that the corresponding variable xΠ is a local minimum of Q. Let E be the set of
pairs of adjacent components of Π. We can assume that xA 6= xB for any (A,B) ∈ E . If it
is not the case we replace Π by the partition in which such components are merged, without
changing xΠ. Consequently there exists δ1 > 0 such that |xA − xB| > δ1 for any (A,B) ∈ E .

As all edge weights are assumed strictly non negative we have that wmin = min(i,j)∈E wi,j >
0. Since (A0) states that f is continuous, there exists an Euclidean ball centered at xΠ and of
radius δ2 in which all elements are strictly greater than f(xΠ)−min(i,j)∈E wi,j .

We now prove by contradiction that xΠ is a local minimum of Q. Let x′ be an element
of the euclidian ball B centered at xΠ and of radius min(1

3δ1, δ2) such that Q(x′) < Q(xΠ).
We can first recognize that since the values of xΠ associated to each connected component
differs by at least δ, x′ cannot have two connected components of Π sharing a common value.
Consequently the boundary perimeter can only increase Γ(x′) ≥ Γ(xΠ).

If we first assume that Γ(x′) = Γ(xΠ), then x′ must be piecewise constant with respect
to Π, and be such that f(x′) < f(xΠ), which is a contradiction with the definition of xΠ.
We must then assume that Γ(x′) > Γ(x). Since the smallest increment in Γ is wmin, we have
Γ(x′) ≥ Γ(x)+wmin. Since the radius of B is smaller than δ2, we have that f(x) ≥ f(xΠ)−wmin,
and consequently Q(xΠ) ≥ Q(x), which is a contradiction.

44 L. LANDRIEU AND G. OBOZINSKI

Appendix F. CRF formulation and number of quantization levels. In this appendix, we
report the performance of `0-cut pursuit and α-expansions for different numbers of quantization
levels for denoising an image. The regularization strentgh is chosen by cross-validation to
maximize the PSNR.

The fact that `0-CPm does not rely on an a priori quantized level leads to overall good
performance, with significantly faster computation times. By contrast, the running time for
the α-expansions based algorithms has a complexity which empirically grows linearly with the
number of classes, and the performance whether measured in terms of the original objective
or in PSNR does not increase monotonically as a function of the number of classes.

Plotting the corresponding PSNRs in Figure 14 shows that the smaller local minima of
the objective found correlate well with gains in PSNR, and that the corresponding gains can
be quite substantial as illustrated as well in Table 13. The fact that the level of performance
for CRF is highly sensitive to the exact number of classes is a shortcoming of the method,
especially given its computational cost. We note that for the set of chosen images, the different
versions of `0-cut pursuit produced results that were almost identical when compared to α-
expansion’s, and only the results of `0-CPm are plotted in Figure 14.

0 10 20 30 40
0.24

0.25

0.26

0.27

0.28

quantization levels

Q
t/
Q

0

0 10 20 30 40
0

10

20

30

quantization levels

co
nv

er
ge
nc

e
ti
m
e

0 10 20 30 40
15

20

25

30

35

quantization levels

P
SN

R

0 10 20 30 40
0.125

0.13

0.135

0.14

0.145

0.15

quantization levels

Q
t/
Q

0

0 10 20 30 40
0

5

10

15

20

quantization levels

co
nv

er
ge
nc
e
ti
m
e

0 10 20 30 40
15

20

25

30

35

40

quantization levels

P
SN

R

CRF `0-CPm noisy image

Figure 14: Behavior of the α-expansion based algorithm on CRF formulations for
different number of quantization levels for the phantom (top) and the simulated data
(bottom) averaged on 10 denoising experiments: (left) ratio between the energy Q at conver-
gence and the energy at time 0, (middle) running time, (right) corresponding PSNRs. The two
algorithms represented are α-expansions (CRF) for a varying number of quantization levels
and `0-CPm.

	Introduction
	Notations
	General problem considered
	Problem formulation
	Decomposition on a partition

	Related work

	A working set algorithm for total variation regularization
	Steepest binary cut
	Induced new partition in connected sets and new reduced problem
	A reduced graph for the reduced problem
	Solving linear inverse problems with TV
	Complexity analysis
	Regularization path of the total variation
	Numerical experiments: deblurring with TV
	Competing methods
	Results

	Numerical experiments: approximate TV regularization path
	Competing methods
	Results

	Generalized minimal partition
	A greedy algorithm for generalized minimal partition
	Forward step
	Saturated sets
	Backward steps
	The 0 cut pursuit algorithm

	Numerical experiments: denoising with 0 cut pursuit
	Competing methods
	Results

	Conclusion
	Appendix A. The total variation as an atomic gauge
	Appendix B. Proof of Propositions 1 and 3
	Appendix C. Theoretical results for cut pursuit with a non-convex function f
	Appendix D. Computation of the Frank-Wolfe direction
	Appendix E. Details of the derivation, technical elements and proofs for 0 cut pursuit
	Splitting step
	Optimal binary cut with alternating minimization
	Proof of convergence of the alternating minimization scheme
	From binary cut to partition in connected components

	Implementation
	Splitting
	Simple merge.
	Merge-resplit.
	Other algorithmic variants

	Convergence to a local minimum of the generalized MP problem

	Appendix F. CRF formulation and number of quantization levels

