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Cut pursuit: fast algorithms to learn piecewise constant functions on general1
weighted graphs∗2

Loic Landrieu ‡† and Guillaume Obozinski ‡3
4

Abstract. We propose working-set/greedy algorithms to efficiently solve problems penalized respectively by the5
total variation on a general weighted graph and its `0 counterpart the total level-set boundary size6
when the piecewise constant solutions have a small number of distinct level-sets; this is typically7
the case when the total level-set boundary size is small, which is encouraged by these two forms8
of penalization. Our algorithms exploit this structure by recursively splitting the level-sets of a9
piecewise-constant candidate solution using graph cuts. We obtain significant speed-ups over state-10
of-the-art algorithms for images that are well approximated with few level-sets.11

Key words. working-set, total variation, sparsity, Mumford-Shah, greedy algorithm12
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1. Introduction. Estimation or approximation with piecewise constant functions has many14
applications in image and signal processing, machine learning and statistics. In particular, the15
assumption that natural images are well modeled by functions whose total variation is bounded16
motivates its use as a regularizer, which leads to piecewise constant images for discrete approx-17
imations. Moreover a number of models used in medical imaging [25] assume directly piecewise18
constant images. More generally, piecewise constant models can be used for compression, for19
their interpretability and finally because they are typically adaptive to the local regularity20
of the function approximated [69]. Piecewise constant functions display a form of structured21
sparsity since their gradient is sparse.22

Both convex and non-convex formulations have been proposed to learn functions with23
sparse gradients. The most famous being the formulation of [62], hereafter referred to as ROF,24
which proposed to minimize the total variation subject to constraints of approximation of25
the noisy signal in the least squares sense, as well as the formulation of Mumford and Shah26
[46], which proposed to penalize the total perimeter of discontinuities of piecewise smooth27
functions. A fairly large literature is devoted to these formulations mainly in the fields of28
image processing and optimization. Although the connection between the total variation, the29
Mumford-Shah energy and graph cuts is today well-established, algorithms that leverage this30
connection are relatively recent. In particular for ROF, [13, 30] use the fact that the problem31
can be formulated as a parametric max-flow. [23] use graph cuts to solve the formulation of32
Mumford and Shah for the case of two constant components.33

The literature on sparsity in computational statistics and machine learning has shown how34
the sparsity of the solution sought can be exploited to design algorithms which use parsimo-35
nious computations to solve the corresponding large-scale optimization problem with significant36
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2 L. LANDRIEU AND G. OBOZINSKI

speed-ups [3]. Our work is motivated by the fact that this has to the best of our knowledge37
not been fully leveraged to estimate and optimize with piecewise constant functions. In the38
convex case, the algorithms proposed to exploit sparsity are working set1 algorithms and the39
related (fully corrective) Frank-Wolfe algorithm [31]. In the non-convex case, forward selection40
algorithms such as OMP, FoBa and others have been proposed [45, 47, 70]2.41

It is well understood that algorithms for the convex and non-convex cases are in fact fairly42
related. In particular, for a given type of sparsity, the forward step of working set methods,43
Frank-Wolfe and greedy algorithm is typically the same, and followed by the resolution of a44
reduced problem.45

Given their similarity, we explore in this paper both greedy and working set strategies. The46
working set approach is used to solve optimization problems regularized by the total variation47
while the greedy strategy solves problems penalized by the boundary size for piecewise constant48
functions. In the convex case, our algorithms do not apply only to the cases in which the49
data fitting term is the MSE or a separable smooth convex function, for which some efficient50
algorithms implicitly exploiting sparsity exist [13, 2, 41], but also to a general smooth convex51
term. Our algorithms are very competitive for deblurring and are applicable to the estimation52
of piecewise constant functions on general weighted graphs.53

1.1. Notations. Let G = (V,E,w) be an unoriented weighted graph whose edge set is of54
cardinality m and V = [1, · · · , n]. For convenience of notations and proofs, we encode the55
undirected graph G, as a directed graph with for each pair of connected nodes a directed edge56
in each direction. Thus E denotes a collection of couples (i, j) of nodes, with (i, j) ∈ E if57
and only if (j, i) ∈ E. We also have w ∈ R2m and wij = wji. For a set of nodes A ⊂ V we58
denote 1A the vector of {0, 1}n such that [1A]i = 1 if and only if i ∈ A. For F ⊂ E a subset of59
edges we denote w(F ) =

∑
(i,j)∈F wij . By extension, for two subsets A and B of V we denote60

w(A,B) = w
(
(A×B)∩E

)
the weight of the boundary between those two subsets. Finally we61

denote C the set of all partitions of V into connected components.62

1.2. General problem considered.63

1.2.1. Problem formulation. In this work we consider the problem of minimizing func-64
tions Q of the form f(x) + λΦ(x) with f : Rn → R convex and differentiable, and Φ : Rn → R65
a penalty function that decomposes as Φ(x) =

∑
(i,j)∈E wij φ(xi − xj) with φ : R → R+ a66

sparsity-inducing function such that φ(0) = 0. The general problem writes minx∈Rn Q(x)67
with68

(1) Q(x)
.
= f (x) +

λ

2

∑
(i,j)∈E

wij φ(xi − xj).69

1We distinguish working set algorithms (aka column generation algorithm) that maintain an expansion of
the solution which may have zero coefficients from active set algorithms that maintain an expansion using only
non-zero coefficients and discard all other directions (or variables). This distinction can also be understood in
the dual, where working set algorithms (which are dually cutting plane algorithms) maintain a superset of the
active constraints, while active set algorithms maintain the exact set of active constraints.

2Proximal methods that perform soft-thresholding or the non-convex IHT methods maintain sparse solu-
tions, but typically need to update a full dimensional vector at each iteration, which is why we do not cite
them here. They blend however very well with active set algorithms.
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Energies of this form were first introduced by [29] for image regularization, and are widely70
used for their inducing spatial regularity as well as preserving discontinuities. In this paper,71
we consider the case φ equal to the absolute value, which corresponds to the total variation72
(denoted TV), and the case φ equal to one minus the Kronecker delta at 0, which leads to the73
total boundary size penalty for piecewise constant functions. For these functions, the solution74
x? of (1) has a sparse gradient {x?i − x?j | (i, j) ∈ E}. As a consequence, these solutions are75
constant on the elements of a certain partition of V that is typically coarse, i.e. such that has76
much fewer elements than |V |. We therefore reformulate the problem for candidate solutions77
that have that property. We define the support of a vector x ∈ Rn as the set S(x) of edges78
supporting its gradients79

(2) S(x)
.
= {(i, j) ∈ E | xi 6= xj},80

and we will use Sc(x)
.
= E\S(x) for the set on which the gradients are zero.81

1.2.2. Decomposition on a partition. Any x ∈ Rn can be written as x =
∑k

i=1 ci1Ai82
with Π = {A1, · · · , Ak} ∈ C a partition of V into k connected components and c ∈ Rk.83
Conversely we say that x can be expressed by partition Π = (A1, · · · , Ak) if it is in the set84
span(Π) = span(1A1 , · · · ,1Ak

) = {
∑k

i=1 ci1Ai | c ∈ Rk}. We denote85

(3) xΠ
.
= arg min

z∈span(Π)
Q(z),86

the solution of (1) when x is constrained to be in span(Π). Assuming that the regularization87
strength is such that the solution x? decomposes over a coarse partition, and that the con-88
strained problem (3) is easy to solve for such a partition, problem (1) boils down to finding an89
optimal partition Π?:90

(4) Π? .
= arg min

Π∈C
Q(xΠ).91

An additional motivation to consider a sequence of partitions and solve sequentially problems92
with x constrained to span(Π) is that the vectors of the form w(B,Bc)−11B are extreme points93
of the set {x|TV(x) ≤ 1}. In fact, the total variation is an atomic gauge in the sense of [17]94
and the vectors of the form w(B,Bc)−11B are among the atoms of the gauge. We do not95
develop this more abstract point of view in the paper, but provide a discussion in Appendix A.96

Before presenting our approach we review some of the main relevant ideas in the related97
literature.98

1.3. Related work. [46] describe an image as simple if it can be expressed as a piecewise-99
smooth function with few and small discontinuities, that is if the space can partitioned in a100
finite number regions with short contours and such that the image varies smoothly in each of101
these regions.102

Given an observed noisy image modeled as a function J : Ω → R whose domain Ω is103
an open, bounded and connected subset of R2, and assuming J ∈ L∞, Mumford and Shah104
propose to obtain a denoised version I of the image via the minimization of an energy which105
we can write as106

(MS)
∫

Ω

(
I(x)− J(x)

)2
dx+ µ

∫
Ω\Γ
‖∇I(x)‖2 dx+ λH1(Γ),107
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4 L. LANDRIEU AND G. OBOZINSKI

where µ and λ are two nonnegative regularization coefficients. It is composed of three terms: a108
fidelity term quantifying the distortion between I and J , a term measuring the smoothness of I109
outside of a one-dimensional set of discontinuities Γ, and finally the one-dimensional Hausdorff110
measure of this set H1(Γ). David Mumford and Jayant Shah conjectured that this problem111
admitted a solution (I∗,Γ∗) such that I∗ was continuously differentiable on a finite number k112
of open sets Ri with Γ∗ = Ω\

⋃
iRi a one dimensional set consisting of points connected by113

rectifiable arcs.114
In subsequent formalisations of the Mumford-Shah problem, I is constrained to the set115

C1(Ω\Γ) of continuously differentiable functions on Ω\Γ, where Γ is a closed set of Hausdorff116
dimension 1. Ennio De Giorgi proposed a relaxed Mumford-Shah problem in which I is117
constrained to the set SBV(R2) of special bounded total variation functions and Γ = SI is the118
jump set of I (for detailed presentations of the different formulations of the Mumford-Shah119
problem and their connections, see [28, 5]). When µ → ∞, the smoothness term forces I to120
be constant on the connected components of Ω\Γ.121

If the number k of regions Ri (also called phases) on which I is constant is fixed to k, the122
corresponding problem is referred to as the piecewise constant Mumford-Shah problem and can123
be reformulated as:124

(PC-MS) min
Γ,I

k∑
i=1

∫
Ri

(
Ii − J(x)

)2
dx+ λH1(Γ),125

with Ii the constant value of I on Ri and Ω = R1 ∪ . . . Rk ∪ Γ. Note that when k is fixed, the126
sets Ri are not necessarily connected sets. Note that both (MS) and (PC-MS) extend naturally127
to d-dimensional images by replacing H1 by the d− 1-dimensional Hausdorff measure Hd−1.128

The setting in which k = 2 is known as the Chan-Vese problem and was first approached129
algorithmically using active contour methods [36, 1]. [16] propose a level-set based method for130
the binary case, which has the advantage of foregoing edges and gradient completely, as they131
are typically very sensitive to noise. This method has since been extended to the so called132
multiphase setting where the number of phases, that is of level-sets of the function, is a power133
of two [68]. The resolution of those problems is substantially sped up by the introduction of134
graph-cut methods, for the binary phase [25] and in the multiphase setting [23].135

Clearly, a counterpart of (PC-MS) in which the number of phases is not set a priori (and136
can possibly be infinite) is also of interest. It has been introduced in the discrete setting by137
[42] and has been studied in the continuous setting using the theory of Caccioppoli partitions138
[66, 43].139

Independently of the work of Mumford and Shah, [62] proposed the idea that the class of140
functions with bounded variation is a good model for images, and relied on this idea to motivate141
the minimization of the total variation under MSE approximation constraint as an approach142
for image denoising. The introduction of the total variation had a lasting impact in imaging143
sciences and was used for various tasks including denoising, deblurring and segmentation [12].144
The variant3 of the problem of Rudin, Osher and Fatemi (ROF) where the total variation is145
used as a regularizer—corresponding to the proximal problem of the total variation—can be146

3In [62] the TV is minimized under a constraint on the L2 distance between I and J .
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written147

(ROF) min
I∈BV

∫
Ω

(
I(x)− J(x)

)2
dx+ λTV(I),148

where TV is the total variation and BV is the space of functions with bounded total variation.149
In this paper we consider discretized versions of these formulations, in which the function150

takes its value on the node set of a weighted graph G = (V,E,w). Such discretizations are151
for example naturally obtained if an a priori fine grained partition of the space in a collection152
of elementary regions4 is chosen and the image or function I is constrained to be constant153
on each of these regions. The edge set E captures adjacencies between the elements, and the154
weights w the size of the boundary between each pair of regions.155

The ROF problem can be solved very efficiently for chain graphs using dynamic program-156
ming [35] or exploiting the structure of the optimality conditions [19]. See [38] for a broader157
discussion. In the general case, a first approach is to consider explicitly the set of edges pre-158
senting discontinuities and iteratively update this set using calculus of variations based on the159
Euler-Lagrange equations [1]. This class of methods is known as active contours. The level-160
sets approach [54, 67] takes an opposite point of view and defines the discontinuity set as the161
zero set of an auxiliary function. This allows for an indirect and continuous handling of the162
evolution of the curve, thereby avoiding complications associated to making discrete changes163
in the structure of the contours. In the recent literature, problems regularized with the total164
variation are typically solved using proximal splitting algorithms [14, 57].165

Some of the connections between graph-cuts and the total variation were already known166
in [55] but some of these connections have been only fully exploited recently, when [13] and167
[30] among others, exploited the fact that the ROF model can be reformulated as a para-168
metric maximum flow problem, which, in these papers, is moreover shown to be solved by a169
divide-and-conquer strategy: This algorithm entails to solve a sequence of max-flow problems170
on the same graph, and the algorithm makes it possible to efficiently reuse partial computa-171
tions performed in each max-flow problem with a push-relabel algorithm. These results on172
the total variation are actually an instance of results that apply more generally to submodular173
functions [2]. Indeed, the intimate relation existing between the total variation and graph-cuts174
is due fundamentally to the fact that the former is the Lovász extension of the value of the175
cut, which is a submodular function. Beyond the case of the total variation, [4] considers regu-176
larizers that are obtained as Lovász extensions of symmetric submodular functions and recent177
progress made on the efficient optimization of submodular functions produces simultaneously178
new fast algorithms to compute proximal operators of the Lovász extension of submodular179
function [41, 34].180

In the discrete setting, problems regularized by the total variation or the total boundary181
size are also related to the Potts model. Indeed, if the values of the level-set are quantized, the182
corresponding energy to minimize is that of a discrete valued conditional random field (CRF),183
with as many values as there are quantization levels [32, 67]. A number of optimization184
techniques exist for CRFs [65]. One of the fastest is the α-expansion algorithm of [10], which185
relies on graph-cut algorithms [9].186

4In the context of images these could be though of as super-pixels, for example.
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6 L. LANDRIEU AND G. OBOZINSKI

In the literature on sparsity, a number of algorithms have been proposed to take advantage187
computationally of the sparsity of the solution. In the convex setting, these algorithms include188
homotopy algorithms such as the LARS [21] or working set algorithms [52, 61, 26]. It should189
be noted that the Frank-Wolfe algorithm [33], which has been revived and regained popular-190
ity in recent years, is closely-related to working set methods and also provides a rationale to191
algorithmically exploit the sparsity of solution of optimization problems. Although originally192
designed to solve constrained optimization problems, [31] have shown how a variant can be nat-193
urally constructed for the regularized setting, and can be applied to the case of total variation194
regularization. The counterparts of these algorithms in the `0 setting are (a) greedy forward195
selection approaches that compute a sequence of candidate solutions by iteratively decreasing196
the sparsity of the candidate solutions, such as orthogonal matching pursuit [45], orthogonal197
least squares [18] and related algorithms [47], (b) forward-backward selection approaches such198
as the Single Best Replacement (SBR) algorithm [64], based on an `0 penalization or the FoBa199
algorithm [70], which add backwards steps to remove previously introduced variables that are200
no longer relevant. See [3] for a review. [2] proposes a number of algorithms to minimize sub-201
modular functions, compute the associated proximal operators of the corresponding Lovász202
extensions. In particular, generic primal and dual active set algorithms are proposed to solve203
a linear regression problem regularized with the Lovász extension of a submodular function [2,204
Chap. 7.12].205

2. A working set algorithm for total variation regularization. In this section, we consider206
the problem of solving the minimization of a convex, differentiable function f regularized207
by a weighted total variation of the form TV(x) = 1

2

∑
(i,j)∈E wij |xi − xj | with wij some208

nonnegative weights5.209
Based on the considerations of Section 1.2.2, we propose a working set algorithm which210

alternates between solving a reduced problem of the form minx∈span(Π)Q(x) for Q(x) = f(x)+211
λTV(x), and refining the partition Π. In Section 2.3, we will discuss how to solve the reduced212
problem efficiently, but first we present a criterion for refining the partition Π.213

2.1. Steepest binary cut. Given a current partition Π and the solution of the associated214
reduced problem xΠ = arg minx∈span(Π)Q(x), our goal is to compute a finer partition Πnew215
leading to the largest possible decrease of Q. To this end we consider updates of x of the216
form xΠ + huB with uB = γB1B − γBc1Bc for some set B ⊂ V and some scalars h, γB and217
γBc such that ‖uB‖2 =1. We postpone to Section 2.2 the precise discussion of how the choice218
of B leads to a new partition and focus first on a rationale for choosing B, but essentially,219
introducing uB in the expansion of x will lead to a new partition in which the elements of Π220
are split along the boundary between B and Bc. A natural criterion is to choose the set B221
such that uB is a descent direction which is as steep as possible, in the sense that Q decreases222
the most, at first order. We denote Q′(x, v) = limh→0 h

−1(Q(x + hv) − Q(x)) so that, when223
d ∈ Rn is a unit vector, Q′(x, d) denotes the directional derivative of Q at x ∈ Rn in the224
direction d. Consequently, choosing B for which the direction uB is steepest requires solving225
minB⊂V Q

′(xΠ, uB).226

5In particular, this is the form taken by the anisotropic total variation for images if the weights are deter-
mined by the Cauchy-Crofton formula (see e.g. [30]).
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To further characterize Q′ we decompose the objective function: Since the absolute value
is differentiable on R∗, setting S

.
= S(xΠ) allows us to split Q into two parts QS and TV|Sc

which are respectively differentiable and non-differentiable at xΠ:{
QS(x)

.
= f(x) + λ

2

∑
(i,j)∈S wij |xi − xj |,

TV|Sc(x)
.
= λ

2

∑
(i,j)∈Sc wij |xi − xj |.

TV|Sc is a weighted total variation on the graphG but with weights wSc such that [wSc ]i,j
.
= wij227

for (i, j) ∈ Sc and 0 for (i, j) ∈ S. We extend the previous notations and define wSc(A,B)
.
=228

wSc(A×B) = w((A×B) ∩ Sc).229

Proposition 1. For x ∈ Rn, if we set S = S(x) then the directional derivative in the direction
of 1B is

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. See Appendix B.230

Considering the case x = xΠ, then for S = S(xΠ), ∇f(xΠ) is clearly orthogonal to span(Π)
and thus to 1V . Therefore, by the previous proposition, finding the steepest descent direction
of the form uB requires solving

min
B⊂V

(γB + γBc)Q′(xΠ,1B)

To keep a formulation which remains amenable to efficient computations, we will ignore the231
factor6 γB + γBc . This leads us to define a steepest binary cut as any cut (BΠ, B

c
Π) such that232

(5) BΠ ∈ arg min
B⊂V

〈∇QS(xΠ),1B〉+λwSc(B,Bc).233

Note that since Q′(x,1∅) = 0, we have minB⊂V Q
′(x,1B) ≤ 0. If ∅ is a solution to (5), we234

set BΠ = ∅. As formulated, it is well-known, at least since [55], that problem (5) can be235
interpreted as a minimum cut problem in a suitably defined flow graph.236

Indeed consider the graph Gflow = (V ∪ {s, t}, Eflow) illustrated in Figure 1, where s and237
t are respectively a source and sink nodes, and where the edge set Eflow and the associated238
nonzero (undirected) capacities c ∈ R|Sc|+n are defined as follows239

Eflow =


(s, i), ∀i ∈ ∇+, with csi = ∇iQS(x) ,

(i, t),∀i ∈ ∇−, with cit = −∇iQS(x) ,

(i, j), ∀(i, j) ∈ Sc, with cij = λwij ,

(6)240

6γB and γBc could otherwise be determined by requiring that 〈1V , uB〉 = 0. More rigorously, descent
directions considered could be required to be orthogonal to span(Π), but this leads to even less tractable
formulations, that we therefore do not consider here.
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8 L. LANDRIEU AND G. OBOZINSKI

where∇+
.
= {i ∈ V | ∇iQS(x) > 0} and∇−

.
= V \∇+. The vector∇QS(x) is directly computed241

as ∇QS(x) = ∇f(x) + 1
2λD

>y, with D ∈ R2m×n the weighted edge incidence matrix whose242
entries are equal to D(i,j),k

.
= wij(1{i=k} − 1{j=k}) and y ∈ R2m is the vector whose entries243

are indexed by the elements of E and such that y(i,j)
.
= sign(xi−xj) with the convention that244

sign(0) = 0. As stated in the next proposition, finding a minimal cut in this graph provides

s

t

i

j
λwij

∂QS(x)
∂xi

−∂QS(x)
∂xi

nodes in ∇−
nodes in ∇+

edge in Sc

Figure 1: Directed graph for which finding a maximal flow is equivalent to solving (5). Neigh-
boring nodes with different values of x in the original graph are linked by an undirected edge
with capacity λwij , nodes with non-negative gradient are linked to the source, and nodes with
negative gradient to the sink with capacity |∇QS(x)|.

245
us with the desired steepest binary cut.246

Proposition 2. Let S = S(x) then (C, Vflow\C) is a minimal cut in Gflow if and only if247
C\{s}, and its complement in V are minimizers of B 7→ Q′(x,1B).248

This result is a well-know result which was first discussed in [55]. We refer the reader to [39]249
for a proof.250

Note that the min-cut/max-flow problem of Figure 1 decouples on each of the connected
components of the graph G|Sc

.
= (V, Sc) and that as a result solving (5) is equivalent to solving

separately
min
C⊂A
〈∇QS(xΠ), 1C〉+ λw(C,A\C)

for each set A that is a connected components of G|Sc . The binary steepest cut thus actually251
reduces to computing a steep cut in each connected component of the graph, and they can all252
be computed in parallel. Let us insist that the connected components of G|Sc are often but253
not always the elements of Π since they can be unions of adjacent elements of Π when they254
share the same value.255
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We can now characterize the optimality of xΠ or of the corresponding partition Π, based256
on the value of the steepest binary partition:257

Proposition 3. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and258

Q′(x,1V ) = 0.259

Proof. See Appendix B260

Note that the rationale we propose to choose the new direction 1B is different than the one261
typically used for working-set algorithms in the sparsity literature and variants of Frank-Wolfe.262
When considering the minimization of an objective of the form f(x)+λΩ(x), where f : Rn → R263
is a differentiable function and Ω is a norm, the optimality condition in terms of subgradient264
is − 1

λ∇f(x) ∈ ∂Ω(x), where ∂Ω(x) is the subgradient of the norm Ω at x. A classical result265
from convex analysis is that ∂Ω(x) = {s ∈ Rn | 〈s, x〉 = Ω(x) and Ω◦(s) ≤ 1} where Ω◦266
denotes the dual norm [60, Thm. 23.5]. In particular, the subgradient condition is not satisfied267
if Ω◦(−∇f(x)) ≥ λ and since Ω◦(s) = maxΩ(ξ)≤1〈s, ξ〉 then argmaxΩ(ξ)≤1〈−∇f(x), ξ〉 provides268
a direction in which the inequality constraint is most violated. This direction is the same269
as the Frank-Wolfe direction for the optimization problem minx:Ω(x)≤κ f(x), also the same270
as the direction proposed in a variant of the Frank-Wolfe algorithm proposed by [31] for the271
regularized problem, and again the same as the direction that would be used in the primal272
active set algorithm of [2, Chap. 7.12] for generic Lovász extensions of submodular function,273
which is essentially a fully corrective and active-set version of the algorithm of [31]. This274
rationale extends to the case where Ω is more generally a gauge and is most relevant when it275
is an atomic norm or gauge [17], which we discuss in Appendix A. For decomposable atomic276
norms [48] that have atoms of equal Euclidean norm, one can check that the steepest descent277
direction that we propose and the Franck-Wolfe direction are actually the same. However,278
for the total variation the two differ. The Frank-Wolfe direction leads to the choice B? =279
arg maxB⊂V −w(B,Bc)−1〈∇f(xΠ),1B〉. We show in Section 2.7 and via results presented in280
Figure 6 that using the steepest cut direction outperforms the Frank-Wolfe direction.281

2.2. Induced new partition in connected sets and new reduced problem. For Π =282
(A1, · · · , Ak), BΠ is chosen so that the addition of a term of the form huB = hγB1B−hγBc1Bc283
to x =

∑k
i=1 ci1Ai decreases the objective function Q the most. At the next iteration, we could284

thus consider solving a reduced problem that consists of minimizing Q under the constraint285
that x ∈ span(1A1 , . . . ,1Ak

,1B) with B = BΠ. But there is in fact a simpler and more286
relevant choice. Indeed, on the set span(1A1 , . . . ,1Ak

,1B), the values xi1 , xi2 , xi3 and xi4 with287
i1∈Aj ∩B, i2∈Aj ∩Bc, i3∈Aj′∩B and i4∈Aj′∩Bc are a priori coupled; also, if Aj ∩B has288
several connected components i 7→ xi must take the same value on these components. These289
constraints seem unnecessarily restrictive.290

Consider SΠ
.
=
⋃

(A,A′)∈Π2 ∂(A,A′) with ∂(A,A′)
.
= (A × A′) ∩ E. With the notion of291

support S(x) that we defined in (2) we actually have span(Π) = {x ∈ Rn | S(x) ⊂ SΠ}.292
Now, if x ∈ span(1A1 , . . . ,1Ak

,1B), we have in general S(x) ⊂ Snew
.
= SΠ ∪ ∂(B,Bc), which293

corresponds to allowing a larger support. But then it makes sense to allow x to remain in the294
largest set with this maximal support Snew, that is equivalent to staying in the vector space295
XSnew

.
= {x′ | S(x′) ⊂ Snew}. But, if we now define Πnew as the partition of V defined as296

the collection of all connected components in G of all sets Aj ∩ BΠ and Aj ∩ Bc
Π for Aj ∈ Π,297
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10 L. LANDRIEU AND G. OBOZINSKI

then it is relatively immediate that span(Πnew) = XSnew . The construction of Πnew from Π is298
illustrated in Figure 2.

A1 A2

(a) Initial partition
Π = {A1, A2}

B

B

(b) Steepest binary
cut B

A1 A2

A3 A4

A5

(c) Πnew =
{A1, A2, A3, A4, A5}

Figure 2: Illustration of the induced new partition. From an initial partition Π, the steepest
binary cut B induced a new partition Πnew. The solid line represent the initial contours
S, and the dashed line the new contours Snew\S introduced by B. Note that the binary
partition induced by B can more than double the number of resulting components.

299
We therefore set Πnew to be the new partition and solve the reduced problem constrained300

to span(Πnew). Note that in general we do not have S(xΠ) = SΠ, because the total variation301
regularization can induce that the value of xΠ on several adjacent elements of Π is the same.302
The following result shows that if a non-trivial cut (BΠ, B

c
Π) was obtained as a solution to303

(5) then the new reduced problem has a solution xΠnew = arg minx∈span(Πnew)Q(x) which is304
strictly better than the previous one.305

Proposition 4. If BΠ 6= ∅, Q(xΠnew) < Q(xΠ).306

Proof. We clearly have

span(Π) ⊂ span(1A1 , . . . ,1Ak
,1BΠ

) ⊂ span(Πnew),

so that
Q(xΠnew) = min

x∈span(Πnew)
Q(x) ≤ min

x∈span(Π)
Q(x) = Q(xΠ).

Moreover, if BΠ 6= 0, then Q′(xΠ,1B) < 0, which entails that there exists ε > 0 such that307
Q(xΠnew) ≤ Q(xΠ + ε1B) < Q(xΠ). This completes the proof.308

We summarize the obtained working set scheme as Algorithm 1, and illustrate its two first309
steps on a ROF problem in Figure 3. The following proposition provides a formal proof of310
convergence.311

Proposition 5. The scheme presented in Algorithm 1 converges to the a global minimum x?312
of Q in a finite a finite amount of steps bounded by n.313
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Algorithm 1 Cut pursuit
Initialize Π← {V }, xΠ ∈ arg minc∈R Q(c1V ), S ← ∅
while minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc) < 0 do
Pick BΠ ∈ arg minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc)
Π← {BΠ ∩A}A∈Π ∪ {Bc

Π ∩A}A∈Π

Π← connected components of elements of Π
Pick xΠ ∈ arg minz∈span(Π)Q(z)
S ← S(xΠ)

end while
return (Π, xΠ)

(a) (b) (c) (d) (e)

Figure 3: Two first iterations of cut pursuit for the ROF problem on the picture in (a). Images
(b) and (d) represent the new cut at iterations 1 and 2 with BΠ and Bc

Π respectively in black
and white, and (c) and (e) represent the partial solution in levels of gray, with the current set
of contours S in red. The contours induced by the cut in (b) (resp. (d)) are superimposed on
(c) (resp. (e)).

Proof. At the beginning of each iteration, if minB⊂V Q
′(xΠ,1B) < 0 then the steepest314

binary partition is not trivial, that is BΠ 6= ∅. Consequently the new partition Πnew will have315
at least one more component than Π, and Proposition 4 states that the solution associated316
with Πnew will be strictly better than xΠ. This ensures that the objective function is strictly317
decreasing along iterations of the algorithm. If minB⊂V Q

′(xΠ,1B) = 0, then Proposition 3318
ensures that optimality is reached, because for each value of Π, by construction xΠ is such that319
Q′(xΠ, 1V ) = 0. Since the number of components of Π is strictly increasing and bounded by320
n, the algorithm converges in at most n steps, in the worst case scenario. Provided that each321
constrained problem xΠ ∈ arg minz∈span(Π)Q(z) is solved exactly in finite time, this proves322
that xΠ converges to the optimum x?. In the next section we discuss how to exploit the323
sparse structure of xΠ to solve the reduced problem efficiently.324

Case of a non-convex function f . We assumed in all this section that f is a differ-325
entiable convex function. However, from a theoretical point of view, a number of results still326
hold even if f is non-convex provided it is assumed strictly differentiable in the sense of [8,327
Chapter 6.2], or more simply if f is assumed to be continuously differentiable, since continuous328
differentiability implies strict differentiability. Indeed, it can be shown in that case that the329
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12 L. LANDRIEU AND G. OBOZINSKI

calculations on subgradient and directional derivative that prove our results are still valid for330
such a function f for an appropriate generalization of the subgradient. As discussed in more331
details in Appendix C, Propositions 1 and 2 then still hold. In the non-convex case, Algo-332
rithm 1 has to be modified since it is no longer reasonable to assume that a global optimum333
can be found when solving the reduced problem (3), and we could assume instead that the334
solver called on the reduced problem finds a local optimum which strictly reduces the value of335
the objective. In the previous sections, proofs of Proposition 3 and Proposition 5 essentially336
showed that some first order subgradient conditions hold and relied on the fact that first order337
subgradient conditions are sufficient characterize minima of convex functions. For non-convex338
functions, the same first order subgradient conditions still hold (although they are no longer339
sufficient to characterize global minima) and these proposition can be extended, but new suf-340
ficient conditions are needed to guarantee that the algorithm converge to a local minimum of341
the objective (see the appendix for details).342

From a practical point of view, we however do not recommend to use the algorithm for343
non-convex functions, because the low dimensional constraints of the active set algorithm could344
lead to find very suboptimal local minima of the function. Instead, we would recommend when345
possible to use majorization-minimization (MM) algorithms, based on convex upper bounds346
of f . For instance, it is of interest to be able to solve problem (1) for non-convex functions347
φ and in particular so-called concave penalties such as MCP, SCAD and others; for these348
formulations, MM schemes requiring to solve a sequence of TV are efficient ([53]) and can be349
advantageously combined with cut pursuit, since the latter will leverage the partition of the350
previous iterate as a warm-start for the next iteration. This is the scheme we use in Section 3.2.351

2.3. A reduced graph for the reduced problem. Let Π be a coarse partition of V into352
connected components. We argue that minz∈span(Π)Q(z) can be solved efficiently on a smaller353
weighted graph whose nodes are associated with the elements of partition Π, and whose edges354
correspond to pairs of adjacent elements in the original graph. Indeed, consider the graph355
G = (V, E) with V = Π and E = {(A,B) ∈ V2 | ∃(i, j) ∈ (A×B) ∩ E}. Figure 4 shows an356
example of graph reduction on a small graph. For x ∈ span(Π) we can indeed express TV(x)357
simply:358

Proposition 6. For x =
∑

A∈Π cA1A we have TV(x)=TVG(c) with

TVG(c)
.
=

1

2

∑
(A,B)∈E

w(A,B) |cA − cB|.

Proof.

2TV(x) =
∑

(i,j)∈E

wij |xi − xj | =
∑

(i,j)∈E

wij
∑

(A,B)∈Π2

1{i∈A,j∈B} |cA − cB|359

=
∑

(A,B)∈Π2

|cA − cB|
∑

(i,j)∈E∩(A×B)

wij ,360

hence the result using the definition of w(A,B).361

Note that if TV is the total variation associated with the weighted graph G with weights362
(wij)(i,j)∈E then TVG is the total variation associated with the weighted graph G and the363
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node of V

edge of E
node of V
edge of E

n1

n2

n3

n4

n5

1

2

1

2

3

1
3 5

{n1} {n2,n3} {n3,n4}

Figure 4: Example of reduced graph. Left: graph G with weights (wij)(i,j)∈E on the edges,
middle: partition Π of G into connected components, right: reduced graph G with weights
(wAB)(A,B)∈E on the edges.

weights
(
w(A,B)

)
(A,B)∈E . Denoting f̃ : c 7→ f(

∑
A∈Π cA1A), the reduced problem is equivalent364

to solving minc∈Rk f̃(c) + λTVG(c) on G. If Π is a coarse partition, we have |E| � 2m and365
computations involving TVG are much cheaper than those involving TV. As illustrated in366
Section 2.4, the structure of f̃ can often be exploited as well to reduce the computational cost367
on the reduced problem. The construction of the reduced graph itself G is cheap compared368
to the speed-ups allowed, as it is obtained by computing the connected components of the369
graph (V,E\S(x)), which can be done in linear time by depth-first search. Note that once the370
reduced problem is solved, if cΠ ∈ arg minc f̃(c) + λTVG(c), then S(xΠ) is directly computed371
as S(xΠ) =

⋃{
∂(A,A′) | (A,A′) ∈ E , cA 6= cA′

}
.372

2.4. Solving linear inverse problems with TV. A number of classical problems in image373
processing such as deblurring, blind deconvolution, and inpainting are formulated as ill-posed374
linear inverse problems [15], where a low TV prior on the image provides appropriate regular-375
ization. Typically if x0 ∈ Rn is the original signal, H a p× n linear operator, ε additive noise,376
and y = Hx0 + ε ∈ Rp the degraded observed signal, this leads to problems of the form377

x? = arg min
x∈Rn

1

2
‖Hx− y‖2 + λTV(x)(7)378

First order optimization algorithms, such as proximal methods, only require the computation379
of the gradient HᵀHx−Hᵀy of f and can be used to solve (7) efficiently. However the reduced380
problem can be computed orders of magnitude faster provided that the current partition is381
coarse. Indeed, for a k-partition Π of V , we denote K ∈ {0, 1}n×k the matrix whose columns382
are the vectors 1A for A ∈ Π. Any x ∈ span(Π) can be rewritten as Kc with c ∈ Rk and383
the gradient of the discrepancy function with respect to c then writes: ∇c1/2 ‖HKc− y‖2 =384
KᵀHᵀHKc−KᵀHᵀy.385

As a result, the reduced problem can be solved by a similar first-order scheme of much386
smaller size, with parametersKᵀHᵀHK andKᵀHᵀy, which are of size k×k and k respectively.387
Given the sparsity of the matrix K, HK is computed in time O(pn); consequently KᵀHᵀHK388
can be precomputed in O(k2 p + p n) and KᵀHᵀy in O(pn). Solving the reduced problem is389
then very quick provided k is small compared to n.390
In the case of a blur operatorH with adequate symmetry, for which p = n is large, manipulating391
the matrices H or Hᵀ directly should be avoided. However x 7→ Hx being a convolution, it392
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14 L. LANDRIEU AND G. OBOZINSKI

can be computed quickly using the fast Fourier transform and, in that case, KᵀHᵀHK and393
KᵀHy can be precomputed in O(n log n) time.394

2.5. Complexity analysis. The computational bottlenecks of the algorithm could a priori395
be (a) the computation of the steepest binary cut which requires to solve a min cut/max flow396
problem, (b) the cost of solving the reduced problem, (c) the computation of the reduced graph397
itself, (d) the number of global iterations needed.398

(a) The steepest binary cut is obtained as the solution of a max-flow/min-cut optimization399
problem. It is well-known that there is a large discrepancy between the theoretical400
upper bound on the complexity of many graph-cut algorithms and the running times401
observed empirically, the former being too pessimistic. In particular, the algorithm of402
[10] has a theoretical exponential worst case complexity, but scales essentially linearly403
with respect to the graph size in practice. In fact, it is known to scale better than404
some algorithms with polynomial complexity, which is why we chose it.405

(b) Solving the reduced problem can be done with efficient proximal splitting algorithms406
such as [58], which is proved to reach a primal suboptimality gap of ε in O(1/ε2) it-407
erations; in practice, the observed convergence rate is almost linear. Preconditioning408
greatly speeds up convergence in practice. Moreover, the problems induced on the409
reduced graph can typically be solved at a significantly reduced cost: in particular,410
as discussed in section 2.4, for a quadratic data fitting term and H a blurr operator,411
the gradient in the subgraph can be computed in O(k2) time, based on a single ef-412
ficient FFT-based computation of the Hessian per global iteration which itself takes413
O(k2n log n) time. For problems with coarse solutions, this algorithm is only called for414
small graphs so that this step only contributes to a small fraction of the the running415
time.416

(c) Computing the reduced graph, requires computing the connected components of the417
graph obtained when removing the edges in S, and the weights w(A,B) between all418
paris of components (A,B). This can be efficiently performed in O(m+ n) through a419
depth-first exploration of the nodes of the original graph.420

(d) The main factor determining the computation time is the number of global iterations421
needed. In the worst case scenario, this is O(n). In practice, the number of global422
iterations seems to grow logarithmically with the number of constant regions at the423
optimum. If for simple images or strongly regularized natural images 4 or 5 cuts seems424
to suffice, a very complex image with very weak regularization might need many more.425
In the end, our algorithm is only efficient on problems whose solutions do not have too426
many components. E.g. in the deblurring task, it is competitive for solutions with up427
to 10, 000 components for a 512× 512 image.428

2.6. Regularization path of the total variation. Since the regularization coefficient λ is429
difficult to choose a priori, it is typically useful to compute an approximate regularization path,430
that is the collection of solutions to (1) for a set of values λ0 > · · · > λj > 0. For `1 sparsity,431
[21] showed how a fraction of the exact regularization path can be computed in a time of the432
same order of magnitude as the time need to compute of the last point. In general, when433
the path is not piecewise linear, the exact path cannot be computed, but similar results have434
been shown for group sparsity [61, 52]. The case of total variation has been studied as well for435
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1-dimensional signals in [7]. We propose a warm-start approach to compute an approximate7436
solution path for the total variation.437

The rationale behind our approach is that, if λi and λi+1 are close, the associated solutions438
x?i and x

?
i+1 should also be similar, as well as their associated optimal partition, which we will439

refer to as Π?
i and Π?

i+1. Consequently, it is reasonable to use a warm-start technique which440
consists of initializing Algorithm 1 with Π?

i to solve the problem associated with λi+1 and441
to expect that it will converge in a small number of binary cuts. It is important to note442
that while our algorithm lends itself naturally to warm-starts, to the best of our knowledge443
similar warm-start techniques do not exist for proximal splitting approaches such as [57] or444
[14]. Indeed solutions whose primal solutions are close can have vastly different auxiliary/dual445
solutions, and in our experiments no initialization heuristics consistently outperformed a naive446
initialization.447

(a) Original (b) PSNR : 12.1 (c) PSNR : 20.1

(d) Original (e) PSNR : 15.9 (f) PSNR : 27.2

(g) Original (h) PSNR : 23.3 (i) PSNR : 24.5

Figure 5: Benchmark on the deblurring task. Left column: original images, Middle column:
blurred images, Right column: images retrieved by cut pursuit (CP)

2.7. Numerical experiments: deblurring with TV. To assess the performance in terms448
of speed of our working set algorithm for the total variation regularization, we compare it with449

7In fact for a quadratic data fitting term regularized by the total variation, the regularization path is
piecewise linear and could thus in theory computed exactly, with a scheme similar to the LARS algorithm [21].
It should however be expected that this path has many point of discontinuity of the gradient, which entails
that the cost of computation of the whole path is likely to be prohibitively high. We therefore do not consider
further this possibility.
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16 L. LANDRIEU AND G. OBOZINSKI

several state-of-the-art algorithms on a deblurring task of the form presented in section 2.4.450
Specifically, given an image x, we compute y = Hx + ε, where H is a Gaussian blur matrix,451
and ε is some Gaussian additive noise, and we solve (1) with a total variation regularization452
based on the 8-neighborhood graph built on image pixels. We use three 512 × 512 images of453
increasing complexity to benchmark the algorithms: the Shepp-Logan phantom, a simulated454
example, and Lena, all displayed in Figure 5. For all images the standard deviation of the blur455
is set to 5 pixels.456

A C++ implementation of the cut pursuit algorithm is available on the first author’s page8.457

2.7.1. Competing methods.458
Preconditioned Generalized Forward Backward (PGFB). As a general baseline,459

we consider a recent preconditioned generalized forward-backward splitting algorithm by [58]460
whose prior non-preconditioned version was shown to outperform state-of-the art convex op-461
timization on deblurring tasks in [57], including among others the algorithm of [14]. [58]462
demonstrate the advantages of the preconditioning strategy used over other adaptive metric463
approaches, such as the preconditioning proposed in [56] and the inertial acceleration devel-464
oped in [44].465

Accelerated forward-backward with parametric max-flows (FB+). Since efficient al-466
gorithms that solve the ROF problem have been the focus of recent work, and given that the467
ROF problem corresponds to the computation of the proximal operator of the total variation,468
we also compare with an implementation of the accelerated forward-backward algorithm of469
[49]. To compute the proximal operator, we use an efficient solver of the ROF problem based470
on a reformulation as a parametric max-flow proposed by [13]. The solver we use is the one471
made publicly available by the authors, which is based on a divide and conquer approach that472
works through the resolution of a parametric max-flow problem. This implies computing a473
sequence of max-flow problems, whose order make it possible to re-use the search trees in the474
[10] algorithm, thereby greatly speeding up computations.475

Cut pursuit with Frank-Wolfe descent direction (CPFW). We consider an alternative476
to the steepest binary partition to split the existing components of the partial solution: Inspired477
by the conditional gradient algorithm for regularized problems proposed by [31], consider a478
variant of cut pursuit in which we replace the steepest binary cut by the cut (B,Bc) such that479
1B is the Frank-Wolfe direction for the total variation, i.e. minimizing w(B,Bc)−1〈∇f(x),1B〉480
(see the discussion at the end of Section 2.1 and Appendix A). Note that the corresponding481
minimization of a ratio of combinatorial functions can in this setting be done efficiently using482
a slight modification of the algorithm of [20]. See Appendix D for more details. We chose483
not to make direct comparisons with the algorithms of [31] and of [2, Chap. 7.12], since it is484
clear that these algorithms will be outperformed by CPFW. Indeed, these algorithms include485
a single term of the form 1A in the expansion of x at each iteration, while CP and CPFW486
grow much faster the subspace in which x is sought (its dimension typically more than doubles487
at each iteration). This entails that these algorithms must be slower than CPFW, because for488
the former and for the latter, a single iteration requires to compute a Frank-Wolfe step, which489
requires solving several graph-cuts on the whole graph, and, as we discuss in Section 2.7.2 and490

8https://github.com/loicland/cut-pursuit
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illustrate in Figure 7, the cost of graph-cuts already dominates the per iteration cost of CP491
and CPFW.492

Cut pursuit. To implement our algorithm (CP), we solve min-cut problems using the [37]493
solver, which itself is based on [10] and [39]. The problems on the reduced graph are solved494
using the PGFB algorithm. This last choice is motivated by the fact that the preconditioning495
is quite useful as it compensates for the fact that the weights on the reduced graph can be496
quite imbalanced.497
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Figure 6: Relative primal suboptimality gap Qt/Q∞− 1 at time t (in seconds) for differ-
ent algorithms on the deblurring task: accelerated forward backward (FB+), Preconditoned
Generalized Forward Backward (PGFB), Cut pursuit (CP) and a variant using Frank-Wolfe
directions (CPFW), and for different 512 × 512 images and different regularization values:
Shepp-Logan phantom (left), our simulated example (middle) and Lena (right). The marks in
(FB+), (CP) and (CPFW) corresponds to one iteration.
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2.7.2. Results. Figure 6 presents the convergence speed of the different approaches on the498
three test images on a quad-core CPU at 2.4 Ghz. Precisely, we represent the relative primal499
suboptimality gap (Qt−Q∞)/Q∞ where Q∞ is the lowest value obtained by CP in 100 seconds.500
We can see that our algorithm significantly speeds up the direct optimization approach PGFB501
when the solution is sparse, and that it remains competitive in the case of a natural image502
with strong regularization. Indeed since the reduced problems are of a much smaller size than503
the original, our algorithm can perform many more forward-backward iterations in the same504
allotted time.505

The variant of cut pursuit using Frank-Wolfe directions (CPFW) is as efficient over the506
first few iterations but then stagnates. The issue is that the computation of a new Frank-Wolfe507
direction does not take into account the current support S(x) which provides a set of edges508
that are “free”; this means that the algorithm overestimates the cost of adding new boundaries,509
resulting in overly-conservative updates.510

Accelerated forward-backward with parametric max-flow (FB+) is also slower than the cut511
pursuit approach in this setting. This can be explained by the fact that the calls to max-flow512
algorithms, represented by a mark on the curve, are better exploited in the cut pursuit setting.513
Indeed in the forward-backward algorithm, the solutions of parametric max-flow problems514
are exploited by performing one (accelerated) proximal gradient step. By contrast, in the515
cut pursuit setting, the solution of each max-flow problem is used to optimize the reduced516
problem. Since the reduced graph is typically much smaller than the original, a precise solution517
can generally be obtained very quickly, yet providing a significant decrease in the objective518
function. Furthermore, as the graph is split into smaller and smaller independent connected519
components by cut pursuit, the call to the max-flow solver of [10] are increasingly efficient520
because the augmenting paths search trees are prevented from growing too wide, which is the521
main source of computational effort.522

Figure 7 presents the breakdown of computation time for each algorithm over 60 seconds of523
computation. In PGFB, the forward-backward updates naturally dominate the computation524
time, as well as the fast Fourier transform needed to compute the gradient at each iteration.525
In FB+, the computation of the proximal operator of the partial solution through parametric526
maximum flows is by far the costliest. Our approach and CPFW share a similar breakdown527
of computation time as their structures are similar. The maximum flow represents the highest528
cost, with the fast Fourier transform needed to compute KᵀHᵀHK a close second. Finally529
diverse operations such as computing the reduced graph takes a small fraction of the time.530
More interestingly, solving the reduced problem (with the PGFB subroutine of CP) takes531
comparatively very little time (roughly 3%) when this is the only step that actually decreases532
the objective function. This is expected as, even at the last iteration, the reduced graph had533
only 300 components so that the associated problem is solved very rapidly.534

2.8. Numerical experiments: approximate TV regularization path. We now present the535
computation of an approximate regularization path for the ROF minimization, using warm-536
starts as described in Section 2.6. We consider the task of ROF-denoising on three natural537
images presented in Figure 9. For each image we pick 20 values of λ evenly distributed538
logarithmically in the range of parameters inducing from coarse to perfect reconstructions.539
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Figure 7: Time breakdown for the different algorithms over 60 seconds of optimization.

2.8.1. Competing methods. Parametric max-flows (PMF). We use the parametric540
max-flow based ROF solver of [13] to compute each value. In our numerical experiments, it541
was the fastest of all available solvers, and moreover returns an exact solution.542

Cut pursuit (CP). We use the algorithm presented in this paper to separately compute the543
solutions for each parameter value. The algorithm stops when it reaches a relative primal544
suboptimality gap Qt/Q∞−1 of 10−5, with Q∞ the exact solution given by PMF.545

Cut pursuit path (CPP). We use the warm start approach proposed in Section 2.6, with546
the same stopping criterion.547

2.8.2. Results. We report in Figure 9 the time in seconds necessary to reach a primal548
suboptimality gap of 10−5 for the different approaches. We observe that, in general, cut549
pursuit (CP) is slightly faster than the parametric max-flow. It should be noted, however,550
that the latter finds an exact solution and remains from that point of view superior. Warm-551
starts allow for a significant acceleration, needing at most two calls to the max-flow code to552
reach the desired gap. Unlike the deblurring task, for high noise levels, cut pursuit remains553
here very competitive for natural images which are not sparse, as illustrated in Table 10 and554
Figure. 8.555

As the regularization strength decreases, the coarseness of the solution decreases, and as556
a consequence the cut pursuit approaches CP and CPP become less and less efficient. This is557
because as the number of components increases, so does the time needed to solve the reduced558
problem. We note however that for the values provided with the peak PSNR, the warm-start559
approach is faster than PMF.560

PMF and CP perform significantly worse on sparse images and for high values of λ. This561
can be explained by the inner workings of the max-flow algorithm of [10]. Indeed for high562
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Figure 8: Illustration of the regularization path for the three images in the data set for 5 of
the 20 values in the regularization parameters in the path. The peak PSNR is reached for
λ = 0.53, 0.28 and 0.34 respectively.

values of λ or sparse images, the pairwise term of the corresponding Potts model will dominate,563
which forces the algorithm to build deep search trees to find augmenting paths. Indeed as the564
size of the regions formed by the cut increase, the combinatorial exploration of all possible565
augmenting paths drastically increases as well. The warm-started path approach does not566
suffer from this problem because the graph is already split in smaller components at the567
warm-start initialization, which prevents the search trees from growing too large.568
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Figure 9: Time in seconds necessary to solve the problem regularized with a given λ (from the
warm-start initialization when applicable) with a relative primal suboptimality gap of 10−5, for
regularly sampled values of λ along the regularization path. The competing methods are cut
pursuit (CP), cut pursuit with warm-start (CPP) and the parametric max-flow solver (PMF)
for different 512×512 noisy images: simulated example (left), Lena (middle) and eagle (right).
The computation times are averaged over 10 random degradations of the images by uniform
noise. The blue arrow indicates the best PSNR value.

3. Generalized minimal partition. We consider now a generalization of the minimal parti-569
tion problem minx∈Rn Q(x) with Q(x) = f(x)+λΓ(x) where Γ(x)

.
= 1

2

∑
(i,j)∈S(x)wij the total570

boundary size penalty for piecewise constant functions. This non-convex non-differentiable571
problem being significantly harder than the previous one, we restrict the functions f we con-572
sider to be separable functions of the form f(x) =

∑
i∈V fi(xi) with fi : R 7→ R continuous9.573

9The algorithmic scheme we propose in this section does not require the functions fi to be convex, but
convexity will make subproblems easier to solve, and, as discussed later, can be helpful to establish sufficient
conditions for convergence (see Section 3.1.1 and Appendix E.1.2)
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Method Simulated Lena Eagle
CPP 59 25 27
CP 194 62 70
PMF 356 67 91

Figure 10: Time in seconds necessary to compute the entire approximate regularization path
at a relative primal suboptimality gap of 10−5 for the different algorithms, averaged over 10
samplings of the noise.

Our formulation, like [42], but unlike most instances of the minimal partition problem in the574
literature, does not constrain the number of components in advance. We call the corresponding575
problem generalized minimal partition problem.576

Inspired by greedy feature selection algorithms in the sparsity literature and by the working577
set algorithm we presented for TV regularization, we propose to exploit the assumption that578
the optimal partition Π∗ is not too large to construct an algorithm that greedily optimizes the579
objective by adding and removing cuts in the graph.580

Indeed, the problem that we consider has a fixed regularization coefficient λ, and so its581
natural counterpart for classical sparsity is the problem of minimizing an objective of the form582
f(x) + λ‖x‖0 which subsumes AIC, BIC and other information criteria. The algorithmic ap-583
proach we consider is thus the counterpart of a very natural greedy algorithm to minimize the584
former objective, which surprisingly is almost absent from the literature, perhaps for the fol-585
lowing reasons: On the one hand, work on stagewise regression and forward-backward greedy586
algorithms, which both add and remove variables, goes back to the 60ies [22], but the algo-587
rithms then considered were based on sequences of tests as opposed to a greedy minimization588
of a penalized criterion.589

On the other hand, the literature on greedy algorithms for sparse models has almost ex-590
clusively focused on solving the constrained problem minx f(x) s.t. ‖x‖0 ≤ k, with algorithms591
such as OMP, Orthogonal least squares (OLS), FoBa, and CoSamp, which can alternatively592
be viewed as algorithms that are greedily approximating the corresponding Pareto frontier. A593
notable exception is IHT.594

A very natural variant of OLS solving minx f(x) + λ ‖x‖0 can however be obtained by595
adding the `0 penalty to the objective. This algorithm was formally considered in [64] under the596
name Single Best Replacement (SBR), in reference to the similar Single Maximum Likelihood597
Replacement (SMLR) of [40]. At each iteration, the algorithm considers adding (forward step)598
or removing (backward step) a single variable, whichever reduces the value of the objective599
most. It should be noted that while the similar OLS and OMP are forward algorithms, SBR is600
a forward-backward algorithm, which can remove a variable provided doing so only increases601
f by less than λ.602

We argue in the following section that a similar algorithm can be designed for the general-603
ized minimal partition problem, using a general scheme which is similar to that of cut pursuit.604
We thus call this algorithm `0-cut pursuit. In particular, it follows a similar structure, in which605
a partition is successively split into its constant connected components. The main differences is606
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an adapted rationale to split elements of the partition, and the addition of a explicit backward607
step.608

3.1. A greedy algorithm for generalized minimal partition. As in cut pursuit, we propose609
an algorithm which greedily splits the elements of the current partition Π = (A1, · · · , Ak) in610
forward steps, reoptimizes the value taken by x on each of the Aj , then, in backward steps,611
possibly merges some regions (or moves some of the boundaries between regions), and iterates.612

3.1.1. Forward step. Assume that we split the set of existing regions (Aj)1≤j≤k by in-
troducing a global cut (B,Bc) for some set B ⊂ V , so as to minimize the global objective,
i.e.

min
B⊂V

min
(hj ,h′j)1≤j≤k

k∑
j=1

[ ∑
i∈Aj∩B

fi(hj) +
∑

i∈Aj∩Bc

fi(h
′
j)
]

+ λ

k∑
j=1

w(Aj ∩B,Aj ∩Bc)

This cut induces a cut on each element Aj of the form (Aj ∩ B,Aj ∩ Bc). Two simple613
properties should be noted: (a) the additional boundary perimeter incurred with the cut is614
simply the sum of the perimeters of the cuts induced within each element Aj and is precisely615

of the form
∑k

j=1w(Aj ∩ B,Aj ∩ Bc) — the boundary between pre-existing components is616
“free” (cf Figure 2), (b) if the value of x is re-optimized under the constraint that it should be617
constant on each of the elements Aj∩B and Aj∩Bc of the new partition, then the separability618
of f and the fact that Γ(x) stays constant when the value of each of the regions is modified619
together entail that the optimization can be done separately on each set Aj . So the choice of620
an optimal cut reduces to independent choices of optimal cut on each set Aj as defined by the621
objective622

(8) min
Bj⊂Aj

min
(h,h′)

∑
i∈Bj

fi(h) +
∑

i∈Aj\Bj

fi(h
′) + λw(Bj , Aj\Bj).623

This optimization problem is difficult to solve globally, because even if the functions fi624
were assumed convex, it would not be a convex optimization problem. However, for Bj fixed,625
the partial minimization with respect to h and h′ is an optimization problem in R2, and, for626
(h, h′) fixed, the optimisation with respect to Bj is solved as a min-cut/max-flow problem627
very similar to the one for the steepest binary cut of Section 2.1. We therefore propose628
the alternating minimization algorithm presented in pseudo-code as Subroutine 2. Under629
appropriate hypotheses on f detailed in Appendix E.1.2, this algorithm finds a local minimum630
of the objective. In particular, these hypotheses hold if each fi is strictly convex and in general631
position so to as to avoid ties in assignments of i to B or Bc, for example if fi(·) = (· − xi)2632
with xi drawn i.i.d. from a continuous distribution, which corresponds to our case of interest.633

In this algorithm, since the minimization with respect to Bj can lead to more than two634
connected components, we use the same idea as presented in Section 2.2 and illustrated on635
Figure 2, which is to treat each connected component as a new element of the partition.636

Further details on Subroutine 2 and initialization strategies are discussed in Appendix E.1.637

3.1.2. Saturated sets. A particular situation occurs when the optimal solution Bj of638
problem (8) is equal to ∅ or Aj : in that case, any split of Aj would increase the objective.639
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We then say that the component Aj is saturated. The overall algorithm maintains a set Σ of640
saturated components which do not need to be processed anymore in the splitting steps.641

For cut pursuit (i.e. in the TV case), it was essentially sufficient to design the splitting step642
to specify the algorithm: indeed, after splitting with a steepest binary cut, the problem solved643
on the reduced graph involved in that case a total variation term penalizing the difference of644
values between adjacent regions (cf Proposition 6), and this TV term could thus induce the645
merge of two adjacent regions. By contrast, for `0 cut pursuit, given that the optimization of646
the values on each region is independent and without any incidence on the definition of their647
contours, merge steps and other steps to modify the shape of the regions should be added648
explicitly. We discuss them in the next two sections.649

3.1.3. Backward steps. In greedy algorithms for plain sparsity, backward steps remove650
variables to reduce the support of the solution. In our case, the appropriate notion of support651
is S(x) (cf Equation 2), which is formed as the union of the boundaries between pairs of652
components. A backward step is a step that reduces the total boundary perimeter. The most653
natural way to obtain this is by merging two adjacent components.654

Simple merge step: For a region C, let f?C := minh
∑

i∈C fi(h). If a pair of adjacent
components (A,B) is merged into a single constant component, and the value of A ∪ B is,
reoptimized, the objective Q increases by

δ−(A,B) := f?A + f?B − f?A∪B + λw(A,B).

A merge effectively decreases the value of the objective and is thus worth it if δ−(A,B) > 0655
i.e. if f?A∪B − (f?A + f?B) < λw(A,B).656

It should be noted that the merge step considered does not, in general, correspond to657
canceling exactly a previous cut, but can merge adjacent subregions that have each been658
obtained by splitting different regions. The merge step is described in Subroutine 4.659

A shortcoming of the simple merge step is that while the removal of boundaries between660
components is considered, a simple change of the shape of the created boundaries that could661
reduce total boundary length is not possible. However, since the optimal binary computation662
only considers binary partitions, the shape of the components might be suboptimal. We663
therefore propose another kind of step.664

Merge-resplit: This step is a combination of a merge step immediately followed by a
new split step on the merged components. It is a “backward-then-forward” step, which can
be worth it even if the corresponding backward step taken individually is not decreasing the
objective. Given hA := argmin

∑
i∈A fi(A) and hB := argmin

∑
i∈B fi(B), the merge resplit

step amounts to solve the corresponding

min
A′,B′

∑
i∈A′

fi(hA) +
∑
i∈B′

fi(hB) + λw(A′, B′) s.t. B′ = (A ∪B)\A′.

But this problem can again be solved as a min-cut/max-flow problem on the region A∪B.665
Note that this merge-resplit step is very similar to what [10] call an α-β swap in the context666

of energy minimization in Markov random fields: nodes assigned to other components10 than667

10In the context of MRFs the components correspond to a number of different classes fixed in advance and
are in general not connected.
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A or B keep their current assignments to components, but the nodes of A ∪B are reassigned668
to A or B so that the boundary between A and B minimizes the above energy.669

The merge-resplit step includes the possibility of a simple merge step (without resplitting),670
since all elements can be “swapped” in the same set by the α-β swap , so that the new boundary671
is effectively empty. Finally, note that during the merge-resplit step the values of xA and xB672
are held constant and only updated upon completion of the step. In fact, in a number of cases,673
it might be possible to iterate such steps for a given pair (A,B). We do not consider this674
computationally heavier possibility.675

3.1.4. The `0 cut pursuit algorithm. Given definitions of forward and backward steps,676
different algorithms can be obtained by iterating and alternating these steps differently. We677
propose to alternate between splitting all components at once (possibly in parallel) and then678
iterating backward steps over all adjacent pairs of components. This allows for the splitting679
to be done in parallel directly on the original flow graph, thus avoiding the memory overheads680
associated with constructing a new flow graph for each new component. This leads to two681
variants for the main algorithm which are presented as Algorithms 5 and 6, depending on682
whether only simple merge or merge-resplit steps are used. Implementation details of the683
algorithms and other possible variants are discussed in Appendix E.2.684

Under mild assumptions, Algorithm 5 converges in a finite number of iterations and yields685
a partition Π = (A1, · · · , An) such that xΠ

.
= arg minz∈span(Π)Q(z) is a local minimum of Q.686

See in Appendix E.3 for a precise statement and a proof.687

Subroutine 2 [Π, E ,Σ]← split(Π, E ,Σ, A)

[Splits the component A with a binary cut: updates the current partition Π, the component
adjacency structure E and the set of saturated components Σ]
for A ∈ Π do

Π← Π \ {A}
B ← arg minB⊂A,h,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′)
while not_converged do
x← arg minh

∑
i∈B fi(h)

x′ ← arg minh
∑

i∈A\B fi(h)

B ← arg minB⊂A
∑

i∈B fi(x) +
∑

i∈Bc fi(x
′) + λw(B,Bc)

end while
if B ∈ {∅, A} then

Σ← Σ ∪ {A}
end if
[B1, · · · , Bk]← connected components of B and A \B
Π← Π ∪ {B1, · · · , Bk}
E ← updated adjacency structure

end for
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Subroutine 3 [Π, E ,Σ]← simple_merge(Π, E ,Σ, A,B)

[Merges components A and B]
Π← Π \ {A,B} ∪ {A ∪B}
E ← E \

{
{A,B}

}
Σ← Σ \ {A,B}
for C neighbors of A or B do
E ← E ∪

{
{A ∪B,C}

}
end for

Subroutine 4 [Π, E ,Σ]← resplit(Π, E ,Σ, A,B)

[Performs a merge-resplit step on components A and B.]
xA ← arg minh

∑
i∈A fi(h)

xB ← arg minh
∑

i∈B fi(h)
C ← arg minC⊂A∪B

∑
i∈C fi(xA) +

∑
i∈A∪B\C fi(xB) + λw(C,A ∪B \ C)

if C /∈ {A,B} then
Σ← Σ \ {A,B}

else
[C1, · · · , Ck]← connected components of C and A ∪B \ C
Π← Π \ {A,B} ∪ {C1, · · · , Ck}
E ← updated adjacency structure

end if

Algorithm 5 Simple merge variant
(`0-CPm)
Initialization: Π0 = {V }, E=Σ=∅
while Π 6= Σ do
for A ∈ Π \ Σ in parallel do

[Π, E ,Σ]← split (Π, E , A,Σ)
end for
Compute δ−(A,B) for all (A,B) ∈ E
while max{A,B}∈E δ−(A,B) > 0 do
{A,B} = arg max{A′,B′}∈E δ−(A′, B′)
[Π, E ′,Σ]← merge (Π, E ,Σ, A,B)
Update δ−(A,B) for {A,B} ∈ E ′ \ E
E ← E ′

end while
end while

Algorithm 6 Merge-resplit variant
(`0-CPs)
Initialization: Π0 = {V }, E = Σ = ∅
while Π 6= Σ do
for A ∈ Π \ Σ in parallel do

[Π, E ,Σ]← split (Π, E ,Σ, A)
end for
E ′ ← E
for {A,B} ∈ E ′ do
if {A,B} ∈ E then

[Π, E ,Σ]←resplit(Π, E ,Σ, A,B)
end if

end for
end while

688

3.2. Numerical experiments: denoising with `0 cut pursuit. We now present experiments689
empirically demonstrating the superior performance of the `0-cut pursuit algorithm presented690
in section 3. We assess its performance against two state-of-the art algorithms to minimize the691
total boundary size of two noisy 512×512 images: the Shepp-Logan phantom [63] and another692

This manuscript is for review purposes only.



CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE CONSTANT FUNCTIONS ON GENERAL
WEIGHTED GRAPHS 27

simulated example. In order to illustrate the advantage of our algorithm over alternatives which693
discretize the value range, we add a small random shift of grey values to both images. We also694
test the algorithms on a spatial statistic aggregation problem using open-source data11 which695
consists of computing the statistically most faithful simplified map of the population density696
in the Paris area over a regular grid represented in Figure 12. The raster is triangulated to697
obtain a graph with 252, 183 nodes and 378, 258 edges. We use the squared loss weighted by698
the surface of each triangle as a fidelity term.699

A C++ implementation of the `0-cut pursuit algorithm is available12.700

3.2.1. Competing methods.701
α-expansions on quantized models (CRFi). If the range of values of xi is quantized,702
the MPP and TV problems reduce to a Potts model, in which each class c is associated with703
a (non necessarily connected) level-set [32]. In the MPP case, the pairwise terms are of the704
form 1{ci 6=cj}wij . We use α-expansions [10] to approximately minimize the corresponding705
energy. More precisely, we use the α-expansions implementation of [27], which uses the same706
max-flow code [9] as our algorithm. We denote the resulting algorithm CRFi where i is the707
number of levels of quantization of the observed image value range. While this algorithm is708
not theoretically guaranteed to converge, it does in practice and the local minima are shown709
by [10] to be within a multiplicative constant of the global optimum.710

Non-convex relaxation (TV0.5). We considered a non-convex counterpart of the total711

variation, similar to the formulations considered in [51] or [71], but with t 7→ (ε + t)
1
2 in lieu712

of t 7→ |t|. The resulting functional can be minimized locally using a reweighted TV scheme713
described in [53]. We use our cut pursuit algorithm to solve each reweighted TV problem as714
it is the fastest implementation.715

`0-cut pursuitWe implemented three versions of `0 cut pursuit with different backward steps.716
In the simplest instantiation, `0-CPf, no backward step is used and the reduced graph can only717
increase in size. In `0-CPm, described in Algorithm 5, the simple merge step is performed after718
each round of cuts. Finally in `0-CPs, described in Algorithm 6, merge steps are replaced by719
merge-resplit steps but without priority queue.720

After a few preliminary experiments, we chose not to include either level-set methods [16] or721
active contour methods based on solving Euler-Lagrange equations [36] as their performances722
were much lower than the algorithms we consider.723

Comparing speed results of code is always delicate as the degree of code optimization varies724
from one implementation to another. The α-expansion code uses the implementation of [27]725
which is a highly optimized code, `0-CPf and `0-CPm are implemented in C++, while `0-CPs726
and TV0.5 are implemented in Matlab with a heavy use of mex-files. Even if minor improve-727
ments could be obtained on the latter, we believe that it would not change the performances728
significantly. In particular, a justification for direct time comparisons here is that computation729
time for each of the algorithms is mostly spent computing min cuts which is done in all codes730
using the same implementation of [9] and which accounts for most of the computation time.731

11https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population
12https://github.com/loicland/cut-pursuit
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3.2.2. Results. Given that the MPP is hard, and that all the algorithms we consider only732
find local minima, we compare the different algorithms both in terms of running time and in733
terms of the objective value of the local minima found. The marks on the curves correspond734
to one iteration of each of the considered algorithms: For TV0.5 there is a mark for each735
reweighted TV problem to solve, for CRFk, a mark corresponds to one α-expansion step,736
i.e. solving k max-flow problems. For `0-CP this corresponds to one forward (split) and one737
backward step. For clarity, the large number of marks were omitted in the third experiment,738
as well as for `0-CPs in the first experiment.739

In Figure 11, we report the energy obtained by the different algorithms normalized by740
the energy of the best constant approximation. We can see that our algorithms find local741
optima that are essentially as good or better than α-expansions for the discretized problems742
in less time, as long as the solutions are sufficiently sparse. For the population density data,743
the implementation `0-CPm with simple merge is faster and finds a better local minimum744
than CRF40, but is outperformed by CRF60. The implementation with swaps merge-resplit745
(`0-CPs) is on par with CRF60 when it comes to speed, and finds a slightly better minimum.746

The simple merge step provides a better solution than the purely forward approach at the747
cost of a slight increase in computational time. The merge-resplit backward step improves the748
quality of the solution further, but comes with a significant increase in computation.749

We report in Table 13 performance in PSNR that shows that `0-CP outperforms the CRF750
formulations for quantization levels that lead to comparable running time.751

The comparison with CRF formulations is investigated in more details in Appendix F,752
where we report the performance of approximations with CRFs solved with iterative α-expansions753
for different numbers of quantization levels, as compared with the performance of `0-CPm. The754
results show that the running time for the CRF formulations grows linearly with the num-755
ber of classes, although the performance in PSNR does not increase monotonically, and has756
oscillations which lead to results that are worse than `0-CPm for some number of classes.757
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Figure 11: Generalized minimal partition energy at time t (in seconds) divided by the same
energy for the best constant approximation obtained by different algorithms: Non-convex
relaxation (TV0.5), `0-CPf with no backward step, `0-CPm with simple merge step, `0-CPs with
merge-resplit steps, and finally, α-expansions with different number of levels of quantization
(see image legends), for different images: the Shepp-Logan phantom (left), our simulated
example (middle) and the map simplification problem (right). Markers correspond respectively
to one reweighting, one α-expansion cycle and one cut for (TV0.5), (CRF) and (`0-CP).
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(a) PSNR : 24.8 (b) PSNR : 38.1

(c) PSNR : 18.8 (d) PSNR : 34.8

(e) Population density of Paris (f) Simplified map

Figure 12: Benchmark on the denoising task. First two lines: (left) noisy images, (right)
images retrieved by `0-cut pursuit with simple merge steps(`0-CPm). Last line: (left) rasterized
population density of Paris area, (right) simplified map obtained by `0-CPm: 69% of variance
explained with 1.2% of contours perimeter.

Experiment Phantom Simulated
Algorithm PSNR time PSNR time
Noisy image 16.8 - 16.8 -
`0-CPm 33.5 4.3 37.0 4.6
CRF15 32.6 8.6 34.2 4.0
CRF30 33.3 25.3 34.8 11.4
TV0.5 32.2 16.4 33.6 18.0

Figure 13: PSNR at convergence and time to converge in seconds for the four algorithms as
well as the noisy image for the first two denoising experiments.
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4. Conclusion. We proposed two algorithms to minimize functions penalized respectively758
by the total variation and by the total boundary size. They computationally exploit the fact759
that for sufficiently large regularization coefficients, the solution is typically piecewise constant760
with a small number of pieces, corresponding to a coarse partition. This is a consequence of the761
fact that, in the discrete setting, both the total variation and total boundary size penalize the762
size of the support of the gradient: indeed, functions with sparse gradients tend to have a small763
number of distinct level sets, which are moreover connected. The sparsity that is optimized is764
thus not exactly the same as the sparsity which is exploited computationally, although both765
are related.766

By constructing a sequence of approximate solutions that are themselves piecewise constant767
with a small number of pieces, the proposed algorithms operate on reduced problems that can768
be solved efficiently, and perform only graph cuts on the original graph, which are thus the769
remaining bottleneck for further speed-ups. Like all working-set algorithms, the cut pursuit770
variants are not competitive if the solution has too many connected level-sets.771

In the convex case, cut pursuit outperforms all proximal methods for deblurring images772
with simple solutions. For denoising with a ROF energy, it outperforms the parametric maxflow773
approach when computing sequences of solutions for different regularization strengths. In774
the `0 case, our algorithm can find a better solution in a shorter time than the non-convex775
continuous relaxation approach as well as the approach based on α-expansions. Furthermore,776
while the performance of the latter hinges critically on setting an appropriate number of level-777
sets in advance, cut pursuit needs no such parametrization.778

Future developments will consider the case of Lovász extensions of other symmetric sub-779
modular functions [4] and to the multivariate case. It would also be interesting to determine780
the conditions under which the alternating scheme presented in E.1 provides a globally optimal781
solution of (13), as it would be a necessary step in order to prove approximation guarantees782
to the solution of `0-cut pursuit itself.783
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Appendix A. The total variation as an atomic gauge. It is well known that the total
variation is the Lovász extension of the submodular function F : B 7→ w(B,Bc) [2, chap. 6.2].
The base polytope associated with F is the set BF

.
= {s ∈ Rn | s(B) ≤ F (B), B ⊂ V, s(V ) =

F (V )}, where s(B)
.
=
∑

i∈B si. For any submodular function F such that F (∅) = F (V ) = 0,
which is true in particular for all symmetric submodular functions, the Lovász extension γF is
a gauge function which is the support function13 of BF : γF (x) = maxs∈BF 〈s, x〉 and its polar
gauge is the gauge of BF [4]. The total variation is thus a gauge function and its polar gauge
is TV◦ with

TV◦(s) =

 max
∅(B(V

s(B)

w(B,Bc)
if s(V ) = 0

+∞ else.

Chandrasekaran et al. [17] have recently introduced the concept of atomic gauge. Given a
closed set A ⊂ Rn whose elements are called atoms, the associated atomic gauge is the gauge
γA of the convex hull CA of A ∪ {0}, i.e. γA(x)

.
= inf{t |x ∈ t CA}. The polar gauge is the

support function of A ∪ {0}, that is γ◦A(s) = supa∈A∪{0}〈a, s〉. Given that A ⊂ Rn, using
Caratheodory’s theorem, we have that

γA(x) = inf
{∑

a∈A ca | ∀a ∈ A, ca ≥ 0,
∑

a∈A ca a = x
}
.

Regularizing with an atomic gauge thus favors solutions that are sparse combinations of939
atoms, which motivated the use of algorithms that exploit the sparsity of the solution com-940
putationally [33, 59]. It is clear from previous definitions that Lovász extensions are atomic941
gauges. In particular the total variation is the atomic gauge associated with the set of atoms942
A =

{
w(B,Bc)−11B + µ1V

}
B/∈{∅,V }, µ∈R or equivalently the set A′ =

{
1
2w(B,Bc)−1(1B −943

1Bc) + µ′1V
}
B/∈{∅,V }, µ′∈R. Expressing solutions to problem regularized with the total varia-944

tion as combinations of set indicators or cuts as we propose to do in this paper is thus very945
natural from this perspective.946

For the total variation, the Frank-Wolfe direction associated to s = −∇f(x) such that947
〈s,1V 〉 = 0 is948

(9) arg max
ξ:TV(ξ)≤1

〈s, ξ〉 = arg max
1B :B/∈{∅,V }

1

w(B,Bc)
〈s,1B〉,949

since the maximizer is necessarily an extreme point of the set {ξ | TV(ξ) ≤ 1} and therefore950
among the atoms.951

Appendix B. Proof of Propositions 1 and 3.952

Proposition 1. For x ∈ Rn, if we set S = S(x) then

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

13See [60] for definitions of gauge, polar gauge and support function of a set.
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Proof. For B ⊂ V we have that Q′(x,1B) = 〈∇QS(x),1B〉 + supε∈∂TV|Sc(x)〈ε,1B〉. This
can be shown using the chain rule for subgradients that we have:

∂TV|Sc(x) =
{

1
2D

ᵀδ | δS = 0, ‖δSc‖∞ ≤ 1, ∀(i, j) ∈ E, δij = −δji
}
,

with D ∈ R2m×n the matrix whose only non-zero entries are D(i,j),i = wij and D(i,j),j = −wij953
for all (i, j) ∈ E, and with the notations δS ∈ R2m and δSc ∈ R2m for the vectors whose entries954
are equal to those of δ respectively on S and Sc and equal to zero otherwise.955

Therefore if ε = 1
2D

ᵀδSc then

〈ε,1B〉 = 〈12δSc , D1B〉 =
1

2

∑
(i,j)∈Sc

δijwij([1B]i − [1B]j).

The supremum is reached for δij = sign([1B]i−[1B]j) for (i, j) ∈ Sc, so that sup
ε∈∂TV|Sc(x)

〈ε,1B〉 =

wSc(B,Bc).
For the second statement, we have that

Q′(x, uB) = 〈∇QS(x), uB〉+ sup
ε∈∂TV|Sc(x)

〈ε, uB〉.

Letting g = ∇QS(x), and since 〈∇f,1〉 = 0, we have 〈g,1〉 = 0. Consequently 〈g,1Bc〉 =
〈g,1− 1B〉 = −〈g,1B〉, and we have:

〈g, uB〉 = γB〈g,1B〉 − γBc〈g,1Bc〉 = (γB+γBc)〈g,1B〉.

Similarly, 〈ε, uB〉 = 〈12δSc , DuB〉 = 1
2γB〈δSc , D1B〉− 1

2γBc〈δSc , D1Bc〉 = 1
2(γB+γBc)〈δSc , D1B〉956

because D1B = −D1Bc . Taking the supremum over ε then proves the result.957

Proposition 3. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and958

Q′(x,1V ) = 0.959

Proof. (⇒) If x is the solution of problem (1), the directional derivative of Q along960
any direction must be nonnegative, which implies that Q′(x,1B) ≥ 0 for all B. But since961
minB⊂V Q

′(x,1B) ≤ Q′(x,1∅) = 0, this proves the first part. Then since w(V,∅) = 0 we962
have Q′(x,1V ) = 〈∇QS(x),1V 〉, and, in fact, since all elements of the subgradient of TV|Sc963
are orthogonal to 1V we also have Q′(x,−1V ) = −〈∇QS(x),1V 〉. So 0 ≤ Q′(x,−1V ) =964
−Q′(x,1V ) ≤ 0.965

966
(⇐) Conversely we assume that minB⊂V Q

′(x,1B) = 0 and Q′(x,1V ) = 0.967
Since Q′(x,1V ) = 0 and since wSc(V,∅) = 0 we have 〈∇QS(x),1V 〉 = 0. Now, for any set968
A which is a maximal connected component of G|Sc

.
= (V, Sc), we also have wSc(A,Ac) =969

0 so that 0 ≤ Q′(x,1A) = 〈∇QS(x),1A〉 but the same holds for the complement Ac and970
〈∇QS(x),1A〉+ 〈∇QS(x),1Ac〉 = 〈∇QS(x),1V 〉 = 0 so that 〈∇QS(x),1A〉 = 0.971

As a consequence the capacities of the graph Gflow defined in (6) of the article are such972
that, for any set A which is a maximal connected component of G|Sc , we have973 ∑

i∈∇+∩A
csi =

∑
i∈∇−∩A

cit.(10)974
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Then since Q′(x,1∅) = 0 and since minB⊂V Q
′(x,1B) = 0 it is a minimizing argument.975

The characterization of the steepest partition as a minimal cut then guarantees that there976
exists a minimal cut in Gflow which does not cut any edge in Sc and isolates the source or the977
sink from the rest of the graph. Given equality (10), the set of minimal cuts are the cuts that978
remove indifferently for each maximal connected component A either all edges {(s, i)}i∈A or979
the edges {(i, t)}i∈A.980

A consequence of the max-flow/min-cut duality is that to this cut corresponds a maximal981
flow e ∈ R2m in Gflow. This flow is such that it is saturated at the minimal cut, and we thus982
have esi = csi for all i ∈ ∇+ and eit = cit for all i ∈ ∇−, again because of equation (10).983

Writing flow conservation yields984 {
esi +

∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇+

−eit +
∑

j∈Ni
(eji − eij) = 0 ∀i ∈ ∇−,

(11)985

with Ni = {j|(i, j) ∈ Sc}.986
By replacing esi and eit by their value, the flow conservation (11) at node i rewrites987

∇iQS(x) +
∑
j∈Ni

λwijδij = 0988

∇iQS(x) +
1

2

∑
j∈Ni

λwij (δij − δji) = 0,(12)989

with δij =
eji−eij
λwij

for (i, j) ∈ Sc(x) and δij = δji = 0 for all edges (i, j) ∈ S(x). The990

flow e must respect the capacity at all edges and hence 0 ≤ eij ≤ cij = λwij for all edges991
in Sc(x). Since the flow is maximal, only one of eij or eji is non zero. Hence δ we naturally992
have δij = −δji, and |δij | ≤ 1. But we can rewrite (12) as ∇QS(x) = 1

2λD
ᵀδ with δS = 0993

and ‖δSc‖ ≤ 1 with D as in the characterization of the subgradient of TV|Sc which shows that994
− 1
λ∇QS(x) ∈ ∂TV|Sc(x) thus that 0 ∈ ∂Q(x), and finally that x minimizes Q.995

Remark: We proved Proposition 3 using directly the flow formulation and the simplest996
possible arguments. It is also possible to prove the result more directly using more abstract997
results. We actually used the fact that x is a minimum of Q if and only if, for S = S(x),998
− 1
λ∇QS(x) ∈ ∂TV|Sc(x). But it is possible to give another representation of ∂TV|Sc(x)999

using that the subgradient of a gauge γ at x is ∂γ(x) = {s | 〈x, s〉 = γ(x), γ◦(s) ≤ 1}.1000
Indeed, for γ = TV, the set {γ◦(s) ≤ 1} is simply the submodular polytope PF of F : B 7→1001
w(B,Bc). As a result ∂TV|Sc(x) = {s ∈ Rn | 〈s, x〉 = 1, ∀B, s(B) ≤ wSc(B,B)}. But1002
having that minB⊂V 〈∇QS(x),1B〉 + λwSc(B,Bc) = 0 is equivalent to having − 1

λ∇QS(x) ∈1003
{s ∈ Rn | ∀B, s(B) ≤ wSc(B,B)}. There thus just remains to show that 〈∇QS(x), x〉 =1004
TV(x). Let ΠS denote the set of maximal connected components of G|Sc = (V, Sc), so that1005
we have x =

∑
A∈ΠS

cA1A. Since wSc(V,∅) = 0, we have 0 = Q′(x,1V ) = 〈∇QS(x), 1V 〉.1006
Similarly for A ∈ ΠS , we have wSc(A,Ac) = 0, which entails that 〈∇QS(x), 1A〉 ≥ 0. But1007
then −〈∇QS(x), 1A〉 = 〈∇QS(x), 1Ac〉 ≥ 0 also, which proves 〈∇QS(x), 1A〉 = 0. Finally by1008
linearity 〈∇QS(x), x〉 =

∑
A∈ΠS

cA〈∇QS(x), 1A〉 = 0 = TV|Sc(x) which proves the result.1009
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Appendix C. Theoretical results for cut pursuit with a non-convex function f .1010
This appendix discusses how the propositions of Section 2 can be extended to the case of1011

non-convex functions f .1012
It relies on the fact that notions of directional derivative and subgradient can be extended1013

to non-convex functions. This presents some difficulties in general and different definitions of1014
directional derivatives and subgradient have been introduced by Dini, by Clarke, and by Michel1015
and Penot [8, Chap. 6.1]. These extended subgradients do not behave like usual subgradients1016
in general and some of the rules of the calculus of subgradient are no longer valid. Fortunately,1017
for so-called regular functions, that is functions for which the Dini, Clarke and Michel-Penot1018
subgradient all coincide, the usual subgradient calculus applies [8, Chap. 6.2]. In particular,1019
a function Q = f + g with f strictly differentiable14 and g convex is regular at any point x of1020
the interior of its domain and ∂Q(x) = ∇f(x) + ∂g(x), where ∂· denotes here the generalized1021
subgradient for regular function (that coincides with the usual subgradient if the function is1022
convex). This is in particular true for g = TV. As a consequence, the proof of Propositions 11023
and 2 only require f to be strictly differentiable. Similarly, Proposition 3 no longer holds as1024
stated because the first order subgradient condition is not sufficient for optimality, but we still1025
have1026

Proposition 7. For Q = f + TV with f strictly differentiable, 0 ∈ ∂Q(x) if and only if1027
minB⊂V Q

′(x,1B) = 0 and Q′(x,1V ) = 0.1028

Proof. Since f is strictly differentiable, Q is regular so that the usual subgradient calculus1029
applies and the proof is the same as that of Proposition 3.1030

If f is non-convex, solving the subproblem on the reduced graph is more difficult, even1031
if only a local minimum is sought. To extend Algorithm 1 to the non-convex setting, it1032
seems appropriate to assume that reoptimizing on the reduced graph (at the end of the main1033
loop) yields a vector xΠt which is a local minimum of the reduced objective and such that1034
Q(xΠt) < Q(xΠt−1).1035

With that modification Proposition 4 remains true, and instead of Proposition 5, we have1036
that the algorithm converges in a finite number of iterations to a point x∗, which is a local1037
minimum of Q in the subspace span(Π) and satisfies 0 ∈ ∂Q(x∗). This is not sufficient in1038
general for x∗ to be a minimum of Q. However, if T (x∗) denotes the tangent cone of Q1039
at x∗, that is T (x∗) := {h ∈ Rn | Q′(x∗, h) = 0} (since there are no directions such that1040
Q′(x∗, h) < 0), and if ∇2f(x∗) denotes the Hessian of f at x∗ then, by standard arguments,1041
the condition ∀h ∈ T (x∗), 〈h,∇2f(x∗)h〉 > 0 is sufficient to guarantee that x∗ is a local1042
minimum of Q.1043

Appendix D. Computation of the Frank-Wolfe direction. The computation of the
Frank-Wolfe direction defined in (9) requires to optimize a ratio of combinatorial functions.
More precisely, it requires to solve

max
B/∈{∅,V }

N(B)

D(B)
with N(B)

.
= −〈∇f(x),1B〉, and D(B)

.
= w(B,Bc).

14f is strictly differentiable at x if there exists ϕ ∈ Rn such that ∀h ∈ Rn, limy→x,t↓0
f(y+th)−f(y)

t
= 〈ϕ, h〉.
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Given that B 7→ N(B)
D(B) it is the ratio of a supermodular function (in fact a modular function)1044

and a nonnegative submodular function, it can be maximized efficiently by Algorithm 7 as1045
proved in Proposition 8.1046

Algorithm 7 Computation of
maxAN(A)/D(A)

Initialization: λ0 = 1, λ−1 = 0, t = 0
while λt 6= λt−1 do
St ← Arg maxA⊂V N(A)− λtD(A)
At ← arg minA⊂St D(A)

λt+1 ← N(At)
D(At)

t← t+ 1
end while
return At

1047

Proposition 8. The sequence (λt)t generated by Algorithm 7 is monotonically increasing and1048

converges in a finite number of iterations to max∅(A⊂V
N(A)
D(A) .1049

Proof. As the maximum of a finite number non-increasing linear functions of a scalar1050
argument, the function ϕ : λ 7→ maxA⊂V

[
N(A) − λD(A)

]
is a non-increasing, continuous,1051

piecewise linear convex function. It is also non negative because N(∅) − λD(∅) = 0. It is1052

immediate to check that λ∗ := min{λ | ϕ(λ) = 0} = max∅(A⊂V
N(A)
D(A) . At each iteration, if1053

ϕ(λt) 6= 0, we must have λt+1 > λt, because the function λ 7→ N(At) − λD(At) is strictly1054
positive for λ = λt and equal to 0 for λ = λt+1. Moreover by construction, the sets At are all1055
distinct, as long as ϕ(λt) 6= 0. As a consequence we must reach ϕ(λT ) = 0 after a finite number1056
of iterations T . At the end of the algorithm, ϕ(λT ) = 0 entails that ∀A ⊂ V, N(A) ≤ λTD(A),1057
which entails that for all A 6= ∅, D(A)−1N(A) ≤ λT = D(AT−1)−1N(AT−1). This shows that1058

λT = max∅(A⊂V
N(A)
D(A) . This concludes the proof. The choice of taking the maximizer with1059

smallest value of D(A) on line 4 of the algorithm is not key to convergence of the algorithm,1060
but aims at computing the right-derivative which maximizes the step size in λ.1061

Note that this algorithm is closely related to the algorithm of [20] to maximize a ratio of1062
functions, and in fact applies to any functions N and D; but the minimization of the function1063
(A 7→ λD(A)−N(A)) can be done in polynomial here because, since D and N are respectively1064
sub- and super-modular, their difference is submodular. Moreover, when D is submodular and1065
N is modular, the number of iterations may be bounded by d, because the algorithm may be1066
reinterpreted as the divide-and-conquer algorithm to maximise submodular functions over the1067
submodular polytope [2, p. 160] (for the general case, it may only be bounded in general by1068
2d).1069

Appendix E. Details of the derivation, technical elements and proofs for `0 cut pursuit.1070
1071

E.1. Splitting step. Since in Section 3.1.1 the problem of finding an optimal binary cut1072
of the component Aj is decoupled from the same problem on other components and leads to1073
formulation (8), we discuss the splitting step for the case of the optimal binary cut of the1074
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initial component V .1075
In the same way that we defined the steepest binary cut in cut pursuit for the convex1076

formulation, we define the optimal binary partition (B,Bc) of V such that Q optimized over1077
span(1B,1Bc) is as small as possible. Ideally, we should impose that B and Bc have a single1078
connected component each, because as argued in section 2.3, it does not make sense to impose1079
that xi should have the same values in different connected components. However, since this1080
constraint is too difficult to enforce, we first ignore it and address it later with post-processing1081
described in Section E.1.3. Note however that the penalization of the perimeter of the boundary1082
between B and Bc should strongly discourage the choice of sets B with many connected1083
components.1084

E.1.1. Optimal binary cut with alternating minimization. Since Γ(h1B + h′1Bc) =1085
Γ(1B) = w(B,Bc), and ignoring the connectedness constraint, the corresponding optimization1086
problem is of the form1087

(13) min
B⊂V

min
h,h′∈R

∑
i∈B

fi(h) +
∑
i∈Bc

fi(h
′) + λw(B,Bc).1088

This problem is a priori hard to solve in general, because B 7→ minh,h′∈R f(h1B + h′1Bc) is1089
not a submodular function. However, when h, h′ are fixed, the assumption that f is separable1090
entails that B 7→ f(h1B+h′1Bc) is a modular function, so that the objective can be optimized1091
with respect to B by solving a max-flow problem. Similarly as for the flow problem (6) we1092
define the flow graph Gflow = (V ∪ {s, t}, Eflow) whose edge set and capacities are defined by:1093

Eflow =


(s, i), ∀i ∈ ∇+, with csi = fi(h)− fi(h′),
(i, t),∀i ∈ ∇−, with cit = fi(h

′)− fi(h),

(i, j), ∀(i, j) ∈ E, with cij = λwij ,

(14)1094

where ∇+
.
= {i ∈ V | fi(h) > fi(h

′)} and ∇−
.
= V \∇+.1095

The regularity and convexity of f with respect to h and h′ guarantee that the objective1096
can be minimized efficiently with respect to these variables. As suggested by [11] or [24],1097
ψ(B, h, h′) =

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′) + λw(B,Bc) can be efficiently minimized by alterna-1098
tively minimizing with respect to B and (h, h′) separately.1099

E.1.2. Proof of convergence of the alternating minimization scheme. The alternating1100
scheme used to compute the optimal binary cut provide a local minimum of ψ(B, h, h′) =1101 ∑

i∈B fi(h) +
∑

i∈Bc fi(h
′) + λw(B,Bc) with the following assumptions:1102

• (A0): the functions fi are continuous,1103
• (A1): the solution of min(h,h′) ψ(h, h′, B) exists and is unique for all sets B1104
• (A2): the minimizer with respect to B of ψ(hA, h

′
A, B) is unique for all A.1105

Note that (A1) holds if for example all functions fi are strictly convex. (A2) can be shown to1106
hold with probability one if fi is appropriately random, for example if fi(·) = (· − xi)2 with1107
xi drawn i.i.d. from a continuous distribution, which corresponds to our case of interest.1108

Proposition 9. Assuming that the assumptions (A0), (A1) and (A2) hold, the alternate min-1109
imization scheme converges in a finite number of iterations to a local minimum of ψ(h, h′, B) in1110
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the sense that there exists a neighborhood NB of (hB, h
′
B) such that for all (h, h′, A) ∈ NB×2V ,1111

we have ψ(h, h′, A) ≥ ψ(hB, h
′
B, B).1112

Proof. Let ψ(B) = minh,h′ ψ(h, h′, B). By construction and with assumption (A1), the1113
sequence (ψ(Bt))t is strictly decreasing until minimization with respect to either (h, h′) or B1114
yields no progress, i.e. until a partial minimum with respect to both blocks is attained. Since1115
the set 2V is finite, the algorithm must converge in a finite number of iterations.1116

The point B attained must be a local minimum in the sense above: indeed for any set A1117
different than B, we must have φ(hB, h

′
B, B) < φ(hB, h

′
B, A) because the algorithm stopped1118

(which excludes φ(hB, h
′
B, B) > φ(hB, h

′
B, A)) and because an equality is excluded by (A2).1119

But then by assumption (A0), φ is continuous with respect to (h, h′) so that in a neighborhood1120
NB of (hB, h

′
B) we must have φ(h, h′, A) sufficiently close to φ(hB, h

′
B, A) for the inequality1121

characterizing a local minimum to hold.1122

E.1.3. From binary cut to partition in connected components. Like the working set1123
algorithm proposed for the total variation, `0-cut pursuit recursively splits the components of1124
the current partition Π. The sets B and Bc obtained as a solution of (13) are not necessarily1125
connected sets, but splitting B and Bc into their connected components and assigning each1126
connected component its own value obviously does not change the contour perimeter Γ and1127
can only decrease f . Given the collection of connected components A1, . . . , Ak of B and Bc1128
we therefore set x = h11A1 + . . . + hk1Ak

with hj the minimizer of h 7→
∑

i∈Aj
fi(h). Note1129

that each hi could possibly be computed in parallel given the separability of f .1130

E.2. Implementation. As in the convex case, `0-cut pursuit maintains a current partition1131
Π that is recursively split and computes optimal values for each of its components. It is1132
comprised of three main steps: the splitting of the current partition, the computation of the1133
connected components and their values, and a potential merging step, when necessary.1134

E.2.1. Splitting. For each component an optimal binary partition (B,Bc) is obtained by1135
solving (13) as described in section E.1.1: we alternatively minimize the objective with respect1136
to B and with respect to (h, h′) until either B does not change or a maximum number of1137
iterations is reached. In practice, the algorithm converges in 3 steps most of the time. The1138
choice of an appropriate initialization for B is non-trivial. Since the problem in which λ = 01139
is often simpler, and can in a number of cases be solved analytically, we chose to use that1140
solution to initialize our alternating minimization scheme. Indeed, for λ = 0, and when f is a1141
squared Euclidean distance f : x 7→ ‖x−x0‖22 the objective of (13) is the same as the objective1142
of one-dimensional k-means with k = 2; in this particular setting, the problem reduces to a1143
change-point analysis problem, and an exact solution can be computed efficiently by dynamic1144
programming [6]. This can be generalized to the case of Bregman divergences and beyond [50].1145

As described in section E.1.3, the partition Π is updated by computing its connected com-1146
ponents after it is split by (B,Bc). Subroutine 2 gives the procedure algorithmically.1147
It is important to note that this is the only operation that involves the original graph G, and1148
hence will be the computational bottleneck of the algorithm. Fortunately since f is separable,1149
this procedure can be performed on each component in parallel.1150

1151
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E.2.2. Simple merge.. This backward step consists of checking for each neighboring com-
ponents A and B in Π whether merging them into a single component decreases the energy. If
we denote Π−(A,B) the partition obtained by merging A and B, the corresponding decrease
in energy δ−(A,B) is

δ−(A,B) = f(xΠ)− f(xΠ−(A,B)) + λw(A,B),

with Π−(A,B)
.
= Π \ {A,B} ∪ {A ∪B}.1152

The exact implementation of the while loop described in Algorithm 5 is in fact based on a1153
priority-queue. The value δ−(A,B) is computed for each neighboring components, and stored1154
in the priority queue. Each pair that provides a nonnegative decrease is merged, and δ− is1155
updated for the neighbors of A and B to reflect the change in value and graph topology. This1156
operation scales with the size of the reduced graph only, and therefore can be performed effi-1157
ciently for problems in which the partition Π does not get too large.1158

1159

E.2.3. Merge-resplit.. This more complex backward step, already described in 3.1.3 is1160
significantly computationally more intensive as it is performed on the edges of the full graph,1161
by contrast with the simple merge which only considers the edges of the reduced graph. As a1162
consequence, while all potential simple merge steps can be precomputed and performed based1163
on a priority queue by merging first the pair of components yielding the largest decrease in1164
objective value, it would be too computationally heavy in the merge-resplit case and we thus1165
perform boundary changes only once for each pair of neighbors in the graph E . The pseudocode1166
of the procedure is detailed in subroutine 41167

E.2.4. Other algorithmic variants. We discuss here the relevance of constructing more1168
greedy algorithms and of variants to tackle the problem in which the total boundary size is1169
constrained instead of penalized.1170

It would have been theoretically possible to implement a more greedy version of `0 cut1171
pursuit in which one performs a single forward step (corresponding to splitting a single region)1172
at a time or a single backward step at a time by maintaining a global priority queue and one1173
greedily chooses the most beneficial, but the overhead costs would have been prohibitive.1174

The `0 cut pursuit algorithms constructed in Section 3 is a greedy algorithm to solve1175
a formulation in which the total boundary size is penalized and not constrained. It is worth1176
pointing out that trying to solve directly the constrained case seems difficult: indeed, designing1177
algorithms that are only based on forward steps (e.g., in the style of OMP, OLS, etc) might1178
not succeed, because of the dependence between the cuts that need to be introduced to form1179
the final solution. Based on similar ideas as the ones used in `0-cut pursuit, we designed and1180
tested an algorithm generalizing the FoBa algorithm [70]. The obtained algorithm tended to1181
remain trapped in bad local minima and yielded solutions that were much worse than the ones1182
based on the penalized formulation.1183

E.3. Convergence to a local minimum of the generalized MP problem. We now prove1184
the local optimality of the solution provided by Algorithm 5.1185

Proposition 10. If assumption (A0) holds, then the `0 cut pursuit algorithm provides in a1186
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finite number of iterations a partition Π = (A1, · · · , An) such that xΠ
.
= arg minz∈span(Π)Q(z)1187

is a local minimum of Q.1188

Proof. The fact that f is separable ensures that xΠ can be minimized separately over each1189
connected component. We denote xAi ∈ arg minz

∑
i∈Ai

fi(z).1190
We denote Πt the partition at iteration t, and xtΠ the associated solution. We first prove1191

that the sequenceQ(xtΠ) is strictly decreasing. Indeed if the stopping criterion for the algorithm1192
is not met, then there exists at least one component Aj which is not saturated, i.e. such1193
that there exists a binary partitions B ( Aj such that minh,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′) +1194
λw(B,Bc) <

∑
i∈Aj

fi(xAj ). Consequently this component will be split in the next partition1195
to yield a strict decrease of the objective function Q, at least equal to the one provided by the1196
minimizing arguments (h, h′). Since the set of all partition is a finite set, the algorithm stops1197
in a finite number of steps. We now prove that the partition Π attained when the algorithm1198
stops is such that the corresponding variable xΠ is a local minimum of Q. Let E be the set of1199
pairs of adjacent components of Π. We can assume that xA 6= xB for any (A,B) ∈ E . If it1200
is not the case we replace Π by the partition in which such components are merged, without1201
changing xΠ. Consequently there exists δ1 > 0 such that |xA − xB| > δ1 for any (A,B) ∈ E .1202

As all edge weights are assumed strictly non negative we have that wmin = min(i,j)∈E wi,j >1203
0. Since (A0) states that f is continuous, there exists an Euclidean ball centered at xΠ and of1204
radius δ2 in which all elements are strictly greater than f(xΠ)−min(i,j)∈E wi,j .1205

We now prove by contradiction that xΠ is a local minimum of Q. Let x′ be an element1206
of the euclidian ball B centered at xΠ and of radius min(1

3δ1, δ2) such that Q(x′) < Q(xΠ).1207
We can first recognize that since the values of xΠ associated to each connected component1208
differs by at least δ, x′ cannot have two connected components of Π sharing a common value.1209
Consequently the boundary perimeter can only increase Γ(x′) ≥ Γ(xΠ).1210

If we first assume that Γ(x′) = Γ(xΠ), then x′ must be piecewise constant with respect1211
to Π, and be such that f(x′) < f(xΠ), which is a contradiction with the definition of xΠ.1212
We must then assume that Γ(x′) > Γ(x). Since the smallest increment in Γ is wmin, we have1213
Γ(x′) ≥ Γ(x)+wmin. Since the radius of B is smaller than δ2, we have that f(x) ≥ f(xΠ)−wmin,1214
and consequently Q(xΠ) ≥ Q(x), which is a contradiction.1215
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Appendix F. CRF formulation and number of quantization levels. In this appendix, we1216
report the performance of `0-cut pursuit and α-expansions for different numbers of quantization1217
levels for denoising an image. The regularization strentgh is chosen by cross-validation to1218
maximize the PSNR.1219

The fact that `0-CPm does not rely on an a priori quantized level leads to overall good1220
performance, with significantly faster computation times. By contrast, the running time for1221
the α-expansions based algorithms has a complexity which empirically grows linearly with the1222
number of classes, and the performance whether measured in terms of the original objective1223
or in PSNR does not increase monotonically as a function of the number of classes.1224

Plotting the corresponding PSNRs shows that the smaller local minima of the objective1225
found correlate well with gains in PSNR, and that the corresponding gains can be quite1226
substantial as illustrated as well in Table 13. The fact that the level of performance for CRF1227
is highly sensitive to the exact number of classes is a shortcoming of the method, especially1228
given its computational cost.1229
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Figure 14: Behavior of the α-expansion based algorithm on CRF formulations for
different number of quantization levels for the phantom (top) and the simulated data
(bottom) averaged on 10 denoising experiments: (left) ratio between the energy Q at conver-
gence and the energy at time 0, (middle) running time, (right) corresponding PSNRs. The two
algorithms represented are α-expansions (CRF) for a varying number of quantization levels
and `0-CPm.
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