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Abstract
We propose working-set/greedy algorithms to efficiently solve problems penalized respectively by the

total variation on a general weighted graph and its `0 counterpart the Mumford Shah total level-set
boundary size when the piecewise constant solutions have a small number of distinct level-sets; this is
typically the case when the total level-set boundary size is small, which is encouraged by these two
forms of penalization. Our algorithms exploit this structure by recursively splitting the level-sets of a
piecewise-constant candidate solution using graph cuts. We obtain significant speed-ups over state-of-
the-art algorithms for images that are well approximated with few level-sets

1 Introduction
Estimation or approximation with piecewise constant functions has many applications in image and signal
processing, machine learning and statistics. In particular, the assumption that natural images are well
modeled by functions whose total variation is bounded motivates its use as a regularizer, which leads to
piecewise constant images for discrete approximations. Moreover a number of models used in medical imaging
(El-Zehiry and Elmaghraby, 2007) assume directly piecewise constant images. More generally piecewise
constant models can be used for compression, for their interpretability and finally because they are typically
adaptive to the local regularity of the function approximated (Wang et al., 2014). Piecewise constant
functions display a form of structured sparsity since their gradient is sparse.

Both convex and non-convex formulations have been proposed to learn functions with sparse gradients.
The most famous being the formulation of Rudin et al. (1992), hereafter referred to as ROF, who proposed
to minimize the total variation subject to constraints of approximation of the noisy signal in the least squares
sense, as well as the formulation of Mumford and Shah (Mumford and Shah, 1989) who proposed to penalize
the total length of discontinuities of piecewise smooth functions. A fairly large literature is devoted to
these formulations mainly in the image processing and optimization literature. Although the connection
between the total variation, the Mumford-Shah energy and graph cuts is today well-established, algorithms
that leverage this connection are relatively recent. In particular for ROF, Chambolle and Darbon (2009);
Goldfarb and Yin (2009) use the fact that the problem can be formulated as a parametric max-flow. El-
Zehiry and Grady (2011) use graph cuts to solve the formulation of Mumford and Shah for the case of two
components.

The literature on sparsity in computational statistics and machine learning has shown how the sparsity
of the solution sought can be exploited to design algorithms which use parsimonious computations to solve
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the corresponding large-scale optimization problem with significant speed-ups (Bach et al., 2012). Our work
is motivated by the fact that this has to the best of our knowledge not been fully leveraged to estimate and
optimize with piecewise constant functions. In the convex case, the algorithm proposed to exploit sparsity
are working set1 algorithms and the related (fully corrective) Frank-Wolfe algorithm (Harchaoui et al., 2015).
In the non-convex case, forward selection algorithms such as OMP, FoBa and others have been proposed
(Mallat and Zhang, 1992; Needell and Tropp, 2009; Zhang, 2009)2.

It is well understood that algorithms for the convex and non-convex case are in fact fairly related. In
particular, for a given type of sparsity the forward step of working set methods, Frank-Wolfe and greedy
algorithm is typically the same, and followed by the resolution of a reduced problem.

Given their similarity, we explore in this paper both greedy and working set strategies. The working set
approach is used to solve optimization problem regularized by the total variation while the greedy strategy
solves problems penalized by the Mumford-Shah penalty for piecewise constant functions (aka minimal
partition problems). In the convex case, our algorithms do not apply only to the case where the data
fitting term is the MSE or a separable smooth convex function, for which some efficient algorithms implicitly
exploiting sparsity exist (Bach, 2013; Chambolle and Darbon, 2009; Kumar and Bach, 2015), but also to a
general smooth convex term.

Our algorithms are very competitive for deblurring and are applicable to the estimation of piecewise
constant functions on general weighted graphs.

1.1 Notations
Let G = (V,E,w) be an unoriented weighted graph whose edge set is of cardinality m and V = [1, · · · , n].
For convenience of notations and proofs, we encode the undirected graph G, as a directed graph with for
each pair of connected nodes a directed edge in each direction. Thus E denotes a collection of couples (i, j)
of nodes, with (i, j) ∈ E if and only if (j, i) ∈ E. We also have w ∈ R2m and wij = wji. For a set of
nodes A ⊂ V we denote 1A the vector of {0, 1}n such that [1A]i = 1 if and only if i ∈ A. For F ⊂ E a
subset of edges we denote w(F ) =

∑
(i,j)∈F wij . By extension, for two subsets A and B of V we denote

w(A,B) = w
(
(A×B) ∩E

)
the weight of the boundary between those two subsets. Finally we denote C the

set of all partitions of V into connected components.

1.2 General problem considered
1.2.1 Problem formulation

In this work we consider the problem of minimizing functions Q of the form f(x) + λΦ(x) with f : Rn → R
differentiable and Φ : Rn → R a penalty function that decomposes as Φ(x) =

∑
(i,j)∈E wij φ(xi − xj) with

φ : R → R+ a sparsity inducing function such that φ(0) = 0. The general problem writes minx∈Rn Q(x)
with

Q(x)
.
= f (x) +

λ

2

∑
(i,j)∈E

wij φ(xi − xj). (1)

Energies of this form were first introduced by Geman and Reynolds (1992) for image regularization, and
are widely used for their inducing spatial regularity as well as preserving discontinuities. The function φ is
typically the absolute value, which corresponds to the total variation, or one minus the Kronecker delta at
0, which leads to the Mumford-Shah penalty for piecewise constant functions. More generally, for functions

1We distinguish working set algorithms (aka column generation algorithm) that maintain an expansion of the solution which
may have zero coefficients from active set algorithms that maintain an expansion using only non-zero coefficients and discard
all other directions (or variables). This distinction can also be understood in the dual, where working set algorithms (which are
dually cutting plane algorithms) maintain a superset of the active constraints, while active set algorithms maintain the exact
set of active constraints.

2Proximal methods that perform soft-thresholding or the non-convex IHT methods maintain sparse solutions, but typically
need to update a full dimensional vector at each iteration, which is why we do not cite them here. They blend however very
well with active set algorithms.
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φ that have a non-differentiability at 0, the solution x? of (1) has a sparse gradient {x?i − x?j | (i, j) ∈ E}.
As a consequence, these solutions are constant on the elements of a certain partition of V that is typically
coarse, i.e. such that has much fewer elements than |V |. We therefore reformulate the problem for candidate
solutions that have that property. We define the support of a vector x ∈ Rn as the set S(x) of edges
supporting its gradients

S(x)
.
= {(i, j) ∈ E | xi 6= xj}, (2)

and we will use Sc(x)
.
= E\S(x) for the set on which the gradients are zero.

In the general case the approach presented in Section 2 can be easily adapated to functions φ that are
differentiable in R \ {0}, are decreasing on R−, non-decreasing on R+ and such that limh→0,h>0 φ

′(h) > 0
and limh→0,h<0 φ

′(h) < 0. We will limit our scope however to the absolute value.

1.2.2 Decomposition on a partition

Any x ∈ Rn can be written as x =
∑k
i=1 ci1Ai

with Π = {A1, · · · , Ak} ∈ C a partition of V into k connected
components and c ∈ Rk. Conversely we say that x can be expressed by partition Π = (A1, · · · , Ak) if it is in
the set span(Π) = span(1A1

, · · · ,1Ak
) = {

∑k
i=1 ci1Ai

| c ∈ Rk}. We denote

xΠ
.
= arg min
z∈span(Π)

Q(z), (3)

the solution of (1) when x is constrained to be in span(Π). With this notation, we can rewrite problem (1)
as the problem of finding an optimal partition Π?:

Π? .
= arg min

Π∈C
Q(xΠ). (4)

An additional motivation to consider a sequence of partitions and solve sequentially problems with x con-
strained to span(Π) is that the vectors of the form w(B,Bc)−11B are extreme points of the set {x|TV(x) ≤ 1}.
In fact, the total variation is an atomic gauge in the sense of Chandrasekaran et al. (2012) and the vectors
of the form w(B,Bc)−11B are among the atoms of the gauge. We do not develop this more abstract point
of view in the paper, but provide a discussion in appendix A.

Before presenting our approach we review some of the main relevant ideas in the related literature.

1.3 Related work
Mumford and Shah (1989) describe an image as simple if it can be expressed as a piecewise-smooth function
with few and small discontinuities, i.e. if the space can partitioned in regions with short contours and such
that the image varies little in each of these regions. Given an observed noisy image viewed as a function
J : R2 7→ R, Mumford and Shah therefore propose to recover the original image I : R2 7→ R via the
minimization of an energy composed of three terms: a fidelity term quantifying the distortion between I and
J , a part evaluating the smoothness of I outside of the one dimensional boundary Γ, and finally the length
of this boundary, as follows:

min
I,Γ

∫
Ω

(
I(x)− J(x)

)2
dx+ µ

∫
Ω\Γ
‖∇I(x)‖2 dx+ λ

∫
Γ

dl. (MS)

µ and λ are two nonnegative regularization coefficients. When µ → ∞, the smoothness term forces the
function to be infinitely smooth outside of the boundary, i.e. constant on each set Ri of a collection Π =
{Ri}ki=1 of disjoint connected regions. This special instance of the Mumford-Shah problem is also called the
minimal partition problem (Santner et al., 2011) and can be reformulated as

min
Π,I,k

k∑
i=1

∫
Ri

(
Ii − J(x)

)2
dx+ λ length(Π), (MPP)
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with Ii the constant value of I on Ri and length(Π) the total length of the boundaries between pairs of sets
in Π. The setting in which the number of regions k is fixed a priori, typically with k = 2, is known as the
Chan-Vese problem and was first solved using active contour methods (Kass et al., 1988). Chan and Vese
(2001) propose a level-set based method for the binary case, which has the advantage of foregoing edges and
gradient completely, as they are typically very sensitive to noise. This method has since been extended to
the so called multiphase setting where the number of phases, that is of level-sets of the function, is a power
of two (Vese and Chan, 2002). The resolution of those problems is substantially sped up by the introduction
of graph-cut methods, for binary phase (El-Zehiry and Elmaghraby, 2007) and in the multiphase setting
(El-Zehiry and Grady, 2011).

Independently of the work of Mumford and Shah, Rudin, Osher and Fatemi proposed in Rudin et al.
(1992) the idea that the class of functions with bounded variation is a good model for images, and relied
on this idea to motivate the minimization of the total variation under MSE approximation constraint as
an approach for image denoising. The introduction of the total variation had a lasting impact in imaging
sciences and was used for various tasks including denoising, deblurring and segmentation (Chambolle et al.,
2010). The ROF problem can today be viewed as a convex relaxation of the MPP problem. When the total
variation is used as a regularizer3, the ROF problem can be formulated as

min
I∈BV

∫
Ω

(
I(x)− J(x)

)2
dx+ λTV(I), (ROF)

where BV is the space of functions with bounded total variation.
In this paper we consider discretized versions of these formulations, in which the function takes its value

on the node set of a weighted graph G = (V,E,w). Such discretizations are for example naturally obtained
if an a priori fine grained partition of the space in a collection of elementary regions4 R0 is chosen and
the image or function I is constrained to be constant on each of these regions. The edge set E captures
adjacencies between the elements, and the weights w the size of the boundary between each pair of regions.

A first approach to minimizing functions regularized by the total variation is to consider explicitely the
set of edges presenting discontinuities and iteratively update this set using calculus of variations based on
the Euler-Lagrange equations (Aubert et al., 2003). This class of methods is known as active contours.

The level-sets approach (Osher and Sethian, 1988; Tsai and Osher, 2005) takes an opposite point of view
and defines the discontinuity set as the zero set of an auxiliary function. This allows to indirectly handle
continuously the evolution of the curve, thereby avoiding complications associated to making discrete changes
in the structure of the contours.

In the recent literature, problem regularized with the total variation are typically solved using proximal
splitting algorithms (Chambolle and Pock, 2011; Raguet et al., 2013).

Some of the connections between graph-cuts and the total variation were already known in Picard and
Ratliff (1975) but some of these connections have been only fully exploited recently, when Chambolle and
Darbon (2009) and Goldfarb and Yin (2009) among others, exploited the fact that the ROF model can
be reformulated as a parametric maximum flow problem, which they moreover show can be solved by a
divide-and-conquer strategy: This algorithm requires to solve a sequence of max-flow problems on the same
graph, and the algorithm makes it possible to efficiently reuse partial computations performed in each max-
flow problem with a push-relabel algorithm. These results on the total variation are actually an instance of
results that apply more generally to submodular functions (Bach, 2013). Indeed, the intimate relation existing
between the total variation and graph-cuts is due fundamentally to the fact that the former is the Lovász
extension of the value of the cut, which is a submodular function. Beyond the case of the total variation, Bach
(2011) considers regularizers that are obtained as Lovász extensions of symmetric submodular functions and
recent progress made on the efficient optimization of submodular functions produces simultaneously new fast
algorithms to compute proximal operators of the Lovász extension of submodular function (Jegelka et al.,
2013; Kumar and Bach, 2015).

3In Rudin et al. (1992) the TV(I) is minimized under a constraint on the L2 distance between I and J .
4In the context of images these could be though of as super-pixels, for example.
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Problems regularized by the total variation or the Mumford-Shah energy are also related to the Potts
model. Indeed, if the values of the level-set are quantized, the corresponding energy to minimize is that
of a discrete valued conditional random field (CRF), with as many values as there are quantization levels
(Ishikawa, 2003; Tsai and Osher, 2005). A number of optimization techniques exist for CRFs (Szeliski et al.,
2006). One of the fastest is the α-expansion algorithm of Boykov et al. (2001b), which is relying on graph-cut
algorithms (Boykov and Kolmogorov, 2004).

In the literature on sparsity, a number of algorithms have been proposed to take advantage computation-
ally of the sparsity of the solution. In the convex setting, these algorithms count homotopy algorithms such
as the LARS (Efron et al., 2004) or working set algorithms (Friedman et al., 2010; Obozinski et al., 2006;
Roth and Fischer, 2008). It should be noted that the Frank-Wolfe algorithm (Jaggi, 2013), which has been
revived and regained popularity in recent years, is closely related to working set methods and also provides
a rationale to algorithmically exploit the sparsity of solution of optimization problems. Although originally
designed to solve constrained optimization problems, Harchaoui et al. (2015) have shown how a variant can
be naturally constructed for the regularized setting, and apply it to the case of total variation regulariza-
tion. The counterparts of these algorithms in the `0 setting are (a) greedy forward selection approaches that
compute a sequence of candidate solutions by iteratively decreasing the sparsity of the candidate solutions,
such as orthogonal matching pursuit (Mallat and Zhang, 1992), orthogonal least squares (Chen et al., 1991)
and related algorithms (Needell and Tropp, 2009), (b) forward-backward selection approaches such as the
Single Best Replacement (SBR) algorithm (Soussen et al., 2011), based on an `0 penalization or the FoBa
algorithm (Zhang, 2009), which add backwards steps to remove previously introduced variables that are
no longer relevant. See (Bach et al., 2012) for a review. Bach (2013) proposes a number of algorithms to
minimize submodular functions, compute the associated proximal operators of the corresponding Lovász ex-
tensions. In particular, generic primal and dual active set algorithms are proposed to solve a linear regression
problem regularized with the Lovász extension of a submodular function (Bach, 2013, Chap. 7.12).

2 A working set algorithm for total variation regularization
In this section, we consider the problem of solving the minimization of a differentiable function f regularized
by a weighted total variation of the form TV(x) = 1

2

∑
(i,j)∈E wij |xi − xj | with wij some nonnegative

weights. Based on the considerations of Section 1.2.2, we propose a working set algorithm which alternates
between solving a reduced problem of the form minx∈span(Π)Q(x) for Q(x) = f(x) + λTV(x), and refining
the partition Π. We will discuss in Section 2.3 how to solve the reduced problem efficiently, but first present
a criterion to refine the partition Π.

2.1 Steepest binary cut
Given a current partition Π and the solution of the associated reduced problem xΠ = arg minx∈span(Π)Q(x),
our goal is to compute a finer partition Πnew leading to the largest possible decrease of Q. To this end
we consider updates of x of the form xΠ + huB with uB = γB1B − γBc1Bc for some set B ⊂ V and
some scalars h, γB and γBc such that ‖uB‖2 = 1. We postpone to Section 2.2 the precise discussion of
how the choice of B leads to a new partition and focus first on a rationale to choose B, but essentially,
introducing uB in the expansion of x will lead to a new partition in which the elements of Π are split along
the boundary between B and Bc. A natural criterion is to choose the set B such that uB is a descent
direction which is as steep as possible, in the sense that Q decreases the most, at first order. We denote
Q′(x, v) = limh→0 h

−1(Q(x + hv) − Q(x)) so that, when d ∈ Rn is a unit vector, Q′(x, d) denotes the
directional derivative of Q at x ∈ Rn in the direction d. Consequently, choosing B for which the direction
uB is steepest requires solving minB⊂V Q

′(xΠ, uB).
To further characterize Q′ we decompose the objective function: Since the absolute value is differen-

tiable on R∗, setting S
.
= S(xΠ) allows us to split Q into two parts QS and TV|Sc which are respectively
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differentiable and non-differentiable at xΠ:{
QS(x)

.
= f(x) + λ

2

∑
(i,j)∈S wij |xi − xj |,

TV|Sc(x)
.
= λ

2

∑
(i,j)∈Sc wij |xi − xj |.

TV|Sc is a weighted total variation on the graphG but with weights wSc such that [wSc ]i,j
.
= wij for (i, j) ∈ Sc

and 0 for (i, j) ∈ S. We extend the previous notations and define wSc(A,B)
.
= wSc(A×B) = w((A×B)∩Sc).

Proposition 1. For x ∈ Rn, if we set S = S(x) then the directional derivative in the direction of 1B is

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1B〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. See appendix B.

Considering the case x = xΠ, then for S = S(xΠ), ∇QS(xΠ) is clearly orthogonal to span(Π) and thus
to 1. Therefore, by the previous proposition, finding the steepest descent direction of the form uB requires
solving

min
B⊂V

(γB + γBc)Q′(xΠ,1B)

To keep a formulation which remains amenable to efficient computations, we will assume that γB + γBc is
constant or ignore this factor5. This leads us to define a steepest binary cut as any cut (BΠ, B

c
Π) such that

BΠ ∈ arg min
B⊂V

〈∇QS(xΠ),1B〉+λwSc(B,Bc). (5)

Note that since Q′(x,1∅) = 0, we have minB⊂V Q
′(x,1B) ≤ 0. If ∅ is a solution to (5), we set BΠ = ∅. As

formulated, it well known at least since Picard and Ratliff (1975) that problem (5) can be interpreted as a
minimum cut problem in a suitably defined flow graph. Indeed consider the graph Gflow = (V ∪{s, t}, Eflow)
illustrated in Figure 1, where s and t are respectively a source and sink nodes, and where the edge set Eflow
and the associated nonzero (undirected) capacities c ∈ R|Sc|+n are defined as follows

Eflow =


(s, i),∀i ∈ ∇+, with csi = ∇iQS(x) ,

(i, t),∀i ∈ ∇−, with cit = −∇iQS(x) ,

(i, j),∀(i, j) ∈ Sc, with cij = λwij ,

(6)

where ∇+
.
= {i ∈ V | ∇iQS(x) > 0} and ∇−

.
= V \∇+. The vector ∇QS(x) is directly computed as

∇QS(x) = ∇f(x) + 1
2λD

>y, with D ∈ R2m×n the weighted edge incidence matrix whose entries are equal
to D(i,j),k

.
= wij(1{i=k} − 1{j=k}) and y ∈ R2m is the vector whose entries are indexed by the elements of E

and such that y(i,j)
.
= sign(xi − xj) with the convention that sign(0) = 0.

As stated in the next proposition, finding a minimal cut in this graph provides us with the desired steepest
binary cut.

Proposition 2. Let S = S(x) then (C, Vflow\C) is a minimal cut in Gflow if and only if C\{s}, and its
complement in V are minimizers of B 7→ Q′(x,1B).

5γB and γBc could otherwise be determined by requiring that 〈1, uB〉 = 0. More rigorously, descent directions considered
could be required to be orthogonal to span(Π), but this leads to even less tractable formulations, that we therefore do not
consider here.
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s

t

i

j
λwij

∂QS(x)
∂xi

−∂QS(x)
∂xi

nodes in ∇−

nodes in ∇+

edge in Sc

Figure 1: Directed graph for which finding a maximal flow is equivalent to solving (5). Neighboring nodes
with different values of x in the original graph are linked by an undirected edge with capacity λwij , nodes
with non-negative gradient are linked to the source, and nodes with negative gradient to the sink with
capacity |∇QS(x)|.

This result is a well-know result that was first discussed in Picard and Ratliff (1975). We refer the reader
to Kolmogorov and Zabih (2004) for a proof.

Note that the min-cut/max-flow problem of Figure 1 decouples on each of the connected components of
the graph G|Sc

.
= (V, Sc) and that as a result solving (5) is equivalent to solving separately

min
C⊂A
〈∇QS(xΠ), 1C〉+ λw(C,A\C)

for each set A that is a connected components of G|Sc . The binary steepest cut thus actually reduces to
computing a steep cut in each connected component of the graph, and they can all be computed in parallel.
Let us insist that the connected components of G|Sc are often but not always the elements of Π since they
can be unions of adjacent elements of Π when they share the same value.

We can now characterize the optimality of xΠ or of the corresponding partition Π, based on the value of
the steepest binary partition:

Proposition 3. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and Q′(x,1V ) = 0.

Proof. See appendix B

Note that the rationale we propose to choose the new direction 1B is different than the one typically
used for working set algorithms in the sparsity literature and variants of Frank-Wolfe. When considering
the minimization of an objective of the form f(x) + λΩ(x), where f : Rn → R is a differentiable function
and Ω is a norm, the optimality condition in terms of subgradient is − 1

λ∇f(x) ∈ ∂Ω(x), where ∂Ω(x)
is the subgradient of the norm Ω at x. A classical result from convex analysis is that ∂Ω(x) = {s ∈
Rn | 〈s, x〉 = Ω(x) and Ω◦(s) ≤ 1} where Ω◦ denotes the dual norm (Rockafellar, 1970, Thm. 23.5). In
particular, the subgradient condition is not satisfied if Ω◦(−∇f(x)) ≥ λ and since Ω◦(s) = maxΩ(ξ)≤1〈s, ξ〉
then argmaxΩ(ξ)≤1〈−∇f(x), ξ〉 provides a direction in which the inequality constraint is most violated. This
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direction is the same as the Frank-Wolfe direction for the optimization problem minx:Ω(x)≤κ f(x), also the
same as the direction proposed in a variant of the Frank-Wolfe algorithm proposed by Harchaoui et al. (2015)
for the regularized problem, and again the same as the direction that would be used in the primal active
set algorithm of Bach (2013, Chap. 7.12) for generic Lovász extensions of submodular function, which is
essentially a fully corrective and active-set version of the algorithm of Harchaoui et al. (2015). This rationale
extends to the case where Ω is more generally a gauge and is most relevant when it is an atomic norm or gauge
(Chandrasekaran et al., 2012), which we discuss in appendix A. For decomposable atomic norms (Negahban
et al., 2009) that have atoms of equal Euclidean norm, one can check that the steepest descent direction that
we propose and the Franck-Wolfe direction are actually the same. However, for the the total variation the
two differ. The Frank-Wolfe direction leads to the choice B? = arg maxB⊂V −w(B,Bc)−1〈∇f(xΠ),1B〉. We
show in Section 4.1 and via results presented in Figure 6 that using the steepest cut direction outperforms
the Frank-Wolfe direction.

2.2 Induced new partition in connected sets and new reduced problem
For Π = (A1, · · · , Ak), BΠ is chosen so that the addition of a term of the form huB = hγB1B−hγBc1Bc to x =∑k
i=1 ci1Ai

decreases the objective function Q the most. At the next iteration, we could thus consider solving
a reduced problem that consists of minimizing Q under the constraint that x ∈ span(1A1 , . . . ,1Ak

,1B) with
B = BΠ. But there is in fact a simpler and more relevant choice. Indeed, on the set span(1A1 , . . . ,1Ak

,1B),
the values xi1 , xi2 , xi3 and xi4 with i1∈Aj ∩B, i2∈Aj ∩Bc, i3∈Aj′∩B and i4∈Aj′∩Bc are a priori coupled;
also, if Aj ∩ B has several connected components i 7→ xi must take the same value on these components.
These constraints seem unnecessarily restrictive.

Consider SΠ
.
=
⋃

(A,A′)∈Π2 ∂(A,A′) with ∂(A,A′)
.
= (A×A′) ∩E. With the notion of support S(x) that

we defined in (2) we actually have span(Π) = {x ∈ Rn | S(x) ⊂ SΠ}. Now, if x ∈ span(1A1
, . . . ,1Ak

,1B),
we have in general S(x) ⊂ Snew

.
= SΠ ∪ ∂(B,Bc), which corresponds to allowing a larger support. But then

it makes sense to allow x to remain in the largest set with this maximal support Snew, that is equivalently
to stay in the vector space XSnew

.
= {x′ | S(x′) ⊂ Snew}. But, if we now define Πnew as the partition of

V defined as the collection of all connected components in G of all sets Aj ∩ BΠ and Aj ∩ BcΠ for Aj ∈ Π,
then it is relatively immediate that span(Πnew) = XSnew

. The construction of Πnew from Π is illustrated in
Figure 2.

A1 A2

(a) Initial partition Π = {A1, A2}

B

B

(b) Steepest Binary Cut B

A1 A2

A3 A4

A5

(c) Πnew = {A1, A2, A3, A4, A5}

Figure 2: Illustration of the induced new partition. From an initial partition Π, the steepest binary cut B
induced a new partition Πnew. The solid line represent the initial contours S, and the dashed line

the new contours Snew \ S introduced by B. Note that the binary partition induced by B can more
than double the number of resulting components.

We therefore set Πnew to be the new partition and solve the reduced problem constrained to span(Πnew).
Note that in general we do not have S(xΠ) = SΠ, because the total variation regularization can induce that
the value of xΠ on several adjacent elements of Π are the same.

The following result shows that if a non-trivial cut (BΠ, B
c
Π) was obtained as a solution to (5) then
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(a) (b) (c) (d) (e)

Figure 3: Two first iterations of cut pursuit for the ROF problem on the picture in (a). Images (b) and (d)
represent the new cut at iterations 1 and 2 with BΠ and BcΠ respectively in black and white, and (c) and
(e) represent the partial solution in levels of gray, with the current set of contours S in red. The contours
induced by the cut in (b) (resp. (d)) are superimposed on (c) (resp. (e)).

the new reduced problem has a solution xΠnew
= arg minx∈span(Πnew)Q(x) which is strictly better than the

previous one.

Proposition 4. If BΠ 6= ∅, Q(xΠnew
) < Q(xΠ).

Proof. We clearly have
span(Π) ⊂ span(1A1

, . . . ,1Ak
,1BΠ

) ⊂ span(Πnew),

so that
Q(xΠnew) = min

x∈span(Πnew)
Q(x) ≤ min

x∈span(Π)
Q(x) = Q(xΠ).

Moreover, if BΠ 6= 0, then Q′(xΠ,1B) < 0, which entails that there exists ε > 0 such that Q(xΠnew
) ≤

Q(xΠ + ε1B) < Q(xΠ). This completes the proof.

Algorithm 1: Cut Pursuit
Initialize Π← {V }, xΠ ∈ arg minz=c1V ,c∈R Q(z), S ← ∅
while minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc) < 0 do

Pick BΠ ∈ arg minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc)
Π← {BΠ ∩A}A∈Π ∪ {BcΠ ∩A}A∈Π

Π← connected components of elements of Π
Pick xΠ ∈ arg minz∈span(Π)Q(z)
S ← S(xΠ)

return (Π, xΠ)

We summarize the obtained working set scheme as Algorithm 1, and illustrate its two first steps on a
ROF problem in Figure 3. Propositions 4 and 2 together show that this algorithm guarantees a monotonic
decrease of the objective function Q and convergence to the optimum Π?. In terms of complexity, at each
iteration Πnew has at least one more component than Π, so that the algorithm converges in at most n steps,
in the worst case. We now discuss how to exploit the sparse structure of xΠ to solve the reduced problem
efficiently.

2.3 A reduced graph for the reduced problem
Let Π be a coarse partition of V into connected components. We argue that minz∈span(Π)Q(z) can be solved
efficiently on a smaller weighted graph whose nodes are associated with the elements of partition Π, and
whose edges corresponds to pairs of adjacent elements in the original graph. Indeed, consider the graph
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node of V

edge of E

node of V

edge of E

n1

n2

n3

n4

n5

1

2

1

2

3

1
3 5

{n1} {n2,n3} {n3,n4}

Figure 4: Example of reduced graph. Left: graph G with weights (wij)(i,j)∈E on the edges, middle: partition
Π of G into connected components, right: reduced graph G with weights (wAB)(A,B)∈E on the edges.

G = (V, E) with V = Π and E = {(A,B) ∈ V2 | ∃(i, j) ∈ (A×B) ∩ E}. Figure 4 shows an example of graph
reduction on a small graph. For x ∈ span(Π) we can indeed express TV(x) simply:

Proposition 5. For x =
∑
A∈Π cA1A we have TV(x)=TVG(c) with TVG(c)

.
= 1

2

∑
(A,B)∈E w(A,B) |cA−cB |.

Proof.

2TV(x) =
∑

(i,j)∈E

wij |xi − xj | =
∑

(i,j)∈E

wij
∑

(A,B)∈Π2

1{i∈A,j∈B} |cA − cB | =
∑

(A,B)∈Π2

|cA − cB |
∑

(i,j)∈E∩(A×B)

wij ,

hence the result using the definition of w(A,B).

Note that if TV is the total variation associated with the weighted graph G with weights (wij)(i,j)∈E
then TVG is the total variation associated with the weighted graph G and the weights

(
w(A,B)

)
(A,B)∈E .

Denoting f̃ : c 7→ f(
∑
A∈Π cA1A), the reduced problem is equivalent to solving minc∈Rk f̃(c) + λTVG(c) on

G. If Π is a coarse partition, we have |E| � 2m and computations involving TVG are much cheaper than
those involving TV. As illustrated in Section 2.4, the structure of f̃ can often be exploited as well to reduce
the computational cost on the reduced problem. The construction of the reduced graph itself G is cheap
compared to the speed-ups allowed, as it is obtained by computing the connected components of the graph
(V,E\S(x)), which can be done in linear time by depth-first search. Note that once the reduced problem is
solved if cΠ ∈ arg minc f̃(c) + λTVG(c) then S(xΠ) is directly computed as S(xΠ) =

⋃{
∂(A,A′) | (A,A′) ∈

E , cA 6= cA′
}
.

2.4 Solving linear inverse problems with TV
A number of classical problems in image processing such as deblurring, blind deconvolution, and inpainting
are formulated as ill-posed linear inverse problems (Chan et al., 2005), where a low TV prior on the image
provides appropriate regularization. Typically if x0 is the original image, H a blurring linear operator
typically computed as a convolution on the image, ε additive noise, and y = Hx0 + ε the degraded image,
this leads to problems of the form

x? = arg min
x∈Rn

1

2
‖Hx− y‖2 + λTV(x) (7)

Since n is large, manipulating the matrices H or Hᵀ directly should be avoided, but if the forward operator
x 7→ Hx is a convolution, it can be computed quickly using for example the fast Fourier transform. First
order optimization algorithms, such as proximal methods, only require the computation of the gradient
HᵀHx−Hᵀy of f and can be used to solve (7) efficiently. In the case of a blurring operator with adequate
symmetry, HᵀHx is also a blurring operator. These fast computations of x 7→ Hx can be exploited in our
algorithm to compute the Hessian and loading vector of the reduced problem very efficiently. Indeed, for a
k-partition Π of V we denote K ∈ {0, 1}n×k the matrix whose columns are the vectors 1A for A ∈ Π. Any
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x ∈ span(Π) can be rewritten as Kc with c ∈ Rk. The gradient of the discrepancy function with respect to
c writes: ∇c1/2 ‖HKc− y‖2 = KᵀHᵀHKc −KᵀHy. As a result, the reduced problem can be solved by a
similar forward backward scheme of much smaller size, with parameters KᵀHᵀHK and KᵀHy, which are
of size k × k and k respectively, and which can be computed in O(k2 n log n) time. Indeed, each column of
HᵀK and HHᵀK can be computed in O(n log n) time using the FFT, which saves an order of magnitude.

2.5 Complexity analysis
The computational bottlenecks of the algorithm could a priori be (a) the computation of the steepest binary
cut which requires to solve a min cut/max flow problem, (b) the cost of solving the reduced problem, (c)
the computation the reduced graph itself, (d) the number of global iterations needed.

(a) The steepest binary cut is obtained as the solution of a max-flow/min-cut optimization problem. It
is well-known that there is a large discrepancy between the theoretical upper bound on the complex-
ity of many graph-cut algorithms and the running times observed empirically, the former being too
pessimistic. In particular, the algorithm of Boykov et al. (2001a) has a theoretical exponential worst
case complexity, but scales essentially linearly with respect to the graph size in practice. In fact, it is
known to scale better than some algorithms with polynomial complexity, which is why we chose it.

(b) Solving the reduced problem can be done with efficient proximal splitting algorithms such as Raguet
and Landrieu (2015), which is proved to reach a primal suboptimality gap of ε in O(1/ε) iterations;
in practice, the observed convergence rate is almost linear. Preconditioning greatly speeds up conver-
gence in practice. Moreover, the problems induced on the reduced graph can typically be solved at a
significantly reduced cost: in particular, as discussed in section 2.4, for a quadratic data fitting term,
the gradient in the subgraph can be computed in O(k2) time, based on a single efficient FFT-based
computation of the Hessian per global iteration which itself takes O(k2n log n) time. For problems
with coarse solutions, this algorithm is only called for small graphs so that this step only contributes
to a small fraction of the the running time.

(c) Computing the reduced graph, requires to compute the connected components of the graph obtained
when removing the edges in S, and the weights w(A,B) between all paris of components (A,B). These
can be efficiently performed in O(m+ n) through a depth-first exploration of the nodes of the original
graph.

(d) The main factor determining the computation time is the number of global iterations needed. In the
worst case, this is O(n). In practice, the number of global iterations seems to grow logarithmically
with the number of constant regions at the optimum. If for simple images or strongly regularized
natural images 4 or 5 cuts seems to suffice, a very complex image with very weak regularization might
need many more. In the end, our algorithm is only efficient on problems whose solutions do not have
too many components. E.g. in the deblurring task, it is competitive for solutions with up to 10, 000
components for a 512× 512 image.

2.6 Regularization path of the total variation
Since the regularization coefficient λ is difficult to choose a priori, it is typically useful to compute an
approximate regularization path, that is the collection of solutions to (1) for a set of values λ0 > · · · > λj > 0.
For `1 sparsity, Efron et al. (2004) showed how a fraction of the exact regularization path can be computed
in a time of the same order of magnitude as the time need to compute of the last point. In general, when
the path is not piecewise linear, the exact path cannot be computed, but similar results have been shown
for group sparsity (Obozinski et al., 2006; Roth and Fischer, 2008). The case of total variation has been
studied as well for 1-dimensional signals in Bleakley and Vert (2011). We propose a warm start approach to
compute an approximate6 solution path for the total variation.

6In fact for a quadratic data fitting term regularized by the total variation, the regularization path is piecewise linear and
could thus in theory computed exactly, with a scheme similar to the LARS algorithm (Efron et al., 2004). It should however
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The rationale behind our approach is that, if λi and λi+1 are close, the associated solutions x?i and
x?i+1 should also be similar, as well as their associated optimal partition, which we will refer to as Π?

i and
Π?
i+1. Consequently, it is reasonable to use a warm-start technique which consists in initializing Algorithm 1

with Π?
i to solve the problem associated with λi+1 and to expect that it will converge in a small number of

binary cuts. It is important to note, that while our algorithm lends itself naturally to warm starts, to the
best of our knowledge similar warm-start techniques do not exist for proximal splitting approaches such as
Raguet et al. (2013) or Chambolle and Pock (2011). Indeed solutions whose primal solutions are close can
have vastly different auxiliary/dual solutions, and in our experiments no initialization heuristics consistently
outperformed a naive initialization.

3 Minimal partition problems
We consider now a generalization of the minimal partition problem of the form minx∈Rn Q(x) with Q(x) =
f(x) +λΓ(x) where Γ(x)

.
= 1

2

∑
(i,j)∈S(x) wij the Mumford-Shah penalty. This non-convex non-differentiable

problem being significantly harder than the previous one, we restrict the functions f we consider to be
separable functions of the form f(x) =

∑
i∈V fi(xi) with fi : R 7→ R continuously differentiable and convex.

We call the corresponding problem generalized minimal partition problem.
Inspired by greedy feature selection algorithms in the sparsity literature and by the working set algorithm

we presented for TV regularization, we propose to exploit that |Π∗| is not too large to construct an algorithm
that greedily optimizes the objective by adding and removing cuts in the graph.

Indeed, the problem that we consider has a fixed regularization coefficient λ, and so its natural counterpart
for classical sparsity is the problem of minimizing an objective of the form f(x) + λ‖x‖0 which subsumes
AIC, BIC and other information criteria. The algorithmic approach we consider is thus the counterpart of a
very natural greedy algorithm to minimize the former objective, which surprisingly is almost absent from the
literature, perhaps for the following reasons: On the one hand, work on stagewise regression and forward-
backward greedy algorithms, which both add and remove variables, goes back to the 60ies (Efroymson, 1960),
but the algorithms then considered were based on sequences of tests as opposed to a greedy minimization of
a penalized criterion. On the other hand, the literature on greedy algorithm for sparse models has almost
exclusively focused on solving the constrained problem minx f(x) s.t. ‖x‖0 ≤ k, with algorithms such as
OMP, Orthogonal least squares (OLS), FoBa, and CoSamp, which can alternatively be viewed as algorithms
that are greedily approximating the corresponding Pareto frontier. A notable exception is IHT.

A very natural variant of OLS solving minx f(x)+λ ‖x‖0 can however be obtained by adding the `0 penalty
to the objective. This algorithm was formally considered in Soussen et al. (2011) under the name Single
Best Replacement (SBR), in reference to the similar Single Maximum Likelihood Replacement (SMLR) of
Kormylo and Mendel (1982). At each iteration, the algorithm considers adding or removing a single variable,
whichever reduces most the value of the objective. It should be noted that while the similar OLS and OMP
are forward algorithms, SBR is a forward-backward algorithm, which can remove a variable provided doing
so only increases f by less than λ.

We argue in the following sections that a similar natural algorithm can be designed for the generalized
minimal partition problem, where forward steps split existing components and backward steps merge two
components (with the further possibility of combined merge-resplit moves). We call this algorithm `0-Cut
Pursuit, since it is also naturally very similar to Cut Pursuit.

3.1 A greedy algorithm for regularized minimal partition

As for the working set algorithm, we propose to build an expansion of x of the form x =
∑k
i=1 ci1Ai , for

Π = (A1, · · · , Ak) a partition of V , by recursively splitting some of the existing sets A ∈ Π. Assume that we
split the set of existing regions (Aj)1≤j≤k by introducing a global cut (B,Bc) for some set B ⊂ V . This cut
induces a cut on each element Aj of the form (Aj ∩B,Aj ∩Bc). Two simple properties should be noted: (a)

be expected that this path has many point of discontinuity of the gradient, which entails that the cost of computation of the
whole path is likely to be prohibitively high. We therefore do not consider further this possibility.
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the additional boundary length incurred with the cut is simply the sum of the lengths of the cuts induced
within each element Aj and is precisely of the form

∑k
j=1 w(Aj ∩B,Aj ∩Bc) — the boundary of previously

accepted component is thus “free” (cf Figure 2), (b) if the value of x is re-optimized under the constraint that
it should be constant on each of the elements Aj ∩B and Aj ∩Bc of the new partition, then the separability
of f entails that the optimization is independent on each set Aj . As a consequence of (a) and (b) the choice
of an optimal cut reduces to independent choices of optimal cut on each set Aj as defined by the objective

min
B⊂V

min
(hj ,h′j)

∑
i∈Aj∩B

fi(hj) +
∑

i∈Aj∩Bc

fi(h
′
j) + λw(Aj ∩B,Aj ∩Bc).

We should therefore design an algorithm that cuts a single set A at a time. To simplify notations we
consider hereafter the case Π = {V }, which corresponds to the very first cut of the algorithm.

3.1.1 Optimal binary cut with alternating minimization

In the same way that we defined the steepest binary cut in the working set algorithm, we define the optimal
binary partition (B,Bc) of V such that Q optimized over span(1B ,1Bc) is as small as possible. Ideally, we
should impose that B and Bc have a single connected component each, because as argued in section 2.3,
it does not make sense to impose that xi should have the same values in different connected components.
However, since this constraint is too difficult to enforce, we first ignore it and address it later with post-
processing. Note however that the penalization of the length of the boundary between B and Bc should
strongly discourage the choice of sets B with many connected components.

Since Γ(h1B+h′1Bc) = Γ(1B) = w(B,Bc), and ignoring the connectedness constraint, the corresponding
optimization problem is of the form

min
B⊂V

min
h,h′∈R

∑
i∈B

fi(h) +
∑
i∈Bc

fi(h
′) + λw(B,Bc). (8)

This problem is a priori hard to solve in general, because B 7→ minh,h′∈R f(h1B+h′1Bc) is not a submodular
function. However, when h, h′ are fixed, the assumption that f is separable entails that B 7→ f(h1B+h′1Bc)
is a modular function, so that the objective can be optimized with respect to B by solving a max-flow
problem. Similarly as for the flow problem (6) we define the flow graph Gflow = (V ∪ {s, t}, Eflow) whose
edge set and capacities are defined by:

Eflow =


(s, i),∀i ∈ ∇+, with csi = fi(h)− fi(h′),
(i, t),∀i ∈ ∇−, with cit = fi(h

′)− fi(h),

(i, j),∀(i, j) ∈ E, with cij = λwij ,

(9)

where ∇+
.
= {i ∈ V | fi(h) > fi(h

′)} and ∇−
.
= V \∇+.

The smoothness and convexity of f with respect to h and h′ guarantee that the objective can be min-
imized efficiently with respect to these variables. A local minimum of the objective can thus be obtained
efficiently by alternatively minimizing with respect to B and (h, h′) as suggested by Bresson et al. (2007) or
El-Zehiry et al. (2011).

3.1.2 From binary cut to partition in connected components

Like the working set algorithm proposed for the total variation, `0-Cut Pursuit recursively splits the com-
ponents of the current partition Π. The sets B and Bc obtained as a solution of (8) are not necessarily
connected sets, but splitting B and Bc into their connected components and assigning each connected com-
ponent its own value obviously does not change the contour length Γ and can only decrease f . Given the
collection of connected components A1, . . . , Ak of B and Bc we therefore set x = h11A1

+ . . .+ hk1Ak
with

hj the minimizer of h 7→
∑
i∈Aj

fi(h). Note that each hi could possibly be computed in parallel given the
separability of f .
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3.1.3 Backward step

In greedy algorithms for plain sparsity, backward steps remove variables to reduce the support of the solution.
In our case, the appropriate notion of support is S(x), which is formed as the union of the boundaries between
pairs of components. A backward step is a step that reduces the total boundary length (or size). The most
natural way to obtain this is by merging two adjacent components. Using the same ideas as the ones proposed
in Soussen et al. (2011) for plain sparsity, we consider backward steps when the reduction of penalty obtained
is larger than the increase of f .

Simple merge step: If a pair of adjacent components (A,B) is merged into a single constant component,
Γ(x) decreases by w(A,B) and the merge is worth it if f increases by less than λw(A,B). It should be noted
that the merge step considered does not in general not correspond to canceling a previous cut.

A shortcoming of the simple merge step is that while the removal of boundaries between components
is considered, a shift or other type of remodeling of the created boundaries is not possible. But since
the optimal binary computation only considers binary partitions, the shape of the components might be
suboptimal without justifying, however, a complete removal. We therefore consider another kind of step:

Merge-resplit: This step is a combination of a merge step immediately followed by a new cut step on the
merged components. It is a “backward-then-forward” step, which can be worth it even if the corresponding
backward step taken individually is not decreasing the objective. It amounts to solve the corresponding min
cut/max flow problem

min
zi∈{0,1},i∈A∪B

∑
i∈A∪B

zifi(xA) + (1− zi)fi(xB) +
λ

2

∑
(i,j)∈(A×B)∩E

wij |zi − zj |.

Note that finding the best way to resplit is very similar to what Boykov et al. (2001b) call an α-β swap
in the context of energy minimization in Markov random fields: nodes assigned to other components7 than
A or B keep their current assignments to components, but the nodes of A ∪ B are reassigned to A or B so
that the boundary between A and B minimizes the above energy. Note that the merge-resplit step includes
the possibility of a simple merge step (without resplitting), since all elements can be “swapped” in the same
set by the α-β swap , so that the new boundary is effectively empty. Note that during the merge-resplit
step the value of xA and xB is held constant and only updated upon completion of the step. In fact, in a
number of cases, it might be possible to iterate such steps for a given pair (A,B). We do not consider this
computationally heavier possibility.

Remark: The work we presented in this section focussed on a formulation in which the Mumford-Shah
total boundary size is penalized and not constrained. It is worth pointing out that trying to solve directly
the constrained case seems difficult: indeed, designing algorithms that are only based on forward steps (e.g.,
in the style of OMP, OLS, etc) might not succeed, because of the dependence between the cuts that need
to be introduced to form the final solution. Based on similar ideas as the ones used in `0-Cut Pursuit, we
designed and tested an algorithm generalizing the FoBa algorithm (Zhang, 2009). The obtained algorithm
tended to remain trapped in bad local minima and yielded solutions that were much worse than the ones
based on the penalized formulation.

3.2 Implementation
Similarly as in the convex case, `0-Cut Pursuit maintains a current partition Π that is recursively split and
computes optimal values for each of its components. It is comprised of three main steps: the splitting of the
current partition, the computation of the connected components and their values, and a potential merging
step, when necessary.

Splitting. For each component an optimal binary partition (B,Bc) is obtained by solving (8) as described
in section 3.1.1: we alternatively minimize the objective with respect to B and with respect to (h, h′) until
either B does not change or a maximum number of iterations is reached. In practice, the algorithm converges

7In the context of MRFs the components correspond to a number of different classes fixed in advance and are in general not
connected.
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in 3 steps most of the time. The choice of an appropriate initialization for B is non trivial. Since the problem
in which λ = 0 is often simpler, and can in a number of cases be solved analytically, we chose to use that
solution to initialize our alternating minimization scheme. Indeed, for λ = 0, and when f is a squared
Euclidean distance f : x 7→ ‖x − x0‖22 the objective of (8) is the same as the objective of one dimensional
k-means with k = 2; in this particular setting, the problem reduces to a change-point analysis problem,
and an exact solution can be computed efficiently by dynamic programming (Bellman, 1973). This can be
generalized to the case of Bregman divergences and beyond (Nielsen and Nock, 2014).

As described in section 3.1.2, the partition Π is updated by computing its connected components after it
is split by (B,Bc). Subroutine 1 gives the procedure algorithmically.
It is important to note that this is the only operation that involves the original graph G, and hence will
be the computational bottleneck of the algorithm. Fortunately since f is separable, this procedure can be
performed on each component in parallel.
Components saturation. We say that a component is saturated if the empty cut is an optimal binary cut.
A saturated component will no longer be cut (because the separability of f entails that other cuts do not
change the fact that it is saturated) unless it is first involved in a merge or merge-resplit step. A partition
Π is said to be saturated if all its components are saturated.
Simple merge. This backward step consists in checking for each neighboring components A and B in Π
whether merging them into a single component decreases the energy. If we denote Π−(A,B) the partition
obtained by merging A and B, the corresponding decrease in energy δ−(A,B) is

δ−(A,B) = f(xΠ)− f(xΠ−(A,B)) + λw(A,B),

with Π−(A,B)
.
= Π\{A,B}∪{A∪B}. This value is computed for each neighboring components, and stored

in a priority queue. Each pair that provides a non negative decrease is merged, and δ− is updated for the
neighbors of A and B to reflect the change in value and graph topology. This operation scales with the size
of the reduced graph only, and therefore can be performed efficiently for problems with a coarse solution.
Merge-resplit. This more complex backward steps, already described in 3.1.3 is computationally signifi-
cantly more intensive as it is performed on the edges of the full graph, by contrast with the simple merge
which only considers the edges of the reduced graph. As a consequence, while all potential simple merge
steps can be precomputed and performed based on a priority queue by merging first the pair of component
yielding the largest decrease in objective value, this would be too computationally heavy here and we perform
boundary changes only once for each pair of neighbors in the graph E . The pseudocode of the procedure is
detailed in subroutine 3.

Algorithm structure: We present in Algorithm 2 and 3 implementations of the algorithm using re-
spectively only simple merge or merge-resplit steps. We chose to alternate between splitting all component
at once (possibly in parallel) and then iterating backward steps over all adjacent pairs of components. This
allows for the splitting to be done in parallel directly on the original flow graph, thus avoiding the memory
overheads associated with constructing a new flow graph for each new component. It would have been theo-
retically possible to be more greedy and to perform a single forward step (corresponding to splitting a single
region) at a time or a single backward step at a time by maintaining a global priority queue and greedily
choosing the most beneficial. However we did not implement this option because the overheads cost would
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have been prohibitive.

Subroutine 1: [Π, E ]← split(Π, E , A)

Split component A with a binary cut.
Π← Π \ {A}
B ← arg minB⊂A,h,h′

∑
i∈B fi(h) +

∑
i∈Bc fi(h

′)

while not_converged do
x← arg minh

∑
i∈B fi(h)

x′ ← arg minh
∑
i∈A\B fi(h)

B ← arg minB⊂A
∑
i∈B fi(x) +

∑
i∈Bc fi(x

′) + λw(B,Bc)

[B1, · · · , Bk]← connected components of B and A \B
Π← Π ∪ {B1, · · · , Bk}
E ← updated adjacency structure return Π;

Subroutine 2: [Π, E ]← simple_merge(Π, E , A,B)

Merges components A and B
Π← Π \ {A,B} ∪ {A ∪B}
E ← E \

{
{A,B}

}
for C neighbors of A or B do
E ← E ∪

{
{A ∪B,C}

}
Subroutine 3: [Π, E ]← merge_resplit(Π, E , A,B)

Perform a merge-resplit operation on components A and B.
[Π, E ]← simple_merge(Π, E , A,B)
Π← Π \ {A ∪B}
xA ← arg minh

∑
i∈A fi(h)

xB ← arg minh
∑
i∈B fi(h)

C ← arg minC⊂A∪B
∑
i∈C fi(xA) +

∑
i∈A∪B\C fi(xB) + λw(C,A ∪B \ C)

[C1, · · · , Ck]← connected components of C and A ∪B \ C
Π← Π ∪ {C1, · · · , Ck}
E ← updated adjacency structure

Algorithm 2: Simple merge variant (`0-CPm)
Initialization: Π0 = {V }, E = ∅
while Π is not saturated do

for A ∈ Π in parallel do
if A is not saturated then

[Π, E ]← split (Π, E , A)

Compute δ−(A,B) for all (A,B) ∈ E
while max(A,B)∈E δ−(A,B) > 0 do

(A,B) = arg max(A′,B′)∈E δ−(A′, B′)
[Π, E ]← merge (Π, E , A,B)
Update δ−(A,B) for all (A,B) ∈ E

Algorithm 3: Merge-resplit variant (`0-CPs)
Initialization: Π0 = {V }, E = ∅
while Π is not saturated do

for A ∈ Π in parallel do
if A is not saturated then

[Π, E ]← split (Π, E , A)

E ′ ← E
for {A,B} ∈ E ′ do

if {A,B} ∈ E then
[Π, E ]← merge_resplit
(Π, E , A,B)
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(a) Original (b) PSNR : 12.1 (c) PSNR : 20.1

(d) Original (e) PSNR : 15.9 (f) PSNR : 27.2

(g) Original (h) PSNR : 23.3 (i) PSNR : 24.5

Figure 5: Benchmark on the deblurring task. Left column : original images, middle column : blurred images,
right column : images retrieved by Cut Pursuit (CP)

4 Experiments

4.1 Deblurring experiments with TV
To assess the performance in terms of speed of our working set algorithm for the total variation regular-
ization, we compare it with several state-of-the-art algorithms on a deblurring task of the form presented
in section 2.4. Specifically, given an image x, we compute y = Hx + ε, where H is a Gaussian blur ma-
trix, and ε is some Gaussian additive noise, and we solve (1) with a total variation regularization based on
the 8-neighborhood graph built on image pixels. We use three 512 × 512 images of increasing complexity
to benchmark the algorithms: the Shepp-Logan phantom, a simulated example and Lena, all displayed in
Figure 5. For all images the standard deviation of the blur is set to 5 pixels.

4.1.1 Competing methods

Preconditionned Generalized Forward Backward (PGFB). As a general baseline, we consider a recent
preconditioned generalized forward-backward splitting algorithm by Raguet and Landrieu (2015) whose prior
non-preconditioned version was shown to outperform state-of-the art convex optimization on deblurring tasks
in Raguet et al. (2013), including among others the algorithm of Chambolle and Pock (2011). Raguet and
Landrieu (2015) demonstrate the advantages of the preconditioning strategy used over other adaptive metric
approaches, such as the preconditioning proposed in Pock and Chambolle (2011) and the inertial acceleration
developed in Lorenz and Pock (2014).
Accelerated forward-backward with parametric max-flows (FB+). Since efficient algorithms that
solve the ROF problem have been the focus of recent work, and given that the ROF problem corresponds to
the computation of the proximal operator of the total variation, we also compare with an implementation
of the accelerated forward-backward algorithm of Nesterov (2007). To compute the proximal operator, we
use an efficient solver of the ROF problem based on a reformulation as a parametric max-flow proposed by
Chambolle and Darbon (2009). The solver we use is the one made publicly available by the authors, which
is based on a divide and conquer approach that works through the resolution of a parametric max-flow
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problem. This implies computing a sequence of max-flow problems, whose order make it possible to re-use
the search trees in the Boykov et al. (2001b) algorithm, thereby greatly speeding up computations.
Cut Pursuit with Frank-Wolfe descent direction (CPFW).We consider an alternative to the steepest
binary partition to split the existing components of the partial solution: Inspired by the conditional gradient
algorithm for regularized problems proposed by Harchaoui et al. (2015), consider a variant of Cut Pursuit
in which we replace the steepest binary cut by the cut (B,Bc) such that 1B is the Frank-Wolfe direction
for the total variation, i.e. minimizing w(B,Bc)−1〈∇f(x),1B〉 (see the discussion at the end of Section 2.1
and appendix A). Note that the corresponding minimization of a ratio of combinatorial functions can in this
setting be done efficiently using a slight modification of the algorithm of Dinkelbach (1967). See appendix C
for more details. We chose not to make direct comparisons with the algorithms of Harchaoui et al. (2015) and
of Bach (2013, Chap. 7.12), since it is clear that these algorithms will be outperformed by CPFW. Indeed,
these algorithms include a single term of the form 1A in the expansion of x at each iteration, while CP
and CPFW grow much faster the subspace in which x is sought (its dimension typically more than doubles
at each iteration). This entails that these algorithms must be slower than CPFW, because for the former
and for the latter, a single iteration requires to compute a Frank-Wolfe step, which require to solve several
graph-cuts on the whole graph, and, as we discuss in Section 4.1.2 and illustrate on Figure 7, the cost of
graph cuts already dominates the per iteration cost of CP and CPFW.
Cut Pursuit. To implement our algorithm (CP), we solve min-cut problems using the Kohli and Torr (2005)
solver, which itself is based on Boykov et al. (2001b) and Kolmogorov and Zabih (2004). The problems on
the reduced graph are solved using the PGFB algorithm. This last choice is motivated by the fact that the
preconditioning is quite useful as it compensates for the fact that the weights on the reduced graph can be
quite imbalanced.

4.1.2 Results

Figure 6 presents the convergence speed of the different approaches on the three test images on a quad-core
CPU at 2.4 Ghz. Precisely, we represent the relative primal suboptimality gap (Qt−Q∞)/Q∞ where Q∞ is
the lowest value obtained by CP in 100 seconds. We can see that our algorithm significantly speeds up the
direct optimization approach PGFB when the solution is sparse, and that it remains competitive in the case
of a natural image with strong regularization. Indeed since the reduced problems are of a much smaller size
than the original, our algorithm can perform many more forward-backward iterations in the same allotted
time.

The variant of Cut Pursuit using Frank-Wolfe directions (CPFW) is as efficient over the first few iterations
but then stagnates. The issue is that the computation of a new Frank-Wolfe direction does not take into
account the current support S(x) which provides a set of edges that are “free”; this entails that the algorithm
overestimates the cost of adding new boundaries, resulting in too conservative updates.

Accelerated forward-backward with parametric max-flow (FB+) is also slower than the Cut Pursuit
approach in this setting. This can be explained by the fact that the calls to max-flow algorithms, represented
by a mark on the curve, are better exploited in the cut pursuit setting. Indeed in the forward-backward
algorithm the solutions of parametric max-flow problems are exploited by performing one (accelerated)
proximal gradient step. By contrast, in the Cut Pursuit setting, the solution of each max-flow problem
is used to optimize the reduced problem. Since the reduced graph is typically much smaller than the
original, a precise solution can generally be obtained very quickly, yet providing a significant decrease in
the objective function. Furthermore, as the graph is split into smaller and smaller independent connected
components by Cut Pursuit, the call to the max-flow solver of Boykov et al. (2001b) are increasingly efficient
because the augmenting paths search trees are prevented from growing too wide, which is the main source
of computational effort.

Figure 7 presents the breakdown of computation time for each algorithm over 60 seconds of computation.
In PGFB, the forward-backward updates naturally dominate the computation time, as well as the fast Fourier
transform needed to compute the gradient at each iteration. In FB+, the computation of the proximal
operator of the partial solution through parametric maximum flows is by far the costliest. Our approach and
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Figure 6: Relative primal suboptimality gap Qt/Q∞−1 at time t (in seconds) for different algorithms on
the deblurring task: accelerated forward backward (FB+) , Preconditonned Generalized Forward Backward
(PGFB) , Cut pursuit (CP) and a variant using Frank-Wolfe directions (CPFW) , and for different 512×512
images and different regularization values: Shepp-Logan phantom (left), our simulated example (middle)
and Lena (right). The marks in (FB+), (CP) and (CPFW) corresponds to one iteration.

CPFW share a similar breakdown of computation time as their structures are similar. The maximum flow
represents the highest cost, with the fast Fourier transform needed to compute KᵀHᵀHK a close second.
Finally diverse operations such as computing the reduced graph takes a small fraction of the time. More
interestingly, solving the reduced problem (with the PGFB subroutine of CP) takes comparatively very little
time (roughly 3%) when this is the only step that actually decreases the objective function. This is expected
as, even at the last iteration, the reduced graph had only 300 components so that the associated problem is
solved very rapidly.

4.1.3 Approximate regularization path

We now present the computation of an approximate regularization path for the ROF minimization, using
warm-starts as described in Section 2.6. We consider the task of ROF-denoising on three natural images
presented in Figure 9. For each image we pick 20 values of λ evenly distributed logarithmically in the range
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Figure 7: Time breakdown for the different algorithms over 60 seconds of optimization.

of parameters inducing from coarse to perfect reconstructions.

4.1.4 Competing methods

Parametric max-flows (PMF). We use the parametric max-flow based ROF solver of Chambolle and
Darbon (2009) to compute each value. In our numerical experiments, it was the fastest of all available
solvers, and moreover returns an exact solution.
Cut Pursuit (CP). We use the algorithm presented in this paper to separately compute the solutions for
each parameter value. The algorithm stops when it reaches a relative primal suboptimality gap Qt/Q∞−1
of 10−5, with Q∞ the exact solution given by PMF. sec:mergings
Cut Pursuit Path (CPP). We use the warm start approach proposed in Section 2.6, with the same
stopping criterion.

4.1.5 Results

We report in Figure 9 the time in seconds necessary to reach a primal suboptimality gap of 10−5 for the
different approaches. We observe that, in general, cut pursuit (CP) is slightly faster than the parametric
max-flow. It should be noted, however, that the latter finds an exact solution and remains from that point
of view superior. Warm starts allow for a significant acceleration, needing at most two calls to the max-flow
code to reach the desired gap. Unlike the deblurring task, for high noise levels, Cut Pursuit remains here
very competitive for natural images which are not sparse, as illustrated in Table 10 and Figure. 8.

As the regularization strength decreases the coarseness of the solution decreases, and as a consequence
the Cut Pursuit approaches CP and CPP become less and less efficient. This is because as the number of
components increases, so does the time needed to solve the reduced problem. We note however that for the
values provided with the peak PSNR, the warm start approach is faster than PMF.

PMF and CP perform significantly worse on sparse images and for high values of λ. This can be explained
by the inner workings of the max-flow algorithm of Boykov et al. (2001b). Indeed for high values of λ or
sparse images, the pairwise term of the corresponding Potts model will dominate, which forces the algorithm
to build deep search trees to find augmenting paths. Indeed as the size of the regions formed by the cut
increase, the combinatorial exploration of all possible augmenting paths drastically increases as well. The

20



Original
PSNR:

λ = 3.16
20.0

λ = 1.62
24.6

λ = 0.83
29.2

λ = .43
31.3

λ = .25
29.4

Noisy
11.7

Original
PSNR:

λ = 0.79
23.2

λ = .55
24.5

λ = .38
25.6

λ = .27
26.2

λ = .20
25.1

Noisy
11.4

Original
PSNR:

λ = 0.79
22.7

λ = .55
23.4

λ = .38
23.9

λ = .27
23.7

λ = .20
22.0

Noisy
10.6

Figure 8: Illustration of the regularization path for the three images in the data set for 5 of the 20 values in
the regularization parameters in the path. The peak PSNR is reached for λ = 0.53, 0.28 and 0.34 respectively.

warm-started path approach does not suffer from this problem because the graph is already split in smaller
components at the warm-start initialization, which prevents the search trees from growing too large.

4.2 Experiments on minimal partitions
4.2.1 Denoising experiment

We now present experiments empirically demonstrating the superior performance of the `0-Cut pursuit
algorithm presented in section 3. We assess its performance against two state-of-the art algorithms to
minimize the Mumford-Shah energy of two noisy 512× 512 images: the Shepp-Logan phantom (Shepp and
Logan, 1974) and another simulated example. In order to illustrate the advantage of our algorithm over
alternatives which discretize the value range, we add a small random shift of grey values to both images. We
also test the algorithms on a spatial statistic aggregation problem using open-source data8 which consists in
computing the statistically most faithful simplified map of the population density in the Paris area over a
regular grid represented in Figure 12. The raster is triangulated to obtain a graph with 252, 183 nodes and
378, 258 edges. We use the squared loss weighted by the surface of each triangle as a fidelity term.

4.2.2 Competing methods

α-expansions on quantized models (CRFi). If the range of values of xi is quantized, the MPP and
TV problems reduce to a Potts model, in which each class c is associated with a (non necessarily connected)
level-set (Ishikawa, 2003). In the MPP case, the pairwise terms are of the form 1{ci 6=cj}wij . We use α-
expansions (Boykov et al., 2001b) to approximately minimize the corresponding energy. More precisely we
use the α-expansions implementation of Fulkerson et al. (2009), which uses the same max-flow code (Boykov
and Kolmogorov, 2004) as our algorithm. We denote the resulting algorithm CRFi where i is the number of
levels of quantization of the observed image value range. While this algorithm is not theoretically guaranteed

8https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population
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Figure 9: Time in seconds necessary to solve the problem regularized with a given λ (from the warm-start
initialization when applicable) with a relative primal suboptimality gap of 10−5, for regularly sampled values
of λ along the regularization path. The competing methods are Cut Pursuit (CP), Cut Pursuit with warm
start (CPP) and the parametric max-flow solver (PMF) for different 512 × 512 noisy images: simulated
example (left), Lena (middle) and eagle (right). The computation times are averaged over 10 random
degradations of the images by uniform noise. The blue arrow indicates the best PSNR value.

to converge, it does in practice and the local minima are shown by Boykov et al. (2001b) to be within a
multiplicative constant of the global optimum.
Non-convex relaxation (TV0.5). We implemented a non-convex relaxation of the Mumford-Shah func-
tional which is a “concave” version of the total variation, such as the adaptive Lasso (Zou, 2006) with
t 7→ (ε + t)

1
2 in lieu of t 7→ |t|. The resulting functional can be minimized locally using a reweighted TV

scheme described in Ochs et al. (2015). We use our Cut Pursuit algorithm to solve each reweighted TV
problems as it is the fastest implementation.
`0-Cut Pursuit We implemented three versions of `0 cut pursuit with different backward steps. In the
simplest instantiation, `0-CPf, no backward step is used and the reduced graph can only increase in size.
In `0-CPm, described in Algorithm 2, the simple merge step is performed after each round of cuts. Finally
in `0-CPs, described in Algorithm 3, merge steps are replaced by merge-resplit steps but without priority
queue.
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Method Simulated Lena Eagle
CPP 59 25 27
CP 194 62 70
PMF 356 67 91

Figure 10: Time in seconds necessary to compute the entire approximate regularization path at a relative
primal suboptimality gap of 10−5 for the different algorithms, averaged over 10 samplings of the noise.

After a few preliminary experiments, we chose not to include either level-set methods (Chan and Vese,
2001) or active contour methods based on solving Euler-Lagrange equations (Kass et al., 1988) as their
performances were much lower than the algorithms we consider.

Comparing speed results of code is always delicate as the degree of code optimization varies from one
implementation to another. The α-expansion code uses the implementation of Fulkerson et al. (2009) which
is a highly optimized code, `0-CPf and `0-CPm are implemented in C++, while `0-CPs and TV0.5 are
implemented in Matlab with a heavy use of mex-files. Even if minor improvements could be obtained on the
latter, we believe that it would not change much the performances. In particular, a justification for direct
time comparisons here is that computation time for each of the algorithms is mostly spent computing min
cuts which is done in all codes using the same implementation of Boykov and Kolmogorov (2004) and which
accounts for most of the computation time.

4.2.3 Results

Given that the MPP is hard, and that all the algorithms we consider only find local minima, we compare the
different algorithms both in terms of running time and in terms of the objective value of the local minima
found. The marks on the curves correspond to one iteration of each of the considered algorithms: For TV0.5

there is a mark for each reweighted TV problem to solve, for CRFk, a mark corresponds to one α-expansion
step, i.e. solving k max-flow problems. For `0-CP this corresponds to one forward (split) and one backward
step. For clarity, the large number of marks were omitted in the third experiment, as well as for `0-CPs in
the first experiment.

We report in Figure 11 the energy obtained by the different algorithms normalized by the energy of the
best constant approximation. We can see that our algorithms find local optima that are essentially as good
or better than α-expansions for the discretized problem in less time, as long as the solutions are sufficiently
sparse. For the population density data the implementation `0-CPm with simple merge is faster and finds
a better local minimum than CRF40, but is outperformed by CRF60. The implementation with swaps
merge-resplit (`0-CPs) is on par with CRF60 when it comes to speed, and finds a slightly better minimum.

The simple merge step provides with a better solution than the purely forward approach at the cost of a
slight increase in computational time. The merge-resplit backward step improves the quality of the solution
further, but comes with a significant increase in computation.

We report in Figure 14 of appendix D the performance of approximations with CRFs solved with iterative
α-expansions for different numbers of quantization levels, as compared to the performance of `0-CPm. We
observe that although CRFs can outperform `0-CPm in term of quality of the local minima found for
some of the higher numbers of quantization levels, the performances are very unstable with respect to this
number. The fact that `0-CP does not rely on a priori quantized level leads to overall good performance,
with significantly faster computation times. Plotting the corresponding PSNR shows that the smaller local
minima of the objective found correlates well with gain in PSNR. It is interesting to note however that
small improvements of the objective, which could be assessed as negligible, can yield unexpectedly high
improvements in PSNR, as illustrated in Table 13.
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Figure 11: Mumford-Shah energy at time t (in seconds) divided by the same energy for the best constant
approximation obtained by different algorithms: Non-convex relaxation (TV0.5), `0-CPf with no backward
step, `0-CPm with simple merge step, `0-CPs with merge-resplit steps, and finally, α-expansions with dif-
ferent number of levels of quantization (see image legends), for different images: the Shepp-Logan phantom
(left), our simulated example (middle) and the map simplification problem (right). Markers corresponds
respectively to one reweighting, one α-expansion cycle and one cut for (TV0.5), (CRF) and (`0-CP).
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(a) PSNR : 24.8 (b) PSNR : 38.1

(c) PSNR : 18.8 (d) PSNR : 34.8

(e) Population density of Paris (f) Simplified map

Figure 12: Benchmark on the denoising task. First two lines: (left) noisy images, (right) images retrieved
by Cut Pursuit (CP). Last line: (left) rasterized population density of Paris area, (right) simplified map
obtained by `0-Cut Pursuit with simple merge steps (`0-CPm): 69% of variance explained with 1.2% of
contours length.

Experiment Phantom Simulated
Algorithm PSNR time PSNR time
Noisy image 16.8 - 16.8 -
`0-CP 33.5 4.3 37.0 4.6
CRF20/CRF8 32.6 8.6 34.2 4.0
CRF40/CRF12 33.3 25.3 34.8 11.4
TV0.5 32.2 16.4 33.6 18.0

Figure 13: PSNR at convergence and time to converge in seconds for the four algorithms as well as the noisy
image for the first two denoising experiments.
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5 Conclusion
We proposed two algorithms to minimize functions penalized respectively by the total variation and by the
Mumford-Shah boundary size. They exploit computationally the fact that for sufficiently large regularization
coefficients, the solution is typically piecewise constant with a small number of pieces, corresponding to a
coarse partition. This is a consequence of the fact that, in the discrete setting, both the total variation
and the Mumford-Shah boundary size penalize the size of the support of the gradient: indeed, functions
with sparse gradients tend to have a small number of distinct level sets, that are moreover connected. The
sparsity that is optimized is thus not exactly the same as the sparsity which is exploited computationally,
although both are related.

By constructing a sequence of approximate solutions that are themselves piecewise constant with a small
number of pieces, the proposed algorithms operate on reduced problems that can be solved efficiently, and
perform only graph cuts on the original graph, which are thus the remaining bottleneck for further speed-ups.
Like all working set algorithms, the cut pursuit variants are not competitive if the solution has too many
connected level-sets.

In the convex case, cut pursuit outperforms all proximal methods for deblurring images with simple solu-
tions. For denoising with a ROF energy, it outperforms the parametric maxflow approach when computing
sequences of solutions for different regularization strengths. In the `0 case, our algorithm can find better
solution in a shorter time than the non-convex continuous relaxation approach as well as the approach based
on α-expansions. Furthermore, while the performance of the latter hinges critically on setting an appropriate
number of level-sets in advance, cut pursuit needs no such parametrization.

Future developments will consider the case of Lovász extensions of other symmetric submodular functions
(Bach, 2011) and to the multivariate case. It would also be interesting to determine the conditions under
which the alternating scheme presented in 3.1.1 provides with a globally optimal solution of (8), as it would
be a necessary step in order to prove approximation guarantees to the solution of `0-cut pursuit itself.
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Chan, T., Esedoḡlu, S., Park, F., and Yip, A. (2005). Recent developments in total variation image restora-
tion. In Mathematical Models of Computer Vision, pages 17–31. Springer Verlag.

Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing,
10(2):266–277.

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The convex geometry of linear
inverse problems. Foundations of Computational mathematics, 12(6):805–849.

Chen, S., Cowan, C. F., and Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks, 2(2):302–309.

Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7):492–498.

27



Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals of
statistics, 32(2):407–499.

Efroymson, M. (1960). Multiple regression analysis. Mathematical methods for digital computers, 1:191–203.

El-Zehiry, N. and Grady, L. (2011). Discrete optimization of the multiphase piecewise constant Mumford-
Shah functional. In Energy Minimization Methods in Computer Vision and Pattern Recognition, pages
233–246. Springer.

El-Zehiry, N., Sahoo, P., and Elmaghraby, A. (2011). Combinatorial optimization of the piecewise constant
Mumford-Shah functional with application to scalar/vector valued and volumetric image segmentation.
Image and Vision Computing, 29(6):365–381.

El-Zehiry, N. Y. and Elmaghraby, A. (2007). Brain MRI tissue classification using graph cut optimization
of the Mumford–Shah functional. In Proceedings of the International Vision Conference of New Zealand,
pages 321–326.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22.

Fulkerson, B., Vedaldi, A., and Soatto, S. (2009). Class segmentation and object localization with superpixel
neighborhoods. In Proceedings of the International Conference on Computer Vision, pages 670–677. IEEE.

Geman, D. and Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE
Transactions on Pattern Analysis & Machine Intelligence, 14(3):367–383.

Goldfarb, D. and Yin, W. (2009). Parametric maximum flow algorithms for fast total variation minimization.
SIAM Journal on Scientific Computing, 31(5):3712–3743.

Harchaoui, Z., Juditsky, A., and Nemirovski, A. (2015). Conditional gradient algorithms for norm-regularized
smooth convex optimization. Mathematical Programming, 152(1–2):75–112.

Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1333–1336.

Jaggi, M. (2013). Revisiting Frank-Wolfe: projection-free sparse convex optimization. In Proceedings of the
30th International Conference on Machine Learning, pages 427–435.

Jegelka, S., Bach, F., and Sra, S. (2013). Reflection methods for user-friendly submodular optimization. In
Advances in Neural Information Processing Systems, pages 1313–1321.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of
Computer Vision, 1(4):321–331.

Kohli, P. and Torr, P. H. (2005). Efficiently solving dynamic Markov random fields using graph cuts. In
International Conference on Computer Vision (ICCV), volume 2, pages 922–929. IEEE.

Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159.

Kormylo, J. J. and Mendel, J. M. (1982). Maximum likelihood detection and estimation of Bernoulli-Gaussian
processes. IEEE Transactions on Information Theory, 28(3):482–488.

Kumar, K. and Bach, F. (2015). Active-set methods for submodular optimization. arXiv preprint
arXiv:1506.02852.

Lorenz, D. A. and Pock, T. (2014). An inertial forward-backward algorithm for monotone inclusions. Journal
of Mathematical Imaging and Vision, 51(2):311–325.

28



Mallat, S. and Zhang, Z. (1992). Adaptive time-frequency decomposition with matching pursuits. In Time-
Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP International Symposium, pages 7–10.
IEEE.

Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated
variational problems. Communications on pure and applied mathematics, 42(5):577–685.

Needell, D. and Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples. Applied and Computational Harmonic Analysis, 26(3):301–321.

Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar, P. K. (2009). A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers. In Advances in Neural Information
Processing Systems, pages 1348–1356.

Nesterov, Y. (2007). Gradient methods for minimizing composite objective function. Technical report,
Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

Nielsen, F. and Nock, R. (2014). Optimal interval clustering: Application to Bregman clustering and
statistical mixture learning. Signal Processing Letters, 21(10):1289–1292.

Obozinski, G., Taskar, B., and Jordan, M. (2006). Multi-task feature selection. Statistics Department, UC
Berkeley, Tech. Rep.

Ochs, P., Dosovitskiy, A., Brox, T., and Pock, T. (2015). On iteratively reweighted algorithms for nonsmooth
nonconvex optimization in computer vision. SIAM Journal on Imaging Sciences, 8(1):331–372.

Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1):12–49.

Picard, J.-C. and Ratliff, H. D. (1975). Minimum cuts and related problems. Networks, 5(4):357–370.

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual algorithms in
convex optimization. In Proceeding of the International Conference on Computer Vision (ICCV), pages
1762–1769. IEEE.

Raguet, H., Fadili, J., and Peyré, G. (2013). A generalized forward-backward splitting. SIAM Journal on
Imaging Sciences, 6(3):1199–1226.

Raguet, H. and Landrieu, L. (2015). Preconditioning of a generalized forward-backward splitting and appli-
cation to optimization on graphs. SIAM Journal on Imaging Sciences, 8(4):2706–2739.

Rao, N., Shah, P., and Wright, S. (2015). Forward–backward greedy algorithms for atomic norm regulariza-
tion. IEEE Transactions on Signal Processing, 63(21):5798–5811.

Rockafellar, R. T. (1970). Convex analysis. Princeton University Press.

Roth, V. and Fischer, B. (2008). The group-lasso for generalized linear models: uniqueness of solutions
and efficient algorithms. In Proceedings of the 25th international conference on Machine learning, pages
848–855. ACM.

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms.
Physica D: Nonlinear Phenomena, 60:259 – 268.

Santner, J., Pock, T., and Bischof, H. (2011). Interactive multi-label segmentation. In Proceedings of the
Asian Conference on Computer Vision, pages 397–410. Springer.

Shepp, L. A. and Logan, B. F. (1974). The Fourier reconstruction of a head section. IEEE Transactions on
Nuclear Science, 21(3):21–43.

29



Soussen, C., Idier, J., Brie, D., and Duan, J. (2011). From Bernoulli–Gaussian deconvolution to sparse signal
restoration. IEEE Transactions on Signal Processing, 59(10):4572–4584.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother,
C. (2006). A comparative study of energy minimization methods for Markov random fields. In Proceeding
of the European Conference in Computer Vision (ECCV), pages 16–29. Springer.

Tsai, Y.-H. R. and Osher, S. (2005). Total variation and level set methods in image science. Acta Numerica,
14:509–573.

Vese, L. A. and Chan, T. F. (2002). A multiphase level set framework for image segmentation using the
Mumford and Shah model. International Journal of Computer Vision, 50(3):271–293.

Wang, Y.-X., Sharpnack, J., Smola, A., and Tibshirani, R. J. (2014). Trend filtering on graphs. arXiv
preprint arXiv:1410.7690. To appear in JMLR.

Zhang, T. (2009). Adaptive forward-backward greedy algorithm for sparse learning with linear models. In
Advances in Neural Information Processing Systems, pages 1921–1928.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association,
101(476):1418–1429.

30



A The total variation as an atomic gauge
It is well known that the total variation is the Lovász extension of the submodular function F : B 7→ w(B,Bc)
(see Bach, 2013, chap. 6.2). The base polytope associated with F is the set BF

.
= {s ∈ Rn | s(B) ≤ F (B), B ⊂

V, s(V ) = F (V )}, where s(B)
.
=
∑
i∈B si. For any submodular function F such that F (∅) = F (V ) = 0,

which is true in particular for all symmetric submodular functions, the Lovász extension γF is a gauge
function which is the support function9 of BF : γF (x) = maxs∈BF

〈s, x〉 and its polar gauge is the gauge of
BF (Bach, 2011). The total variation is thus a gauge function and its polar gauge is TV◦ with

TV◦(s) =

 max
∅(B(V

s(B)

w(B,Bc)
if s(V ) = 0

+∞ else.

Chandrasekaran et al. (2012) have recently introduced the concept of atomic gauge. Given a closed set
A ⊂ Rn whose elements are called atoms, the associated atomic gauge is the gauge γA of the convex hull
CA of A ∪ {0}, i.e. γA(x)

.
= inf{t |x ∈ t CA}. The polar gauge is the support function of A ∪ {0}, that is

γ◦A(s) = supa∈A∪{0}〈a, s〉. Given that A ⊂ Rn, using Caratheodory’s theorem, we have that

γA(x) = inf
{∑

a∈A ca | ∀a ∈ A, ca ≥ 0,
∑
a∈A ca a = x

}
.

Regularizing with an atomic gauge thus favors solutions that are sparse combinations of atoms, which
motivated the use of algorithms that exploit the sparsity of the solution computationally (Jaggi, 2013; Rao
et al., 2015). It is clear from previous definitions that Lovász extensions are atomic gauges. In particular the
total variation is the atomic gauge associated with the set of atoms A =

{
w(B,Bc)−11B+µ1V

}
B/∈{∅,V }, µ∈R

or equivalently the set A′ =
{

1
2w(B,Bc)−1(1B−1Bc)+µ′1V

}
B/∈{∅,V }, µ′∈R. Expressing solutions to problem

regularized with the total variation as combinations of set indicators or cuts as we propose to do in this paper
is thus very natural from this perspective.

For the total variation, the Frank-Wolfe direction associated to s = −∇f(x) such that 〈s,1V 〉 = 0 is

arg max
ξ:TV(ξ)≤1

〈s, ξ〉 = arg max
1B :B/∈{∅,V }

1

w(B,Bc)
〈s,1B〉, (10)

since the maximizer is necessarily an extreme point of the set {ξ | TV(ξ) ≤ 1} and therefore among the
atoms.

B Proof of Propositions 1 and 2
Proposition 1. For x ∈ Rn, if we set S = S(x) then

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1B〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. For B ⊂ V we have that Q′(x,1B) = 〈∇QS(x),1B〉+ supε∈∂TV|Sc(x)〈ε,1B〉. This can be shown using
the chain rule for subgradients that we have:

∂TV|Sc(x) =
{

1
2D

ᵀδ | δS = 0, ‖δSc‖∞ ≤ 1, ∀(i, j) ∈ E, δij = −δji
}
,

with D ∈ R2m×n the matrix whose only non-zero entries are D(i,j),i = wij and D(i,j),j = −wij for all
(i, j) ∈ E, and with the notations δS ∈ R2m and δSc ∈ R2m for the vectors whose entries are equal to those
of δ respectively on S and Sc and equal to zero otherwise.

9See Rockafellar (1970) for definitions of gauge, polar gauge and support function of a set.
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Therefore if ε = 1
2D

ᵀδSc then

〈ε,1B〉 = 〈 12δSc , D1B〉 =
1

2

∑
(i,j)∈Sc

δijwij([1B ]i − [1B ]j)

so that sup
ε∈∂TV|Sc(x)

〈ε,1B〉 = wSc(B,Bc).

For the second statement, we have that

Q′(x, uB) = 〈∇QS(x), uB〉+ sup
ε∈∂TV|Sc(x)

〈ε, uB〉.

But letting g = QS(x), and given that 〈g, 1〉=0 implies that 〈g,1Bc〉 = 〈g,1− 1B〉 = −〈g,1B〉, we have

〈g, uB〉 = γB〈g,1B〉 − γBc〈g,1Bc〉 = (γB+γBc)〈g,1B〉.

Similarly, 〈ε, uB〉 = 〈 12δSc , DuB〉 = 1
2γB〈δSc , D1B〉 − 1

2γBc〈δSc , D1Bc〉 = 1
2 (γB +γBc)〈δSc , D1B〉 because

D1B = −D1Bc . Taking the supremum over ε then proves the result.

Proposition 2. We have x = arg minz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0 and Q′(x,1V ) = 0.

Proof. (⇒) If x is the solution of problem (1), the directional derivative of Q along any direction must be
nonnegative, which implies that Q′(x,1B) ≥ 0 for all B. But minB⊂V Q

′(x,1B) ≤ Q′(x,1∅) = 0, which
proves the first part. Then since w(V,∅) = 0 we have Q′(x,1V ) = 〈∇QS(x),1V 〉, and, in fact, since all
elements of the subgradient of TV|Sc are orthogonal to 1V we also have Q′(x,−1V ) = −〈∇QS(x),1V 〉. So
0 ≤ Q′(x,−1V ) = −Q′(x,1V ) ≤ 0.

(⇐) Conversely we assume that minB⊂V Q
′(x,1B) = 0 and Q′(x,1V ) = 0.

Since Q′(x,1V ) = 0 and since wSc(V,∅) = 0 we have 〈∇QS(x),1V 〉 = 0. Now, for any set A which is a
maximal connected component of G|Sc

.
= (V, Sc), we also have wSc(A,Ac) = 0 so that 0 ≤ Q′(x,1A) =

〈∇QS(x),1A〉 but the same holds for the complementAc and 〈∇QS(x),1A〉+〈∇QS(x),1Ac〉 = 〈∇QS(x),1V 〉 =
0 so that 〈∇QS(x),1A〉 = 0.

As a consequence the capacities of the graph Gflow defined in (3) of the article are such that, for any set
A which is a maximal connected component of G|Sc , we have∑

i∈∇+∩A
csi =

∑
i∈∇−∩A

cit. (11)

Then since Q′(x,1∅) = 0 and since minB⊂V Q
′(x,1B) = 0 it is a minimizing argument. The character-

ization of the steepest partition as a minimal cut then guarantees that there exists a minimal cut in Gflow
which does not cut any edge in Sc and isolates the source and the rest of the graph. Given equality (11), the
set of minimal cuts are the cuts that remove indifferently for each maximal connected component A either
all edges {(s, i)}i∈A or the edges {(i, t)}i∈A.

A consequence of the max-flow/min-cut duality is that to this cut corresponds a maximal flow e ∈ R2m

in Gflow. This flow is such that it is saturated at the minimal cut, and we thus have esi = csi for all i ∈ ∇+

and eit = cit for all i ∈ ∇−, again because of equation (11).
Writing flow conservation yields{

esi +
∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇+

−eit +
∑
j∈Ni

(eji − eij) = 0 ∀i ∈ ∇−,
(12)

with Ni = {j|(i, j) ∈ Sc}.
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By replacing esi and eit by their value, the flow conservation (12) at node i rewrites

∇iQS(x) +
∑
j∈Ni

λwijδij = 0

∇iQS(x) +
1

2

∑
j∈Ni

λwij (δij − δji) = 0, (13)

with δij =
eji−eij
λwij

for (i, j) ∈ Sc(x) and δij = δji = 0 for all edges (i, j) ∈ S(x). The flow e must respect the
capacity at all edges and hence 0 ≤ eij ≤ cij = λwij for all edges in Sc(x). Since the flow is maximal, only
one of eij or eji is non zero. Hence δ we naturally have δij = −δji, and |δij | ≤ 1. But we can rewrite (13) as
∇QS(x) = 1

2λD
ᵀδ with δS = 0 and ‖δSc‖ ≤ 1 with D as in the characterization of the subgradient of TV|Sc

which shows that − 1
λ∇QS(x) ∈ ∂TV|Sc(x) thus that 0 ∈ ∂Q(x), and finally that x minimizes Q.

Remark: We proved Proposition 2 using directly the flow formulation and the simplest possible ar-
guments. It is also possible to prove the result more directly using more abstract results. We actually
used the fact that x is a minimum of Q if and only if, for S = S(x), − 1

λ∇QS(x) ∈ ∂TV|Sc(x). But it
is possible to give another representation of ∂TV|Sc(x) using that the subgradient of a gauge γ at x is
∂γ(x) = {s | 〈x, s〉, γ◦(s) ≤ 1}. Indeed, for γ = TV, the set {γ◦(s) ≤ 1} is simply the submodular polytope
PF of F : B 7→ w(B,Bc). As a result ∂TV|Sc(x) = {s ∈ Rn | 〈s, x〉 = 1, ∀B, s(B) ≤ wSc(B,B)}. But having
that minB⊂V 〈∇QS(x),1B〉 + λwSc(B,Bc) = 0 is equivalent to having − 1

λ∇QS(x) ∈ {s ∈ Rn | ∀B, s(B) ≤
wSc(B,B)}. There thus just remains to show that 〈∇QS(x), x〉 = TV(x). Let ΠS denote the set of maximal
connected components of G|Sc = (V, Sc), so that we have x =

∑
A∈ΠS

cA1A. Since wSc(V,∅) = 0, we
have 0 = Q′(x,1V ) = 〈∇QS(x), 1V 〉. Similarly for A ∈ ΠS , we have wSc(A,Ac) = 0, which entails that
〈∇QS(x), 1A〉 ≥ 0. But then −〈∇QS(x), 1A〉 = 〈∇QS(x), 1Ac〉 ≥ 0 also, which proves 〈∇QS(x), 1A〉 = 0.
Finally by linearity 〈∇QS(x), x〉 =

∑
A∈ΠS

cA〈∇QS(x), 1A〉 = 0 = TV|Sc(x) which proves the result.

C Computation of the Frank-Wolfe direction
The computation of the Frank-Wolfe direction defined in (10) requires to optimize a ratio of combinatorial
functions. More precisely, it requires to solve

max
B/∈{∅,V }

N(B)

D(B)
with N(B)

.
= −〈∇f(x),1B〉, and D(B)

.
= w(B,Bc).

But B 7→ N(B)
D(B) it is the ratio of a supermodular function (in fact a modular function) and a nonnegative

submodular function, which, as we explain in this appendix, can thus be minimized using a natural extension
to combinatorial functions of the algorithm proposed by Dinkelbach (1967) to minimize the ratio of a convex
function to a positive concave function.

We first consider the case where D is a positive function (which is not the case for the cut function since
D(∅) = D(V ) = 0). We then have:

Lemma 6. Let N : 2V → R and D : 2V → R+ \ {0}. We have that λ0
.
= N(A0)

D(A0) = maxA⊂V
N(A)
D(A) if and only

if N(A0)− λ0D(A0) = maxA⊂V N(A)− λ0D(A) = 0.

Proof. Let us define A0
.
= arg minA⊂V

N(A)
D(A) and λ0 = N(A0)

D(A0) . Since D is positive, we have{
N(A)− λ0D(A) ≤ 0, for all A ⊂ V,
N(A0)− λ0D(A0) = 0.

We conclude that A0 is a maximizer of N(A)− λ0D(A).
Conversely, let A0 be such that N(A0) − λ0D(A0) = arg maxA⊂V N(A) − λ0D(A) = 0, and so, for all

A ⊂ V we have that N(A)
D(A) ≤ λ0 = N(A0)

D(A0) .
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This lemma from Dinkelbach (1967), shows that, up to the determination of λ0, the original maximization
problem is equivalent to the maximization of Gλ0 for Gλ : A 7→ N(A) − λD(A). Moreover it is immediate
that λ 7→ maxAGλ(A) is a nondecreasing function which is equal to 0 for λ0, it is therefore easy to find λ0

with a bisection algorithm.
The problem maxA⊂V Gλ(A) is easy to solve if Gλ is a supermodular function (Dinkelbach’s paper

considers the case of functions of real vectors and focusses on the case in which G is convex). But Gλ
is supermodular for all λ ∈ R if and only if N is supermodular and D is submodular. In that case, the
algorithm proposed by Dinkelbach is immediately applicable to our setting and we have the following result:

Proposition 7. If N and D are respectively supermodular and submodular and if D is positive them Algo-
rithm 4 is finitely convergent and converges to arg maxA⊂V

N(A)
D(A) .

Proof. The proof of this proposition follows the same arguments as the ones of Dinkelbach (1967).

Algorithm 4: Dinkelbach’s algorithm
Initialization: λ0 = 1, λ−1 = 0, t = 0
while λt 6= λt−1 do

At ← arg maxA⊂V N(A)− λtD(A)

λt+1 ← N(At)
D(At)

t← t+ 1
return At

Proposition 8. If N : 2V → R, D : 2V → R+ and if there exists a set Z ⊂ 2V such that Z = {A |
D(A) = 0} = {A | N(A) = 0}, if then M .

= Arg maxA/∈Z
N(A)
D(A) , M

? .
= Arg maxA∈M N(A), and A? ∈ M?, if

N(A?)
D(A?) > 0 then

M? = Arg max
A

N(A)

D(A) + η
for all ∀η s.t. 0 < η < min

B:N(B)<N(A?)

D(A?)D(B)
N(A?)−N(B)

(N(B)
D(B) −

N(A?)
D(A?)

)
.

Proof. For any such η, it is easy to check that N(A?)D(B)−N(B)D(A?) + η (N(A?)−N(B)) > 0 for any
B /∈ M?, which yields the result by dividing this inequality by (D(A?) + η)(D(B) + η) and noting that for
any A′ ∈M? we must have N(A′) = N(A?) and D(A′) = D(A?).

By setting Z = {∅, V } in the previous proposition, we see that it is applies to the computation of
the Frank-Wolfe direction for any point x such that 〈∇f(x),1V 〉 = 0, because N(B) = −N(Bc) and
D(B) = D(Bc), which guarantees that the maximum is strictly positive. Proposition 7 then shows that the
maximization is obtained by solving a sequence of problems of the form maxB∈V −〈∇f(x),1B〉−λw(B,Bc)
which are of the exact same general form as (5) and are thus solved as max-flow problems. In practice the
algorithm converges in a few iterations.
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D CRF formulation and number of quantization levels
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Figure 14: Behavior of the CRF algorithm for different number of quantization levels for the
phantom (top) and the simulated data (bottom) averaged on 10 denoising experiments: (left) ratio between
the energy Q at convergence and the energy at time 0, (middle) running time, (right) corresponding PSNRs.
The two algorithms represented are α-expansions (CRF) for a varying number of quantization levels and
`0-CPM.
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