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Frame Decomposition of Scattered Fields

I.F. Arias Lopez∗ C. Letrou†

Abstract — Radiated or scattered fields are rep-
resented as being radiated by a number of limited
plane wave spectra obtained by subdividing the 3D
spectrum into spectra defined in several planes, us-
ing a partition of unity technique. Gabor frame de-
composition can be used in each spectral domain,
to decompose the field spectrum into Gaussian win-
dows radiating in the form of Gaussian beams. The
summation of all beams provides a representation of
fields radiated or scattered into all the directions of
space. Numerical illustration and validation of this
approach will be presented.

1 INTRODUCTION

Frame decomposition has been primarily in-
troduced into Gaussian Beam Shooting (GBS)
algorithms to perform decompositions of fields
radiated by large planar apertures into a half
plane, in a rigorous and stable way [1]. The ability
of GBS to propagate fields at far or moderate
distances, combined with paraxial beam transfor-
mations, makes it a good candidate to simulate
multiple interactions in complex environments.
In such contexts however, radiated or scattered
fields, whatever method is used to model the
scattering phenomenon, should be decomposed
into Gaussian beams shooted into all directions,
not only into a half space. This problem has
been addressed by Complex Point Source beam
expansions on spherical surfaces [2, 3]. In this
paper, we propose an alternative approach, based
on frame decompositions in planes.

In many situations of practical interest for GBS
application, source fields are given in the form
of an antenna far field pattern. In the following,
frame decomposition is thus applied in the spectral
domain, starting from the knowledge of radiated
or scattered far fields. The proposed formulation
considers the far field in any direction as resulting
from a summation of plane wave spectra defined in
several planes, obtained through a classical parti-
tion of unity. It will be assumed in this paper that
only a limited angular range of elevation angles
need to be considered, hence the PWS partitioning
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is performed along one spectral variable only.

Section 2 gives a brief outline of frame decom-
position and of its application in the context of a
directive source radiating into a half space. Sec-
tion 3 presents the spectrum partitioning approach
and its combination with frame decomposition.

2 FRAME DECOMPOSITION

In frame based approaches, the decomposition of
radiated fields into a set of Gaussian beams derives
from the decomposition of a planar source distri-
bution on a Gabor frame of Gaussian windows of
two variables [4, 5]. For sufficiently directive an-
tennas, radiating negligible fields into a half space,
one such frame decomposition of each electric field
component tangent to the plane yields a represen-
tation of radiated fields in the form of a summation
of Gaussian beams in the half space where the an-
tenna radiates. In this section we review briefly the
formulation of frame decomposition in this context,
both in spatial and spectral domains, and the cal-
culation of the coefficients for such decompositions.
For the sake of simplicity, we shall present scalar
formulations, valid for field components.

2.1 Gabor frames in L2(R)

In the L2(R) Hilbert space, the set of Gaussian
functions

ψm,n(x) = ψ(x−mx̄)eink̄x(x−mx̄) , (m,n) ∈ Z2

(1)

with ψ(x) =

√√
2
L
e−π

x2

L2 (2)

is a frame if and only if x̄k̄x = 2πν with ν < 1
(oversampling factor) [6]. x̄ and k̄x are respectively
the spatial and spectral domain translation step.

Frames are complete sets hence any function
f ∈ L2(R) can be expressed as a summation of
weighted frame windows:

f =
∑

(m,n)∈Z2

am,nψm,n , (m,n) ∈ Z2 (3)

with the am,n complex coefficients called “frame co-
efficients”. The Fourier transform of a function g,
denoted g̃, is defined as:

g̃(kx) =
∫ +∞

−∞
g(x)e−ikxx dx (4)



It can be shown that the set of functions in the spec-
tral domain ψ̃n,m, (n,m) ∈ Z2, obtained by trans-
lations of the Gaussian function ψ̃:

ψ̃n,m(x) = ψ̃(kx − nk̄x)e−imnx̄kx (5)

is also a Gabor frame in L2(R), with ψ̃ a Gaussian
function. Due to the relation between the Fourier
transform of ψm,n and ψ̃n,m, equation (3) yields the
decomposition of f̃ on that frame in the spectral
domain:

f̃ =
∑

(n,m)∈Z2

am,ne
imnk̄xx̄ψ̃n,m (6)

Hence, the coefficients of the frame decomposition
of a function or of its Fourier transform can be com-
puted in either domain, spatial or spectral.

To represent field distributions in planes in the
following, we shall use frames in L2(R2) defined
by the product of two frames in L2(R). Unless
specified, the same frame parameters will be used
along both variables in R2, and the same oversam-
pling factor will be used in spatial and spectral do-
mains (“balanced” frames). Denoting by (x, y) the
variable in R2, we thus have ȳ = x̄ = L

√
ν and

k̄y = k̄x = Ω
√
ν with Ω = 2π/L. With these con-

ventions and by reference to (1), Gabor frame win-
dows in L2(R2) write as:

ψµ(x, y) = ψm,n(x)ψp,q(y) , µ=(m,n, p, q)∈Z4

(7)

2.2 Frame coefficients

The set of frame coefficients am,n ∈ C of a func-
tion f ∈ L2(R) is not unique and can be ob-
tained through various algorithms. The projec-
tion of the function f on the “dual frame” win-
dows ψ̂m,n , (m,n) ∈ Z2 yields the representation
with minimum energy and will be the preferred al-
gorithm in this work:

am,n = 〈f, ψ̂m,n〉 =
∫ ∞
−∞

f(x) ψ̂∗m,n(x) dx (8)

where ψ̂m,n is an element of the “dual frame”, ob-
tained by translation of the dual function ψ̂. It
has been shown [5] that this function ψ̂ is approxi-
mately proportional to the frame Gaussian function
ψ:

ψ̂ ∼ ν

‖ψ‖2
ψ (9)

if ν is less than 0.3 (high oversampling). ‖ ‖2 is the
squared norm derived from the Hermitian product
in L2(R).

The dual frame in the spectral domain is con-
structed by the same translations as in (5), from the

dual frame window ̂̃ψ, which is easily obtained from
the Fourier transform of the dual frame function ψ̂:̂̃
ψ = 1

2π

˜̂
ψ. If the oversampling is large enough, we

have: ̂̃
ψ =

1
2π

ν

‖ψ‖2
ψ̃ (10)

Finally, the am,n coefficients can be computed in
the spectral domain, as:

am,n = 〈f̃ , ̂̃ψm,n〉
=
e−imnk̄xx̄

2π

∫ ∞
−∞

f̃(kx) ˜̂ψ∗m,n(kx) dkx (11)

Expressions of dual frame windows and of frame
coefficients for frame decomposition in L2(R2) are
easily deduced from those in L2(R).

3 PWS partitioning

3.1 Position of the problem

We consider a scenario where the far field pattern
of the antenna is directive in all vertical planes
(elevation angle) and is not directive as a func-
tion of the azimuth angle. We take the y axis
as vertical, and we introduce four systems of co-
ordinate with the same origin O, where the planes
Pj(O, xj , y), j = 1, . . . , 4, are vertical with the xj
axes oriented towards four orthogonal directions
in the horizontal plane (cf Fig. 1). The respec-
tive zj axes are chosen so as to complete the four
systems of cartesian coordinates. Spectral vari-
ables (kxj , ky) are associated to the spatial vari-
ables (xj , y) in the Pj plane. Plane wave spectra
Ẽj , j = 1, . . . , 4, are defined as the PWS of Ey in
the planes Pj , corresponding to waves radiated in
the zj > 0 half space.

Our aim is to define “partitioning” functions
χj(kxj , ky) satisfying the following conditions:

• χj(kxj
, ky) = 0 if k2

xj
+ k2

y > k2 with k the free
space wavenumber (the domain of definition of
χj is included in the visible domain zj > 0).

• The field component Ey radiated in the far
field at a point M in the half space zj > 0
is obtained by the following summation:

Ey =
−i
λr
eikr

∑
j∈J

cos θjẼj(kxj
, ky)χj(kxj

, ky)

(12)
where r is the distance OM , cos θj = kzj

/k,
the wavevector with components (kxj , ky, kzj )
components is directed towards the observa-
tion point M , and j ∈ J if zj(M) > 0.



Figure 1: Coordinate systems associated to planes
Pj(O, xj , y), j = 1, . . . , 4.

It is easily seen that J is necessarily of the form
{j, j + 1}. To simplify notations and without lack
of generality, we assume in the following that j = 1.
We also denote Ẽχj the product Ẽjχj . The condi-
tion (12) can be rewritten as:

kz1Ẽ1(kx1 , ky) = kz1Ẽ
χ
1 (kx1 , ky)+kz2Ẽ

χ
2 (kx2 , ky)

(13)

in the “quarter” of space kz1 > 0 and kz2 > 0.
Using the relation between PWS in different planes

Ẽ2(kx2 , ky) =
kz1
kz2

Ẽ1(kx1 , ky) (14)

we get:

χ1(kx1 , ky) + χ2(kx2 , ky) = 1 (15)

3.2 Partitioning functions

In order to minimize the spatial domain widening
associated to spectral windowing, we shall use the
well-known Hann window (raised cosine) which is
of common use for windowing purposes related to
FFT algorithms. For a given ky:

χ1(kx1 , ky) = 1 for 0 ≤ kx1 ≤ kL
= h(kx1 , ky) for kL ≤ kx1 ≤ kL + δ

= 0 for kL + δ ≤ kx1 ≤ kh (16)

with kh =
√
k2 − k2

y, and [kL, kL + δ] the “transi-
tion region”. kL can be chosen dependant on ky.
However, if the spectrum of the antenna is directive
enough in vertical planes, kL can be kept the same
for all ky, in as much as kL + δ is smaller than the

minimum value of kh, obtained for the maximum
value of |ky|. In more general cases, the frame de-
composition of the spectrum along the ky variable
makes it possible to consider only PWS which are
sufficiently localized along ky. The Hann function
in this context is taken as:

h(kx1 , ky) = 0.5
(

1− cos [
π

δ
(kx1 − kL + δ)]

)
(17)

Regarding the partitioning function χ2(kx2 , ky)
in the “quarter” of space where kz1 > 0 and kz2 > 0,
it is derived from equation (15):

χ2(kx2 , ky) = 0.5
(

1 + cos
[π
δ

(
√
k2
h − k2

x2

− kL + δ)
])

(18)

in the transition region:

−
√
k2
h − k2

L ≤ kx2 ≤ −
√
k2
h − (kL + δ)2 (19)

In Fig. 2 (resp. Fig. 3) are represented both
χ1(kx1 , ky) and χ2(kx2 , ky) as functions of the spec-
tral variable (kx1 (resp. (kx2), for ky = 0. It should
be noted that kx2 = −kz1 = −

√
k2 − k2

x1
.

Figure 2: Partitioning functions χ1(kx1 , 0) and
χ2(kx2(kx1), 0). δ = k/(2

√
2), kL = k/

√
2− δ/2.

4 CONCLUSION

Frame decomposition can be performed in each of
the spectral domains described by the (kxj

, ky) vari-
ables, for the field radiated by the corresponding
windowed PWS Ẽχj into the half space kzj

> 0. It
is expected that this technique will allow for GBS
into all regions of space, and will also avoid launch-
ing highly tilted beams, whose paraxial formulas
are known to be inaccurate. The price to pay is an
increase in the number of spatially translated Gaus-
sian windows to be taken into account in each of the
frame decompositions. Numerical examples will be
presented to validate this approach and quantify
the number of windows in decompositions.



Figure 3: Partitioning functions χ1(kx1(kx2), 0) and
χ2(kx2 , 0). δ = k/(2

√
2), kL = k/

√
2− δ/2.
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