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Abstract—The optimization of capacities in large scale power
systems is a stochastic problem, because the need for storage
and connections (i.e. exchange capacities) varies a lot from
one week to another (e.g. power generation is subject to the
vagaries of wind) and from one winter to another (e.g. water
inflows due to snow melting). It is usually tackled through
sample average approximation, i.e. assuming that the system
which is optimal on average over the last 40 years (corrected
for climate change) is also approximately optimal in general.
However, in many cases, data are high-dimensional; the sample
complexity, i.e. the amount of data necessary for a relevant
optimization of capacities, increases linearly with the number of
parameters and can be scarcely available at the relevant scale.
This leads to an underestimation of capacities. We suggest the
use of bias correction in capacity estimation. The present paper
investigates the importance of the bias phenomenon, and the
efficiency of bias correction tools (jackknife, bootstrap; combined
with possibly penalized cross-validation) including new ones
(dimension reduction tools, margin method).

I. OPTIMIZATION OF POWER SYSTEMS

A. Unit commitment & long term planning

A power grid consists of a transmission network, a distribu-
tion network, loads and power plants. Optimizing this power
system means optimizing a given cost function, the objective
function, under constraints.

The objective function includes economical, social and
environmental costs. These costs take into account risks of
failure [1], maintenance, risks for workers. The constraints
are operational constraints of power systems, including de-
mand satisfaction, maximum ramping rate, stock management
constraints, start up costs, environment constraints such as
minimum water flows (see e.g. [2]). Demand satisfaction is
handled by production-side and demand-side management.

Solving this problem involves deciding which power plants
are switched on/off; this is unit commitment [3], [4]. This
also includes the dispatch, i.e. deciding the power output
for each plant. This problem is multistage, stochastic and
high dimensional. It is multistage due to coupling constraints
between time steps, such as stock consistency and warm up
costs. Stochasticity comes from the limited precision forecasts:
e.g. demand [5] and inflows [6] are stochastic. Moreover, the
recent years have seen an increase in production volatility,
due to the raising use of renewable energies [7]. It is high

dimensional also since large scale power systems deal with
power grid at the continental scale.

Simulating and optimizing such power systems is crucial
for testing the validity and cost of some scenarios. What are
the costs of a purely renewable system ? Consider a limited
budget (i.e. an upper bound on investments) over the next
50 years; what is the best investment planning ? What is the
ecological/economical benefit, if we can relax the constraint
of national independence ? What is the impact of a given gas
supply cut-off / what is the best adaptation strategy to such a
gas supply interruption ?

B. Optimization of power systems capacities

Quantifying the optimal connection capacities and storage
capacities at the scale of a continent or more is an important
optimization problem, with budget in dozens or hundreds
of billions of euros. There are high level facts which are
well known: in the European grid, conditions are better for
wind power in the north, for solar power in the south, for
additional hydroelectric storage in Scandinavia. Also, Africa is
not that far, there are already connections between Europe and
Africa [8], and increasing these connections is a possibility.
This is especially relevant for the present work, since opti-
mizing capacities implies optimizing against uncertainties [9].
Using optimization on average (or risk-aware variants, as well)
over a probability distribution is a standard procedure for such
a problem. The method heavily depends on random processes,
modeling weather and consumption. Typically, histories are
used, and the objective function is the average cost over this
archive of possible weather scenarios [10]: such approaches
are termed sample average approximation (Section II-A). This
method is based on the assumption that the performance of a
system can be reliably estimated by checking its performance
on the finite set of available past data. They help for fine tuning
power systems capacity expansion planning, because they use
statistical effects, rather than hard N − 1 constraints.

We discuss the shortcomings of this approximation (Sec-
tion II-B) and propose alternate methods. Section III details
some generic resampling tools, then model selection (Sec-
tion IV) is considered in order to mitigate the instability of the
resampling method. Section V presents experimental results.



(a) Dimension 10, cov = 11, p = 3000, 15 resamplings for the bias
corrections, heavy tail. On this test case (i) L3 outperforms L1; (ii) jackknife
outperforms bootstrap for bias-reduction; (iii) dimension reduction works well,
in particular the absolute variant (Eq. 1).

(b) Dimension 10, cov = 11, p = 3, 15 resamplings for the bias correction,
heavy tail. Compared to Fig. 1(a), the penalty p is small, which leads to a less
skewed objective function, hence the bias is much smaller and ERM performs
well.

(c) Dimension 2, cov = 3, p = 100, 15 resamplings for the bias reduction,
heavy tail. In this case we see that model selection outperforms each of the
models: this shows that the best estimate depends on the drawn sample, and
that leave-three-out was able to “grasp” this effect.

For each subfigure: on the left (both
top and bottom) resample, sideRS and
sideRS2 are performed with bootstrap; on
the right (both top and bottom) resample,
sideRS and sideRS2 are performed with
jackknife. On the top (both left and right)
L1 model-selection; on the bottom, L3
model selection.

Figure 1. Simple regret in function of the sample size. The artificial problem is detailed in Section V-A.



II. M-ESTIMATORS AND BIAS

In all the paper, Ês∈Sk(s) is the average 1
n

∑n
i=1 k(si) if

S is a sample S = (s1, . . . , sn). ÊN,Sk(s) is the empirical
average 1

N

∑N
i=1 k(si) where (s1, . . . , sN ) is a random in-

dependently identically drawn sample from S. ES denotes
the expectation over the random process S. |Ω| denotes the
cardinal of a set Ω.

A. Sample average approximation (SAA)

We denote by f(s, x) the cost when choosing investment x
and s is a realization of the random process S. We want to
find x∗ such that ESf(s, x∗) is minimal. The sample aver-
age approximation (SAA) consists in tackle this optimization
problem through the use of samples, as the random process is
rarely available. We consider x̂(S) = x̂1 minimizing:

x 7→ Ês∈Sf(s, x) =
1

n

n∑
i=1

f(si, x),

with S = (s1, . . . , sn) a sample of independent realizations
of the random process S. Commonly S is an archive. This
means that x̂ is a M-estimator; it approximates a minimum
over a finite sample. When it is obtained by minimizing
an empirical estimate as above, it is termed an empirical
risk minimizer (ERM) - but not all M-estimators are ERM.
For power systems, we need detailed information, which is
available for moderate values of n. n is typically between 5
and 100 depending on problems [11], [12]. 100 is optimistic
as old data are less relevant due to climate change (though
corrections are possible), erroneous measurements and missing
values.

B. Bias & simple regret

Let us discuss the precision of the SAA in terms of quality
of the obtained recommendation. The amount of data samples
necessary to estimate properly the parameters of a system
increases with the VC-dimension [13], which is linear in the
number of parameters in smooth cases [14]. The amount of
data requested for a given precision is termed the sample
complexity. It also increases with the time constants of the
problem; if the random processes are only approximately
independent when they are 10 years apart from each other,
the sample complexity might be multiplied by 10. The sample
complexity also increases, typically, quadratically in the in-
verse precision. Hence, optimizing capacities (both generation
capacities and network capacities) against a finite sample can
lead to a bias. This bias is usually termed overfitting in
machine learning [15], [16]. Typically, when SAA is applied,
risks are underestimated, and therefore capacities dealing with
uncertainties are underestimated, while uncertain assets are
overestimated. SAA leads to invest too much in volatile
production capacities, but not enough in network and storage
capacities.

1When needed, the sample S on which the estimate is computed will be
specified.

Let e be an estimate of a quantity x∗, depending on some
stochastic random variable S. Then, the bias b of e is defined
by:

b = ESe(S)− x∗.

The stochastic random variable S is the sample (i.e. S in
Section II-A). In many cases, the bias of the ERM estimate
x̂ defined in Section II-A is significantly non zero, though it
goes to zero asymptotically in the data size [14].

The concept of bias is less widely used in optimization,
in particular in the field of large scale power systems, where
the huge size of optimization problems makes deterministic
optimization already quite hard. However it turns out that, in
a renewable energy world, stochasticity really matters [7]. So
this paper proposes to estimate the bias, and to take it into
account in order to improve estimates of x∗.

We define a criterion that measures the quality of an
estimate of x∗. The Simple Regret of an estimate e is:

SRe = ESf(s, e)− ESf(s, x∗).

This is a random variable: the expectation operators operates
on s with distribution S, and SRe therefore depends only on
the (possible) internal randomization of the estimator e. An
estimate of the simple regret of estimator e will be denoted
ŜRe.

The ERM estimate x̂ introduced in Section II-A is not
necessarily the optimal one; the purpose of this paper is to
propose some estimates with simple regret less than SRx̂. For
this, we propose in Section III-A the use of bias correction
tools, namely jackknife and bootstrap. In addition, we reduce
the variance of these resampling estimators by a so called
dimension reduction method in Section III-B.

III. BIAS REDUCTION

This section presents resampling estimates, i.e. tools for
estimating the bias based on subsamples. Consider a sample
S = (s1, . . . , sn) of n realizations of a random process S.
Resampling consists in splitting S into Ŝ and Ŝ′, usually
disjoint. Several such splits could be considered, leading to
Ŝ1, . . . , ŜN , and their counterparts Ŝ′1, . . . , Ŝ

′
N .

A. Resampling estimates for bias reduction

Jackknife (JK) or Leave-One-Out (LOO). The jackknife
resampling [17], also known as leave-one-out, uses the n
subfamilies Ŝ1, . . . , Ŝn of cardinal n − 1 defined by Ŝi =
(s1, . . . , si−1, si+1, . . . , sn). The complementary family Ŝ′i is
Ŝ′i = (si) = S \ Ŝi. When not all these Si are required, we
can consider a random sample. Ŝ is then randomly uniformly
distributed among Ŝ1, . . . , Ŝn and Ŝ′ is the complementary
family. Let us consider ˆ̂x = x̂(Ŝ) and still x̂ = x̂(S). ˆ̂x
depends on Ŝ; it is randomized. This means that in ˆ̂x, we
consider the classical M-estimator, but applied to Ŝ instead
of S. The proper bias-corrected estimator for jackknife x̂jk
is [17], [18]:

x̂jk = nx̂− (n− 1)ÊN,Ŝ
ˆ̂x = nx̂− (n− 1)

 1

N

N∑
j=1

x̂(Ŝj)

 ,



where Ŝ is the random variable defined previously and
(Ŝ1, . . . , ŜN ) are N realizations of Ŝ.

Bootstrap (BS). With n the cardinal of the sample S,
bootstrap considers Ŝ a family of n points, randomly drawn
in S, with replacement. Without replacement, this would
not make any sense, as Ŝ would be equal to S; but with
replacement, it is known that the difference between Ŝ and
S can provide information on the difference between S and
the original random process S [18]. In bootstrap, Ŝ′ can also
be defined (it is the complementary family of Ŝ in S); however
we do not need it in the present paper. In the case of bootstrap,
the bias-corrected estimator is:

x̂bs = 2x̂− ÊN,Ŝ
ˆ̂x = 2x̂−

 1

N

N∑
j=1

x̂(Ŝj)

 ,
where Ŝ is the random variable defined in the bootstrap
resampling and (Ŝ1, . . . , ŜN ) are N realizations of Ŝ.
x̂jk is usually a better estimate than x̂bs, though it is also

sometimes mentioned that bootstrap is more versatile [19]. We
will term these estimates bias-corrected estimates. However,
the bias, after this correction, is not necessarily zero; it is just,
in general, smaller than the bias of x̂. The variance, on the
other hand, is larger [20].

B. Dimension reduction for bias reduction

Let us consider x̂r a bias-corrected estimate based on
resamplings (r stands for resampling), either x̂bs (bootstrap)
or x̂jk (jackknife). x̂r has a smaller bias than the original
estimate x̂, but possibly a larger variance. In high-dimension,
x̂r might be very noisy, and, due to this, we might have
ESRx̂r > ESRx̂, where the expectation refers to the random
sample S and to the internal randomization of the estimators,
including the resampling step.

We define the absolute dimension reduction as follows:

x̂′r =
µ(x̂r)

µ(x̂)
x̂, (1)

with µ(v) the average of a vector v. This only makes sense
if the different capacities have some sort of homogeneity:
(x̂)1,. . . ,(x̂)d have the same unit and similar biases, where
we denote by (x̂)i the ith component of vector x̂ ∈ Rd.

We also define the relative dimension reduction as follows:

x̂′′r = µ(x̂r/x̂)x̂, (2)

where u = v/w denotes the componentwise division of vector
v by vector w, i.e (u)i = (v)i/(w)i for i ∈ {1, 2, . . . d} if
v ∈ Rd and w ∈ Rd.

We will see in our experiments (Section V-C) that the
absolute version works better than the relative one.

IV. MODEL SELECTION (MS)

When several estimates are available, e.g.
x̂A1

(S), x̂A2
(S), . . . , x̂Ak

(S), it makes sense to “guess”
which one is the best for the data at hand, in order to get
a meta-estimate x̂meta(S), which is, depending on some
decision rule, equal to x̂Ai∗ (S) for a i∗ ∈ {1, . . . , k}.

In our case, model selection can be used for determining
which tool, between bias correction methodology and
more classical tool such as ERM, should be preferred.
We consider several variants for model selection: classical
cross-validation (Section IV-A) and a recent modification of
cross-validation, namely penalized CV (Section IV-B). Using
these tools, we combine several estimates into a meta-estimate
(Section IV-C). The margin method is then proposed for
robustification purpose (Section IV-D).

As in Section III, we consider a sample S = (s1, . . . , sn)
of n realizations of the random process S, a subfamily Ŝ of
S and its complementary subfamily Ŝ′ = S \ Ŝ.

A. Leave-k-out (Lk) for MS

Cross-validation in which the cardinal of Ŝ′ is k is termed
leave-k-out (Lk). Lk considers the random variable Ŝ uni-
formly distributed among the subfamilies of S of cardinal
n−k. Leave-one-out is a special case of cross-validation, with
k = 1.
For model selection, it is classical to use Ŝ′ for testing the
estimate built on Ŝ. Given an estimate e(S), depending on
a sample S, we define the Lk cross-validation error estimate
ˆ̂
fLk(e) by:

ˆ̂
fLk(e) = Ê`,(Ŝ,Ŝ′)Ês∈Ŝ′f(s, e(Ŝ))

=
1

`

∑̀
j=1

1

|Ŝ′
j |

∑
s∈Ŝ′j

f(s, e(Ŝj)),

This means that we randomly draw Ŝ and its complementary
family Ŝ′, ` times, and each time we build an estimate e(Ŝ)
which is tested on Ŝ′. The average result is an estimate of
ESf(s, e(S)).

For l large enough, increasing k in Lk reduces the variance
of ˆ̂
fLk(e) as an estimate of the real loss ESf(s, e(S)), but

increases the bias. Penalization (introduced in Section IV-B) is
a tool for reducing the bias of cross-validation, with a moderate
increase of the variance.

B. Penalized cross-validation for model selection (penk-F)

Cross-validation is classical; we present the penalized cross-
validation method, which, interestingly, is a recent method
necessary for making our tool effective in practice.

The cross-validation estimates ˆ̂
fLk(e) is biased since the

training data set Ŝ is smaller than the real data set S. Penalized
cross-validation [21] has been designed to counteract this
effect. Informally, it consists in adding a penalization to the
current estimated cost. The penalization penk-F is built on S
and Ŝ. Given an estimate e, and a sample S, we define:

ˆ̂
fpenk-F(e) = Ês∈Sf(s, e(S)) + C · pen(S, e). (3)

with pen(S, e) = Ê`,Ŝ

[
Ês∈Sf(s, e(Ŝ))− Ês∈Ŝf(s, e(Ŝ))

]
,

=
1

`

∑̀
j=1

 1

|S|
∑
s∈S

f(s, e(Ŝj))−
1

|Ŝj |

∑
s∈Ŝj

f(s, e(Ŝj))

 .



Ŝ is a random variable as in the cross-validation section
and C is an overpenalization constant. In other words, we
randomly draw ` times a subsample (of size n − k) Ŝ from
S, each time we build an estimate e(Ŝ) which is tested both
on S and Ŝ. The average difference between these costs is the
penalization, and the estimate of ESf(s, e(S)) is given by
Equation 3; it is provably optimal in some simple cases [21].

C. Meta-estimate using model selection
Typically, we will define for example x̂meta,Lk(x̂, x̂jk)

=

{
x̂ if ˆ̂

fLk(x̂) <
ˆ̂
fLk(x̂jk) (i.e. ŜRx̂ < ŜRx̂jk )

x̂jk otherwise

We use the jackknife-corrected estimator if, for the Leave-
k-out cross-validation, it is seemingly better than the simple
M-estimator. More generally, given k estimators x̂A1

, . . . , x̂Ak
,

and a model selection MS, x̂meta,MS(x̂A1 , . . . , x̂Ak
) is equal

to the estimate x̂Ai∗ which is considered the best by the model-

selection MS, i.e. such that ˆ̂
fMS(x̂Ai∗ ) is minimum.

D. The margin method

Let us consider the case in which we have k estimators
(x̂A1 , . . . , x̂Ak

). Let us assume that A1 is the default solution
(ERM, in our case), that we wish to outperform with our
new estimate. We use (penalized) cross-validation for select-
ing one of them. Let us call x̂meta the resulting estimate,
equal to x̂Ai∗ , for a i∗ ∈ {1, . . . , k}, depending on the
(penalized) cross-validation results. The result is satisfactory
in most cases, but there are test cases in which x̂A1 is
better than x̂Ai∗ with 1 6= i∗, because the (penalized) cross-
validation fails in finding the best among the k estimates.
Then, we propose the following method, termed margin
method: instead of comparing the estimated simple regrets
(ŜRA1

, . . . , ŜRAk
), of (x̂A1

, . . . , x̂Ak
) respectively, compare

((1− γ)ŜRA1
, ŜRA2

, . . . , ŜRAk
), for some γ ∈ (0, 1). Then,

we expect the estimator x̂meta to be more robust, in the sense
that it is rarely worse than the original x̂A1 - the (k−1) others
estimates (x̂A2 , . . . , x̂Ak

) are used only if the model selection
considers x̂A1

to be outperformed by far.

V. EXPERIMENTS

Section V-A presents the experimentation framework, Sec-
tion V-B lists the estimators considered and Section V-C
presents the experimental results.

A. Test case
Let us consider an electric grid, connected to d distinct ar-

eas. An area i ∈ {1, . . . , d} is connected to the main grid only
through one connection, with capacity (x)i. The connection
must be large enough so that the flow does not exceed the
capacity, but larger connections are more expensive. Hence we
should find a good compromise. The cost function, when the
maximum consumption over the year is s = ((s)1, . . . , (s)d),
for a non-negative x = ((x)1, . . . , (x)d), is

f(s, x) = p×

(
d∑

i=1

1(s)i>(x)i

)
+

d∑
i=1

(x)i, (4)

where
• p is a parameter: it is the penalty in case of fault,

compared to the cost of 1 unit of network capacity.
• (x)i is the ith network capacity, i.e. the capacity connect-

ing area number i to the main grid.
Faults have long lasting consequence, far beyond the time
during which the flow exceeds the capacities; hence the
“binary” nature of the penalization. It is a common practice
in power systems [11], [12] to consider the maximum over
the year, and not the number of times or number of hours an
overflow occurs. This is because overflow can lead to various
problems, with an impact lasting long after the overflow itself,
thus it does not make sense to consider that an overflow is less
important just because it is short or occurred just once.

For this artificial experiment, the random process s is a
discrete distribution (with support of cardinal 1500) generated
as follows: cov standard centered Gaussian random variables
are independently randomly drawn, in dimension d, with cov
an integer. Let us define their covariance by V ; hence, V
is the identity if cov → ∞ but might be far from identity
when cov is small. s (resp. log(s) in the heavily-tailed case)
is the d dimensional centered Gaussian with covariance V .
The greater cov, the simpler the problem. Roughly speaking,
cov large makes all areas i ∈ {1, . . . , d} more similar. Here,
log refers to the logarithm with natural basis. log(x), when x
is a d-dimensional vector, refers to (log((x)1), . . . , log((x)d)).

B. Estimators

We compare the following estimators:

Name bias model dim.
correction selection reduction

x̂ none none none
x̂bs bootstrap none none
x̂′bs bootstrap none absolute
x̂′′bs bootstrap none relative
x̂jk jackknife none none
x̂′jk jackknife none absolute
x̂′′jk jackknife none relative

x̂meta,L1(x̂, x̂jk, x̂
′
jk) jackknife L1 absolute

x̂meta,L1(x̂, x̂bs, x̂
′
bs) bootstrap L1 absolute

x̂meta,L2(x̂, x̂jk, x̂
′
jk) jackknife L2 absolute

x̂meta,L2(x̂, x̂bs, x̂
′
bs) bootstrap L2 absolute

x̂meta,L3(x̂, x̂jk, x̂
′
jk) jackknife L3 absolute

x̂meta,L3(x̂, x̂bs, x̂
′
bs) bootstrap L3 absolute

For the meta versions (section IV-C), we also test the
version with the penalization method (Section IV-B) and with
the “margin” method (Section IV-D).

C. Experimental results

Results with Bias Reduction and Model Selection only.
In this section, resamplings for model selection are based on
#samples/k (see Fig. 1) random splits of the data into cross-
validation folds of size k. Supplementary experimental results
are presented in the extended material (www.lri.fr/∼teytaud/
rblong.pdf). We here provide a sample of results. Fig. 1



presents the simple regret (averaged over 200 independent
runs) of the various estimators. god refers to the optimal
solution; it has regret 0, by definition. erm denotes the
classical M-estimator x̂. resample refers to an estimate with
bias reduction: x̂bs (left) or x̂jk (right). sideRS (resp. sideRS2)
refers to x̂′bs or x̂′jk (resp. x̂′′bs or x̂′′jk). CV refers to x̂meta,L1

(top) or x̂meta,L3 (bottom).
In Fig. 1(a) there is a strong bias in the M-estimator, due

to the strong penalty (the loss function has a strong third
derivative at the optimum). In this case, all tools work quite
well: ERM with bias reduction outperforms vanilla ERM,
leave-three-out succeeds in model selection, and dimension
reduction (Eq. 1) improves the bias reduction. Then Fig. 1(b)
presents a case with a small penalty; the situation is far less
satisfactory, though leave-three-out successfully often selects
the naive ERM estimator.

A detailed analysis shows that jackknife performs better
than bootstrap for bias reduction when bias correction was
already not that bad; on the other hand, it makes results much
worse in some cases in which they were already poor. This is
somehow consistent with the literature (see Section III-A). L3
performs better than L1 (see Section IV-A). The dimension
reduction performs well in many cases. x̂′rs outperforms the
simple bias reduction x̂rs. So far, x̂′′rs is less efficient. This
works even with cov small, i.e. inhomogeneous areas, as
shown by Fig. 1(a). A small penalty p = 3 (Fig. 1(b)) makes
it hard for any algorithm to outperform the simple x̂ estimate.

Penalized CV & margin method. With the simple cross-
validation, results are usually positive, but robustness is a main
issue. The new method (i.e. bias reduction estimates) should
never be significantly worse than the old one (i.e. ERM).
Typically, we want to reduce the risk of something going
wrong as in Fig. 1(b), where the best result is indeed the simple
ERM. The penalized cross-validation (Section IV-B) seems to
be a good candidate to perform a reliable selection among
the estimates. Furthermore, to ensure that the bias reduction
method is always better or equal to ERM, we propose a
third ingredient in the selection method, so that it has a bias
in favour of ERM in case of doubt - this is the “margin”
methodology (Section IV-D). This will automatically disable
the bias correction for problems which are less risk sensitive
- i.e. for which the bias of ERM is lower.

Hence, three model selection methods are compared in the
setting of Section V-A to choose among x̂ (default ERM
method), x̂jk (ERM estimate corrected by jackknife), and
x̂′jk (ERM estimator corrected by jackknife with dimension
reduction as described in Section III-B). These three selection
method are (i) the classical CV (Section IV-A); (ii) the
penalized cross-validation described in Section IV-B and (iii)
the penalized-CV with margin described in Section IV-D.

There are 24 frameworks, combining dimension d ∈
{2, 3, 5, 10}; cov = d+1, cov = 10(d+1), cov = 3000(d+1);
15 or 150 resamplings for the bias reduction, where d is the
number of capacities to be estimated. Each dot in Figures 2
corresponds to one of the 24 corresponding frameworks, with
results averaged over the different sample sizes, namely 6, 12,

18 and 24 samples. Each figure corresponds to 1 (top), 4 (mid-
dle) or 16 (bottom) splits in the cross-validation associated
to the “meta” part (model selection); and we distinguish L1
(left), L2 (middle) or L3 (right). Figure 2(a) displays results of
the CV method versus the penalized-CV method. We use the
default C = 5/4 × ((#samples/k) − 1). Here k ∈ {1, 2, 3}
corresponds to the Lk considered. C is used as in Equation 3,
overpenalization constant proposed in [21].

We see that the penalized cross-validation outperforms the
standard cross-validation - but there are still cases in which the
simple ERM is the best, in particular for intermediate values
of the penalty, when it is difficult to know the best among
ERM and the bias-corrected variants.

It ensues that the best method is the penalized-CV with
16 splits, L3, jackknife, with 10% margin. Additional results
are displayed in Table I. These results indicate that ERM is
the best for intermediate penalties. This fact is not surprising,
these are the cases in which it is hard for CV methods to guess
which estimator is the best. ERM is vastly outperformed in
other cases (Fig. 2 and numbers in Table I).

VI. CONCLUSIONS

This paper is devoted to the bias correction in empirical
risk minimizers, including the multivariate case. Many stud-
ies are dedicated to capacity expansion planning for power
systems [22], [23], [11], [12], [9], [8]. To the best of our
knowledge, bias correction has not been considered. Bias
might be an overlooked serious issue in capacity estimation
studies, which are a crucial part of power system optimization.
We have investigated resamplings methods to reduce this bias.

In our experiments, jackknife performed better than boot-
strap for correcting the bias. We improved the results thanks
to a dimension reduction methodology. In high-dimensional
cases, with homogeneous capacities to be estimated, averaging
the bias correction over multiple capacities leads to a more
efficient capacity correction than estimating each univariate
correction alone. This technique provides an improved bias
correction, and does not change the computational cost. The
first variant of dimension reduction, termed absolute, was
usually better in our experiments (Eq. 1, compared to Eq. 2).

For selecting estimators, penalized cross-validation outper-
formed the simple cross-validation. Furthermore, we devel-
oped the margin method for ensuring that the model selection

TABLE I. PERFORMANCE OF PENALIZED-CV ON VARIOUS VALUES OF

THE PENALTY p IN EQ. 4. THE AVERAGE NORMALIZED SIMPLE REGRET
REFERS TO THE EXPECTED SIMPLE REGRET OBTAINED BY PENALIZED-CV
DIVIDED BY THE EXPECTED SIMPLE REGRET OF THE ERM. RESULTS ARE

AVERAGED OVER ALL 24 EXPERIMENTS FOR EACH VALUE OF p (ALL
POSSIBILITIES WITH d ∈ {2, 3, 5, 10} ,

cov ∈ {(d+ 1), 10(d+ 1), 3000(d+ 1)}, 15 OR 150 RESAMPLINGS FOR
THE BIAS REDUCTION). THE STANDARD DEVIATIONS ARE AT MOST 0.015.

penalty 0.1 1 3 10 30 100 3000
average

normalized .90 .98 1.03 1.04 .88 .66 .63
simple regret



is almost always better than the sample average approximation
method. Admittedly, this can reduce the average performance
of the system; but it leads to the property that the meta-
estimate is, in a stable manner, better or at least equal to the
traditional estimate. We believe that such tricks are important
for the acceptance of non-trivial statistical corrections.

Overall, statistical methods such as resampling can greatly
increase the performance of capacity estimates - both for
bias correction and for model selection. But there is a huge
computational overhead. 100 samples for bias correction and
100 samples for model selection lead to a factor 10 000 on
the computational cost. This is fortunately highly parallel, but
the cost is far from being negligible.

Further work.

The bias correction methods we propose are adaptations, to
optimization, of general principles. A mathematical analysis
exists for these tools. On the other hand, the margin method
and the dimension reduction methods are new. Dimension
reduction methods need mathematical analysis; maybe there
are better solutions than the two extreme cases (absolute, as
in Eq. 1, and relative, as in Eq. 2), for instance by considering
groups of related capacities. Mathematical analysis might help
for understanding the bias/variance compromise in multivariate
bias reduction of M-estimators (Eq. 1). The constant C in Eq. 3
is suggested only in a specific setting [21]; we did not try any
optimization of this constant, so that our results are principled,
but improvements might be possible.

Considering years, in our archive of data, as independent, is
an approximation. This is a reasonable assumption for some
parts of the world but not for others: studying the impact of this
lack of independence is another important further work [24].

Additional experiments are part of the agenda, including
high-dimensional cases with hundreds of capacities.
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(a) Experiments on penalized cross-validation. X-axis: SR obtained by the CV method divided by the SR of the naive
ERM. Y-axis: SR obtained by the penalized-CV method divided by the SR of the naive ERM. We see that difficult
cases (Y-axis above 1) are ◦ and +, namely penalty 3 and 10 respectively: the classical method sometimes more than
doubles the SR (X-axis is limited at 2). With the penalized CV, the worst cases are around 1.5. The fact that problems
occur around these values is reasonable: they are the cases in which ERM and jackknife have comparable performance,
so that CV might make a bad choice.
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(b) Similar to Figure 2(a), but the CV gives a 10% bonus (i.e. “margin” method) to ERM (i.e γ = 0.1). We see that
the obtained CV method (Y-axis) is almost always < 1 (hence beneficial), though there are still a few cases with SR
more than in the ERM case. The margin is applied in both cases (CV, and penalized CV.)

Figure 2. Each dot corresponds to one test case, averaged over the different sample sizes (6, 12, 18, 24). The markers ×, ∗, ◦, +, �, ˆ , ♦, stand for penalties
p = 0.1, 1, 3, 10, 30, 100, 3000 respectively.


