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ABSTRACT. We propose two-sources randomness extractors over finite fields and on elliptic curves
that can extract from two sources of information without consideration of other assumptions that the
starting algorithmic assumptions with a competitive level of security. These functions have several
applications. We propose here a description of a version of a Diffie-Hellman key exchange protocol
and key extraction.

RÉSUMÉ. Nous proposons des extracteurs d’aléas 2-sources sur les corps finis et sur les courbes el-
liptiques capables d’extrairent à partir de plusieurs sources d’informations sans considération d’autres
hypothèses que les hypothèses algorithmiques de départ avec un niveau de sécurité compétitif. Ces
fonctions possèdent plusieurs applications. Nous proposons ici une version du protocole d’échange
de clé Diffie-Hellman incluant la phase d’extraction.
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1. Introduction
The shared element after a Diffie-Hellman exchange is gab ∈ G, where G is a cyclic

subgroup of a finite field. gab is indistinguishable from any other element of G under
the decisionnal Diffie-Hellman (DDH) assumption [4]. This hypothesis argues that, given
two distribution (ga, gb, gab) and (ga, gb, gc) there is no efficient algorithm that can dis-
tinguish them. However, the encryption key should be indistinguishable from a random
bit string having a uniform distribution. So we could not directly use gab as an encryption
key. It is therefore of adequate arrangements to ensure the indistinguishability of the key
such as hash functions, pseudo-random functions or random extractors.

Deterministic random extractor have been introduced in complexity theory by Tre-
visan and Vadhan [19]. Most of the work on deterministic extractors using exponential
sums for their security proof work with simple exponential sums [5,10–12,14]. Here, we
introduce deterministic random extractors that extract a perfectly random bit string of an
element derived from the combination of two separate sources.

More precisely, We propose a deterministic random extractor under the DDH asump-
tion, which maps two multiplicative subgroups of a finite field Fpn to the set {0, 1}k,
permitting to extract the k-least significant bits of a random element in the product of
the two subgroups. We use the double exponential sums to bound the collision proba-
bility and give a security proof of our extractor. The same work is performed over two
subgroups G1 and G2 of points of an elliptic curve defined over a finite field Fpn .

This work is organized as follows: In section 2, We introduce some definitions and
results on both the measurement parameters of randomness and exponential sums. In
section 3 we present and analyze the security of our randomness extractors. In section
4, we give an application of our results, that is a version of Franklin and Boneh’s en-
cryption scheme on identity-based cryptography, in the standard model. Section 5 is our
conclusion.

2. Preliminaries
This section recalls some definitions and results on the measurement of randomness

and the sums of characters. We rely on them to establish the safety of our results. [17].

2.1. Measures of randomness
Definition 2.1. Collision probability.

Let X be a finite set andX an X -valued random variable. The collision probability of
X , denoted by Col(X), is the probability Col(X) = Pr[X = X ′] =

∑
x∈X

Pr[X = x]2.

Definition 2.2. Statistical distance.
Let X be a finite set. If X and Y are X -valued random variables, then the statistical

distance SD(X,Y ) between X and Y is defined as

SD(X,Y ) =
1

2

∑
x∈X
|Pr[X = x]− Pr[Y = x]|.

Let UX be a random variable uniformly distributed on X and δ ≤ 1 a positive real
number. Then a random variable X on X is said to be δ − uniform if SD(X,UX ) ≤ δ.

Lemma 2.1. Relation between SD and Col(X).



Let X be a random variable over a finite set X of size |X | and ∆ = SD(X,UX ) be
the statistical distance between X and UX , where UX is a uniformly distributed random
variable over X . Then,

Col(X) ≥ 1 + 4∆2

|X |

To establish this result, we use the following one:

Lemma 2.2. Let X be a finite set and (αx)x∈X a sequence of real numbers. Then

(
∑
x∈X |αx|)2

|X |
≤
∑
x∈X

α2
x (1)

Proof. This inequality is a direct consequence of the Cauchy-Schwarz inequality below:∑
x∈X
|αx| =

∑
x∈X
|αx|.1 ≤

√∑
x∈X

α2
x.

√∑
x∈X

12 ≤
√
|X |.

√∑
x∈X

α2
x. (2)

Hence the result.

If X is a random variable with values in X , laying αx = Pr[X = x], since the sum
of the probabilities is equal to 1 and as Col(X) =

∑
x∈X Pr[X = x]2 we get:

1

|X |
≤ Col(X). (3)

Now we can establish the proof of Lemma 2.1.

Proof. If ∆ = 0, then the result is immediate.
Assuming ∆ 6= 0. Let us define qx = |Pr[X = x] − 1

|X | |/2∆, then
∑
x qx = 1.

According to Equation 1, we get:

1

|X |
≤
∑
x∈X

q2
x =

1

4∆2

∑
x∈X

(
Pr[X = x]− 1

|X |

)2

=
1

4∆2

(∑
x∈X

Pr[X = x]2 − 1

|X |

)
≤ 1

4∆2

(∑
x∈X

col(X)− 1

|X |

)

Hence the expected result.

Definition 2.3. Deterministic (Y, δ)-extractor.
Let X and Y be two finite sets. Let Ext be a function Ext : X → Y . We say that

Ext is a deterministic (Y, δ)-extractor for X if Ext(UX ) is δ-uniform on Y . That is
SD(Ext(UX ), UY) ≤ δ.

Definition 2.4. Two-sources extractor.
Let X , Y and Z be finite sets. The function F : X × Y → Z is a two-sources

extractor if the distribution F (X,Y ) is δ-close to the uniform distribution UZ ∈ Z for
every uniformly distributed random variables X ∈ X and Y ∈ Y .

2.2. Exponential sums
In this section, we introduce some definitions and results on exponential sums over

finite fields and over elliptic curves (see [1, 16, 20]).



2.2.1. Exponential sums over finite fields
Definition 2.5. Character.

Let G be an abelian group. A character of G is a homomorphism from G → C∗. A
character is trivial if it is identically 1. We denote the trivial character by X0 or ψ0.

Definition 2.6. Let Fq be a given finite field. An additive character ψ : F+
q → C is

a character ψ with Fq considered as an additive group. A multiplicative character X :
F∗q → C is a character with F∗q = Fq − {0} considered as a multiplicative group. We
extend X to Fq by defining X (0) = 1 if X is trivial, and X (0) = 0 otherwise. Note that
the extended X still preserves multiplication.

The main interests of exponential sums is that they allows to construct some charac-
teristic functions and in some cases we know good bounds for them. The use of these
characteristic functions can permit to evaluate the size of these sets. We focus on certain
character sums, those involving the character ep define as it follows.

Theorem 2.1. Multiplicative characters of Fp.
The multiplicative characters of Fp, where p is a prime, are given by: ∀x ∈ Fp,

ep(x) = e
2iπx
p ∈ C∗.

Theorem 2.2. Additive characters of Fq .
Suppose q = pr where p is prime. The additive characters of Fq are given by

ψ(x) = ep(Tr(x)) where Tr(x) = x+ xp + ...+ xp
n−1

is the trace of x.

Definition 2.7. Single character sums.
Let p be a prime number, G a multiplicative subgroup of F∗p . For all a ∈ Fp∗ , let

introduce the following notation: S(a,G) =
∑
x∈G

ep(ax).

Lemma 2.3. Let p be a prime number, G a multiplicative subgroup of F∗p .

1) if a = 0,
∑p−1
x=0 ep(ax) = p

2) For all a ∈ F∗p,
∑p−1
x=0 ep(ax) = 0

3) For all x0 ∈ G and all a ∈ F∗p, S(ax0, G) = S(a,G)

Proof. See [22] pp 69

Theorem 2.3. Polya-Vinogradov bound.
Let p be a prime number, G a multiplicative subgroup of F∗p . For all a ∈ F∗p:∣∣∣∣∣∑

x∈G
ep(ax)

∣∣∣∣∣ ≤ √p
Proof. See [22] pp 70

Theorem 2.4. Winterhof bound.
Let V be an additive subgroup of Fpn and let ψ be an additive caracter of Fpn . Then,∑

a∈Fpn

∣∣∣∣∣∑
x∈V

ψ(ax)

∣∣∣∣∣ ≤ pn
Proof. See [21]



Definition 2.8. Bilinear character sums.
Let p be a prime number, G and H be two multiplicative subgroups of F∗p . For all

a ∈ Fp∗ , let introduce the following notation: S(a, (G,H)) =
∑
x∈G

∑
y∈H

ep(axy)

Lemma 2.4. Let p be prime and, G and H two subsets of F∗p. Then

max
(n,p)=1

|
∑
x∈G

∑
y∈H

(ep(nxy))| ≤ (p|G||H|) 1
2 .

Proof. See [6] (bound (1.4)), [20] pp 142.

Lemma 2.5. For any subsets G, H of F∗pn and for any complex coefficients αx, βy with

|αx| ≤ 1, |βy| ≤ 1, the following bound holds, |
∑
x∈G

∑
y∈H

αxβyψ(xy)| ≤ (pn|G||H|) 1
2 .

Proof. See [20] pp 142.

2.2.2. Exponential sums over points of elliptic curves
Definition 2.9. Elliptic curves.

Let E be an elliptic curve over Fp with p ≥ 3 defined by an affine Weieirstrass equation
of the form y2 = x3 + ax + b with coefficients a, b ∈ Fp. It is known that the set E(Fp)
of Fp-rational points of E , with the point at infinity O as the neutral element, forms an
abelian group. The group law operation is denoted by ⊕. Every point P 6= O ∈ E(Fp) is
denote by P = (x(P), y(P)). Given an integer n and a point P ∈ E(Fp), we write nP for
the sum of n copies of P:

nP = P⊕ P⊕ . . .⊕ P.

Definition 2.10. Bilinear sums over additive character.
Given two subsets P,Q of E(Fp), and arbitrary complex functions σ, v supported on

P and Q we consider the bilinear sums of additive characters.

Vσ,v(ψ,P,Q) =
∑
P∈P

∑
Q∈Q

σ(P)v(Q)ψ(x(P⊕Q)).

Lemma 2.6. Let E be an elliptic curve defined over Fq where q = pn, with n ≥ 1 and let∑
P∈P
|σ(P)|2 ≤ R and∑

Q∈Q
|v(Q)|2 ≤ T. Then, uniformly over all nontrivial additive character ψ of Fq ,

|Vσ,v(ψ,P,Q)| �
√
qRT

Proof. See [1]

3. Our Contribution

3.1. Randomness extractors in finite fields
We propose and prove the security of a simple deterministic randomness extractor for

two subgroups G1 and G2 of F∗q where q = pn, with p prime and n ≥ 1. The main



theorem of this section states that the k-least significant bits of x1 · x2, where (x1, x2)
is a random element in (G1, G2), are close to a truly random element in {0, 1}k. Our
approach is from the model based on character sums.

3.1.1. Randomness extraction in Fp
Let Fp be a finite prime field such that |p| = m. Let G1 and G2 be two multiplicative

subgroups of F∗p of order q1 and q2 respectively, with |q1| = l1, |q2| = l2, the bit-length of
q1 and q2 respectively. Let UG1 (resp. UG2 ) be a random variable uniformly distributed
on G1 (resp.G2), and k a positive integer less than m.

Definition 3.1. Extractor fk on Fp.
The extractor fk is defined as the function fk : G1 × G2 −→ {0, 1}k, (x1, x2) 7−→

lsbk(x1x2)

The following theorem shows that fk is a good randomness extractor.

Theorem 3.1. Let Uk be a random variable uniformly distributed on {0, 1}k. If ∆ =
SD(fk(UG1

, UG2
), Uk) then,

2∆ ≤ 2
k+m+log2(m)−(l1+l2)

2

Proof. We introduce the following notation S(a, (G1, G2)) =
∑
x1∈G1

∑
x2∈G2

ep(ax1x2).
Let us defineK = 2k, and u0 = msbm−k(p−1). Let us construct the characteristic func-

tion, 1((x1, x2), (x′1, x
′
2), u) =

1

p

p−1∑
a=0

ep(a(x1x2−x′1x′2−Ku)) using properties (1) and

(2) of Lemma 2.3. Its equal to 1 if x1x2−x′1x′2 = Ku mod (p) and 0 otherwise. There-
fore, we can evaluateCol(fk(UG1

, UG2
)) where UG1

(resp. UG2
) is uniformly distributed

in G1 (resp. in G2):

Col(fk(UG1
, UG2

)) =
1

(q1q2)2
|{((x1, x2), (x′1, x

′
2)) ∈ (G1, G2)2∃u ≤ u0, x1x2 −

x′1x
′
2 = Ku mod (p)}| = 1

(q1q2)2p

∑
(x1,x2)∈(G1,G2)

∑
(x′1,x

′
2)∈(G1,G2)

u0∑
u=0

p−1∑
a=0

ep(a(x1x2−

x′1x
′
2 −Ku)).

Then, we manipulate the sums, separate some terms (a = 0) with the rest.
That is, for a = 0,

Col(fk(UG1
, UG2

)) =
1

(q1q2)2p

p−1∑
a=0

∑
(x1,x2)∈(G1,G2)

∑
(x′1,x

′
2)∈(G1,G2)

u0∑
u=0

ep(0) =
u0 + 1

p
(∗)

For a ∈ F∗p,

Col(fk(UG1
, UG2

)) =
1

(q1q2)2p

p−1∑
a=1

∑
(x1,x2)∈(G1,G2)

∑
(x′1,x

′
2)∈(G1,G2)

u0∑
u=0

ep(a(x1x2 −

x′1x
′
2 −Ku))

=
1

(q1q2)2p

p−1∑
a=1

∑
(x1,x2)∈(G1,G2)

ep(ax1x2)
∑

(x′1x
′
2)∈(G1,G2)

ep(−ax′1x′2)

u0∑
u=0

ep(−aKu)



=
1

(q1q2)2p

p−1∑
a=1

S(a, (G1, G2))S(−a, (G1, G2))

u0∑
u=0

ep(−aKu)

=
1

(q1q2)2p

p−1∑
a=1

|S(a, (G1, G2))|2
u0∑
u=0

ep(−aKu).

We inject the result of (*) tin the above result, the collision probability is there equal
to:

Col(fk(UG1 , UG2)) =
u0 + 1

p
+

1

(q1q2)2p

p−1∑
a=1

|S(a, (G1, G2))|2
u0∑
u=0

ep(−aKu)

According to the change of variable (a′ = Ka = 2ka mod (p), with gcd(2, p) = 1)

and the fact that [0, u0] is an interval, giving a geometric sum on it, We have:
p−1∑
a=1

u0∑
u=0

ep(−aKu) =

p−1∑
a=1

u0∑
u=0

ep(−au) =

p−1∑
a=1

1− ep(−a(u0 + 1))

1− ep(−a)
=

p−1∑
a=1

sin(πa(uo+1)
p )

sin(πap )
= 2

p−1
2∑

a=1

sin(πa(uo+1)
p )

sin(πap )
≤

2

p−1
2∑

a=1

1

sin(πap )
≤ 2

p−1
2∑

a=1

|p
a
| ≤ p log2(p)

Therefore Col(fk(UG1
, UG2

)) ≤ u0 + 1

p
+

1

(q1q2)2p
|S(a, (G1, G2))|2p log2(p) ≤

u0 + 1

p
+

1

(q1q2)2p
(pq1q2p log2(p)) ≤ u0 + 1

p
+
p log2(p)

q1q2

Using Lemma 2.1 which gives a relation between the statistical distance ∆, of fk(UG1
, UG2

)

with the uniform distribution, and the collision probability: Col(fk(UG1 , UG2)) = 1+4∆2

2k

, the previous upper bound combined with some manipulations gives:

2∆ ≤
√

2k.Col(fk(UG1
, UG2

))− 1 ≤

√
2k

p
+

√
2kp(log2(p))

q1q2
≤ 2

k+m+log2(m)−(l1+l2)
2

3.1.2. Randomness extraction in Fpn
Consider the finite field Fpn , where p is a m-bits prime and n is a positive integer

greater than 1. Fpn is a n-dimensional vector space over Fp. Let {α1, α2, . . . , αn} be a
basis of Fpn over Fp. That means, every element x in Fpn can be represented in the form
x = x1α1 + x2α2 + . . . + xnαn, where xi ∈ Fp. Let G1 and G2 be two multiplicative
subgroups of F∗pn of order q1 and q2 respectively, with |q1| = l1, |q2| = l2.
Let UG1 (resp. UG2 ) be a random variable uniformly distributed on G1 (resp.G2), and k
be a positive integer less than n.

Definition 3.2. Extractor Fk on Fpn .
We define the function Fk : G1 ×G2 −→ Fkp, (x, x′) 7−→ (x1x

′
1, x2x

′
2, . . . , xkx

′
k)

The theorem below shows that Fk is a good randomness extractor.

Theorem 3.2. Let Uk be a random variable uniformly distributed on Fkp . In the terms of
the above consideration, if ∆ = SD(Fk(UG1

, UG2
), Uk) then,

∆ ≤ 2
km+nm−(l1+l2+2)

2



Proof. Let us introduce the notation T (a, (G1, G2)) =
∑
x∈G1

∑
x′∈G2

ψ(axx′). Let (x, x′), (y, z) ∈

(G1, G2)2.
Let us define the following sets:
R = {xk+1x

′
k+1αk+1 + xk+2x

′
k+2αk+2 . . .+ xnx

′
nαn} , a subgroup of Fpn

C = {((x, x′), (y, z)) ∈ (G1, G2)2/∃r ∈ R, xx′ − yz = r}

|C| = 1

pn

∑
x∈G1,x′∈G2

∑
y∈G1,z∈G2

∑
r∈R

∑
a∈Fpn

ψ(a(xx′ − yz − r)).

We can evaluate the collision probability: Col(Fk(UG1
, UG2

)) = |C|
|G1xG2|2

=
1

(q1q2)2pn

∑
(x,x′)∈(G1,G2)

∑
(y,z)∈(G1,G2)

∑
r∈R

∑
a∈Fpn

ψ(a(xx′ − yz − r))

=
1

(q1q2)2pn

∑
a∈Fpn

∑
(x,x′)∈(G1,G2)

ψ(axx′)
∑

(y,z)∈(G1,G2)

ψ(−ayz)
∑
r∈R

ψ(−ar).

Then we manipulate the sums, separate some terms (a = 0) which gives 1
pk

with the
rest. So for a ∈ F∗pn

Col(Fk(UG1 , UG2)) =
1

(q1q2)2pn

∑
a∈F∗

pn

∑
(x,x′)∈(G1,G2)

ψ(axx′)
∑

(y,z)∈(G1,G2)

ψ(−ayz)
∑
r∈R

ψ(−ar)

Then, for all a ∈ Fpn Col(Fk(UG1
, UG2

)) =
1

pk
+

1

(q1q2)2pn

∑
a∈F∗

pn

∑
(x,x′)∈(G1,G2)

ψ(axx′)
∑

(y,z)∈(G1,G2)

ψ(−ayz)
∑
r∈R

ψ(−ar)

=
1

pk
+

1

(q1q2)2pn

∑
a∈F∗

pn

|T (a, (G1, G2))|2
∑
r∈R

ψ(−ar)

≤ 1

pk
+
pn(q1q2)pn

(q1q2)2pn
, by Lemma 2.5 and Theorem 2.4

≤ 1

pk
+

pn

(q1q2)
.

Therefore, using Lemma 2.1 with some manipulations, we obtain the expected result:

∆ ≤

√
pn+k−2

q1q2
≤ 2

km+nm−(l1+l2+2)
2 .

Corollary 3.1. Corollary 1.
Let G1 and G2 be two multiplicative subgroups of F∗2n of order q1 (resp.q2), with

|q1| = l1, |q2| = l2.
If e > 1 and k > 1 are two integers such as k ≤ (l1 + l2) − 2e − n + 2 then, Fk is a
((UG1 , UG2), 1

2e )-deterministic extractor .

Proof. Proof of corollary 3.1
If k ≤ (l1 + l2)− 2e− n+ 2,
k+n

2 ≤ l1+l2+2
2 − e

2
k+n

2 ≤ 2
l1+l2+2

2 2−e√
pn+k

4q1q2
≤ 2−e

Corollary 3.2. Corollary 2.
Let p > 2 a prime such as |p| = m.



If e > 1 and k > 1 are two integers such as k ≤ (l1+l2)−2e−mn+2
m then, Fk is a

((UG1
, UG2

), 2−e)-deterministic extractor .

3.2. Randomness extraction in elliptic curves
Let p be a prime greater than 5. Let E be an elliptic curve over the finite field Fp and

let P,Q be two subgroups of E(Fp). Let denote |P| = q1 and |Q| = q2. Let UP and UQ
be two random variables uniformly distributed in P and Q respectively.

3.2.1. Randomness extractor in E(Fp)
Definition 3.3. We define the function extrack : P × Q −→ {0, 1}k, (P,Q) 7−→
lsbk(x(P) · x(Q))

The following theorem shows that extrack is a good randomness extractor.

Theorem 3.3. Let Uk be the uniform distribution in {0, 1}k. Then,

∆(extrack(UP , UQ), Uk)� 2
k+n+log2(n)−(l1+l2+2)

2

.

Proof. Let us define K = 2k, u0 = msbm−k(p − 1). Let us define the characteristic

function 1((P,Q), (A,B), u) =
1

p

∑
ψ∈Ψ

ψ(x(P)x(Q)− x(A)x(B)−Ku) which is equal

to 1 if ψ = ψ0 and to 0, otherwise.
Let us compute the collision probability:

Col(extrack(UP , UQ)) =
1

(q1q2)2p

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
ψ∈Ψ

∑
u≤u0

ψ(x(P)x(Q)−x(A)x(B)−

Ku). Then we manipulate the sums, separate some terms (ψ = ψ0) with the rest.
So for (ψ = ψ0),

Col(extrack(UP , UQ)) =
1

(q1q2)2p

∑
ψ=ψ0

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
u≤u0

ψ0(0)

=
1

(q1q2)2p

∑
ψ=ψ0

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
u≤u0

ep(Tr(0))

=
1

(q1q2)2p

∑
ψ=ψ0

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
u≤u0

1 =
u0 + 1

p

And for (ψ 6= ψ0),Col(extrack(UP , UQ)) =
1

(q1q2)2p

∑
ψ 6=ψ0

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
u≤u0

ψ(x(P)x(Q)−

x(A)x(B)−Ku). Then for all ψ,

Col(extrack(UP , UQ)) =
u0 + 1

p
+

1

(q1q2)2p

∑
ψ 6=ψ0

∑
P∈P

∑
Q∈Q

∑
A∈P

∑
B∈Q

∑
u≤u0

ψ(x(P)x(Q)−

x(A)x(B)−Ku)

=
u0 + 1

p
+

1

(q1q2)2p

∑
ψ 6=ψ0

∑
P∈P

∑
Q∈Q

ψ(x(P)x(Q))
∑
A∈P

∑
B∈Q

ψ(−x(A)x(B))
∑
u≤u0

ψ(−Ku)

=
u0 + 1

p
+

1

(q1q2)2p

∑
ψ 6=ψ0

|
∑
P∈P

∑
Q∈Q

ψ(x(P)x(Q))||
∑
A∈P

∑
B∈Q

ψ(−x(A)x(B))|
∑
u≤u0

ψ(−Ku)

=
u0 + 1

p
+

1

(q1q2)2p

∑
ψ 6=ψ0

|V(ψ,P,Q)|2
∑
u≤u0

ψ(−Ku)



≤ 1

p
+

1

(q1q2)2p

∑
ψ 6=ψ0

q1q2p
∑
u≤u0

ψ(−Ku), by Lemma 2.6

≤ 1

p
+

1

(q1q2)2p
pq1q2p log2(p), since it is shown that

∑
ψ 6=ψ0

∑
u≤u0

ψ(−Ku) ≤

p log2(p)

≤ 1

p
+

1

(q1q2)
p log2(p).

Therefore, using Lemma 2.1 with some manipulations, we obtain the expected result:

∆(extrack(UP , UQ), Uk)�

√
2k−2p log2(p)

q1q2
= 2

k+n+log2(n)−(l1+l2+2)
2

3.2.2. Randomness extractor in E(Fpn)

Definition 3.4. Let us define the function Extrack : P × Q −→ {0, 1}k, (P,Q) 7−→
lsbk(x(P) · x(Q)), where x(P) · x(Q) = t1α1 + t2α2 + t . . .+ tnαn

The theorem below shows that Extrack is a good randomness extractor over E(Fpn).

Theorem 3.4. Let Uk be the uniform distribution in Fkp . Then,

∆(Extrack(UP , UQ), Uk)� 2
km+nm−(l1+l2+2)

2

Proof. Using Lemma 2.6 and Theorem 2.4, the sketch of the proof is the same as those
of Theorem 3.2

3.3. Generalization of results
More generally , one can define a randomness extractor over two-sources of informa-

tion as the function Extractk as follow:
1) Over Fpn

Extractk : G1 ×G2 −→ {0, 1}k

(X,Y) 7−→ lsbk(X ∗ Y ).

2) Over E(Fpn)

Extractk : G1 ×G2 −→ {0, 1}k

(P,Q) 7−→ lsbk(x(P) ∗ y(Q))

Where the operation * can be the one of the set {+, x,⊕}

4. Applications
The ideas behind a randomness extractors is the following one: suppose one got a ran-

dom variableX with some entropy but which is not uniform. For many areas of computer
science, typically for many cryptographic applications, it is required an uniformly random



variable for example to use as a secret key. Therefore, one needs to somehow extract the
randomness from X to get a uniformly distributed output.

Extractors for multiple sources. Sometimes, extraction from one source is impossi-
ble.

There are some solutions in the probabilistic method namely "seeded extractors".
These are extractors that receive one source (with min-entropy at least k, for some pa-
rameter k) and an independent short input Y , called "seed", that is uniformly distributed.
Since the assumption over Y is strong, that is having perfectly random bits is difficult in
practice, an alternative is the use of two or more sources. In this setup, a more natural
setting is to consider Y with the same length and min-entropy threshold as X .

Moreover, cryptographic protocols require to work on sufficient large sub-groups. The
high level of considering multiple sources is to show that if the given l-sources with min-
entropy δn, δ > 0 are over a finite field Fq that has no large sub-fields (which holds in the
case that Fq is a prime field), then the cumulative distribution will have more min-entropy.

Generating keys for cryptographic protocols The interest of studying randomness
extractors has several cryptographic applications. Specially, it can apply for the key ex-
traction phase of a key exchange protocol, but also for identity encryption schemes.

The security of cryptographic protocols depends on the ability of honest parties to
generate uniformly distributed and private random key. More generally, honest parties
work in a non-secure environment set up by an adversary trying to steal the shared secret.

Thus multi-source extractors enable an honest party to sample a string that is (close to)
uniform, given multiple sources, the main requirement from each source being to contain
some min-entropy.

Exemple: key exchange protocol and key extraction
1) Parameters: G = 〈P 〉; Extrack : G×G 7→ {0, 1}k

2) Key exchange:
- Alice chooses a ∈ Z∗q , sends aP to Bob;
- Bob chooses b ∈ Z∗q , sends bP to Alice;
- Alice computes abP and Bob computes baP ;
- The shared secret is abP

3) Key extraction: k = Extrack(abP, abP ) = lsbk(abx(P ) + aby(P )) =
lsbk(ab(x(P ) + y(P ))).

5. Conclusion
The problem is: how to ensure the indistinguability of a key session which is a string

of bits issue to a shared element after a Diffie-Hellman exchange protocol. Even if the
commonly use solution is one of a hash function, the solutions in the standard model are
more reliable. We have constructed some two-sources deterministic randomness extrac-
tors which perform extraction of random bits string close to the uniform distribution over
more than one source of information. These extractors can be used in any finite field or
any elliptic curve based protocols. We have also proposed some applications, for example
a version of Boneh and Franklin’s encryption scheme using extractors.

As future work, we intend to generalize the proposed extractors to n-sources, find
analogous results for hyperelliptic curves and propose cryptographically secure pseudo-
random number generators based on these extractors. Most identity-based protocols cal-



culates the current key of a user from its identity view as a point of an (hyper)elliptic curve
. This is, an implementation of a platform of session keys generation using our extrac-
tors, and of calculation of a point of a curve using new encoding functions is underway.
The goal here is to provide a practical tool for key generation phases of these encryption
primitive .
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