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Noisy Optimization: Fast Convergence Rates

with Comparison-Based Algorithms

Marie-Liesse Cauwet Olivier Teytaud

TAO, Inria, Lri, Umr Cnrs 8623

Abstract

Derivative Free Optimization is known to be an efficient and robust
method to tackle the black-box optimization problem. When it comes
to noisy functions, classical comparison-based algorithms are slower than
gradient-based algorithms. For quadratic functions, Evolutionary Algo-
rithms without large mutations have a simple regret at best O(1/

√
N)

when N is the number of function evaluations, whereas stochastic gradi-
ent descent can reach (tightly) a simple regret in O(1/N). It has been
conjectured that gradient approximation by finite differences (hence, not
a comparison-based method) is necessary for reaching such a O(1/N).
We answer this conjecture in the negative, providing a comparison-based
algorithm as good as gradient methods, i.e. reaching O(1/N) - under
the condition, however, that the noise is Gaussian. Experimental results
confirm the O(1/N) simple regret, i.e., squared rate compared to many
published results at O(1/

√
N).

Keywords: Noisy continuous optimization; Comparison-based Algo-
rithms

1 The black-box noisy optimization

problem

In a real world optimization problem, the analytical form of the objective
function is frequently unavailable. It is common in this field to obtain
only the fitness values of the objective function: this is the black-box
problem. In this setting, given a search point, an oracle returns the
corresponding fitness value. Furthermore, due to stochastic effects or
inaccurate measurements, the fitness values can be improper: this is
called noise, and the optimization problem is then a noisy optimization
problem. We here consider noisy optimization with constant additive
Gaussian noise. Given an objective function F and a search point x ∈
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R
d, the oracle outputs the fitness value Fnoisy(x):

Fnoisy(x) = G(F (x), b), (1)

where G(a, b) is a Gaussian random variable with mean a and standard
deviation b > 0.

Regarding some industrial applications, a call to the oracle might
be expensive, requiring heavy computations. Thus, we aim to find an
approximation of the optimum within a number of evaluations as small
as possible. The algorithm spends N evaluations and then outputs an
answer, which is an approximation - denoted x̂N - of the minimum1 x∗

of F . With these notations, the simple regret after N evaluations is
defined by:

SRN = E (Fnoisy(x̂N)− Fnoisy(x
∗)) = EF (x̂N)− F (x∗). (2)

On the right-hand side of Eq. 2, the expectation operates on x̂N which
might be a random variable due to the stochasticity of the noisy evalu-
ations or the possible internal randomization of the optimization algo-
rithm.

Dupač [5] has shown that noisy quadratic strongly convex functions
can be optimized with simple regret O(1/N), when the budget (i.e. the
number of evaluations) is N . Fabian [6] has broadened this result to a
wider class of functions, but with only an approximation of this rate:
for a function with arbitrarily many derivatives, a regret O(1/Nα) can
be reached for α < 1 arbitrarily close to 1. Furthermore, this bound
O(1/N) is optimal (see [3]). Shamir in [10] has improved the results, in
terms of the non-asymptotic nature of some of these convergence, and
in terms of explicit dependency in the dimension.

These rates are reached by algorithms introduced by Kiefer and Wol-
fowitz [8], which approximate the gradient using finite differences and
thus using fitness values. However, as a refinement of the black-box
problem, we might encounter some optimization problems where the
fitness value itself is unknown. In this case, an oracle only provides
a ranking of a given set of points, but not the fitness values of these
points. For example in games, an operator can compare two agents, but
not directly provide a level evaluation. In design, with the human in
the loop, a user preference is a comparison between two search points.
Searching a Pareto front might also involve a user providing his prefer-
ences. Comparison based algorithms such as Evolutions Strategies (ES),
Differential Evolution (DE) or Particle Swarm Optimization (PSO) can
handle this type of problem. The comparison oracle is also noisy in the
sense that the points might be misranked.

Shamir in [10] has conjectured that the use of approximate gradients is
necessary for fast rates (i.e. rates O(1/N)) in the noisy strongly convex
quadratic case. In this case, the best known bounds for comparison-
based algorithms are a simple regret O(1/

√
N) (see [1] for Evolution

Strategies), which supports this conjecture. However, we show in the

1w.l.g. we assume that the optimum is a minimum.
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present paper that, for noisy quadratic forms, a simple regret O(1/N)
can be reached by a comparison-based algorithm, combining the “mutate
large inherit small” principle [2] and the use of large population sizes.
The “mutate large inherit small” principle is used in the sense that
we have long distances between current estimates of the optimum and
search points, even when the estimate is close to the optimum.

Jamieson et al. in [7] have presented a bound for a comparison-based
operator, using a number of comparisons quadratic O

(
1
ǫ2

)
for ensuring

precision ǫ in the simple regret - whereas we only need O
(
1
ǫ
log 1

ǫ

)
com-

parisons. More precisely, we fully rank O
(
1
ǫ

)
points; they can be sorted

with O
(
1
ǫ
log 1

ǫ

)
comparisons.

Section 2 describes the key idea to get a fast comparison-based algo-
rithm in a noisy setting. The theoretical aspects and a precise descrip-
tion of a fast optimization algorithm is given in Section 3 for the specific
case of the sphere function. In this case, the technicality in the proof is
lighter and allowed a good insight of what we will use when switching to
a larger family of functions: the quadratic functions in Section 4. Last,
we address the experimental aspects in Section 5.

2 Comparison Procedure

The main idea is to estimate the parameters of the objective function.
The algorithm hence builds a model of the function and provides an
approximation of the optimum. Specifically, comparing 2 search points
N times provides an estimation at distance O(1/

√
N) of one parameter

of the function. This estimation is made possible through the frequency
at which the fitness values of one of the search points is better than the
other. In particular, it is crucial to know the model of noise. Hence,
the optimization algorithms of Sections 3 and 4 consist in a sequence of
calls to Cop, given below.

Comparison Procedure (Cop ).
procedure Cop(N , x, y, Fnoisy)

f ← 0
for i = 1 to N do

f i
x ← Fnoisy(x)
f i
y ← Fnoisy(y)

end for
f ← 1

N2

∑

1≤i,j≤N
1
fi
x<f

j
y

return f
end procedure

Importantly, this operator can be computed faster than the appar-
ent O(N2) complexity. Using sorting algorithm, the complexity is
O(N logN).
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3 Sphere function

3.1 In dimension 1

We first propose in Alg. 1 an algorithm (Cops1) achieving regret
O(1/N) on the noisy sphere problem in dimension 1.

Algorithm 1 Comparison Procedure for Sphere function in dimension 1
(Cops1).

Input:
an oracle Fnoisy : x ∈ R 7→ G(|x− x∗|2, 1)
an even budget N

Output:
an approximation x̂ of the optimum x∗ ∈ [−1, 1] of the objective function
F : x 7→ |x− x∗|2

K ← N/2
f ← Cop(K, 1,−1, Fnoisy)
Define x̂ such that P

(

G(0, 1) <
√
8x̂

)

= f
x̂← max(−1,min(1, x̂))

return x̂

Theorem 1 Let Fnoisy(x) = |x−x∗|2+G(0, 1) be the noisy sphere func-
tion in dimension 1, where x∗ ∈ [−1, 1]. Then the simple regret of Cops1
after N evaluations satisfies:

SRN = O(1/N). (3)

Proof 1 Consider Cops1 on such an objective function. By definition
of Fnoisy and F ,

p = P (Fnoisy(1) < Fnoisy(−1))
= P

(
|1− x∗|2 + G(0, 1) < | − 1− x∗|2 + G(0, 1)

)

= P

(√
2G(0, 1) < (1 + x∗)2 − (1− x∗)2

)

= P

(

G(0, 1) <
√
8x∗
)

. (4)

Step 1: Expectation and Variance of f .

With the notations of Cop, let us define:

∀ i, j ∈ {1, . . . , N}2, 1i,j =

{

1 if f i
1 < f j

−1

0 otherwise

1i,j is Bernoulli distributed with probability of success p.
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f is the output of the Cop procedure. By definition,

f =
1

K2

∑

1≤i,j≤K

1i,j .

The expectation and variance of f are then:

Ef = p

V arf =
1

K4

K∑

i=1

K∑

j=1

Cov

(
K∑

k=1

1i,k,
K∑

k′=1

1j,k′

)

=
1

K4

K∑

i=1

K∑

j=1

K∑

k=1

K∑

k′=1

Cov(1i,k,1j,k′) (5)

If i 6= j and k 6= k′, Cov(1i,k,1j,k′) = 0 by independence. If i = j (or
k = k′), by Cauchy-Schwarz:

Cov(1i,k,1i,k′) ≤
√

V ar(1i,k)V ar(1i,k′) ≤ 1

4
This together with Eq. 5 give:

V arf =
1

K4

(
K∑

i=1

K∑

k=1

K∑

k′=1

Cov(1i,k,1i,k′)+

K∑

i=1

K∑

j=1

K∑

k=1

Cov(1i,k,1j,k)

)

,

≤ 1

K4
× K3

2
,

≤ 1

N
.

Step 2: Lipschitz. We denote by Φ the cumulative distribution
function of the standard Gaussian: Φ(x) = P (G(0, 1) < x) and m and
M such that Φ−1

[m,M] : [m,M ]→ [−1, 1] is the inverse of Φ over these
intervals. Let us define

h(x) =







Φ−1
[m,M]

(x) if m ≤ x ≤ M

−1 if x < m

1 if M < x

Let us evaluate the Lipschitz coefficient L(h) of h. Φ−1
[m,M] is differen-

tiable over [m,M ] since Φ is differentiable over [−1, 1] hence its Lipschitz
L(Φ−1

[m,M]
) is bounded. h is continuous, and h is constant over (−∞,m]

and [M,∞); hence the Lipschitz of h is L(Φ−1
[m,M]) over [m,M ].
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Step 3: Concluding. We have, by definition of Cops1 for x̂ and
by Eq. 4 for x∗,

x̂ =
h(f)√

8
and x∗ =

h(p)√
8
, (6)

By definition of the simple regret in Eq. 2,

SRN = E|x̂− x∗|2

≤ EL(h)2|f − p|2/8 by Step 2

≤ L(h)2

8N
by Step 1.

Remark 1 The result of Theorem 1 is based on the fact that the noise
is a standard Gaussian. However, this result still holds as soon as the
noise distribution has expectation 0, finite variance (possibly unknown,
see Section 4) and a bounded Lipschitz. The distribution of the noise,
on the other hand, must be known.

3.2 Multidimensional sphere function

Alg. 2 (Cops) presents a straightforward extension to the noisy multi-
dimensional sphere. Bd(c, r) denotes the ball of center c and radius r in
dimension d, and ‖.‖ is the Euclidean norm.

Algorithm 2 Comparison procedure for the sphere function (Cops).

Input:
an oracle Fnoisy : x ∈ R

d 7→ G(‖x− x∗‖2, 1)
a budget N (multiple of 2d)

Output:
an approximation x̂ of the optimum x∗ ∈ Bd(0, 1) of the objective function
F : x 7→ ‖x− x∗‖2

K ← N/2d
for i = 1 to d do
Apply Cops1 with a budget K on the unidimensional restriction of Fnoisy to
{0}i−1 × [−1, 1]× {0}d−i
x̂i be the obtained approximation of the optimum in [−1, 1].
end for

return x̂ = (x̂1, . . . , x̂d).

Theorem 2 Let Fnoisy(x) = ‖x − x∗‖2 + G(0, 1) be the noisy sphere
function, with x∗ ∈ Bd(0, 1) ⊂ R

d.Then the simple regret of Cops after
N evaluations is:

SRN = O(d/N).

Proof 2 The conditions of Theorem 1 are verified for each application
of Cops1. The simple regret for the multidimensional case is the sum
of the simple regrets of each restrictions.
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4 General quadratic forms

Alg. 3 extends the principle of Section 3 to the optimization of a wider
class of quadratic functions. ‖ · ‖2 denotes the matrix norm induced by

‖ · ‖, i.e. ‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖

and ‖ · ‖F is the Frobenius norm. (ei) is the

standard basis and At is the transpose of matrix A.

Algorithm 3 Comparison procedure for quadratic functions (CopQuad).
Input:

an oracle Fnoisy : x ∈ R
d 7→ G(xtAx + Bx + C,D)

a budget N (multiple of d(d+ 3)− 2)
Output:

an approximation x̂ of the optimum x∗ ∈ Bd(0, 1) of the objective function
F : x 7→ xtAx+ Bx + C

1: K ← N
d(d+3)−2

2: for i = 1 to d do

3: f−ei,ei
← Cop(K,−ei, ei, Fnoisy)

4: Define B̂i(D) such that P

(

G(0, 1) <
√
2B̂i(D)

)

= f−ei,ei

5: B̂i(D)← max(−5,min(B̂i(D), 5)) ⊲ Estimate of Bi/D
6: f0,ei ← Cop(K, 0, ei, Fnoisy)
7: Define θii(D) such that P

(
G(0, 1) < θii(D)/

√
2
)
= f0,ei

8: θii(D)← max(−5,min(θii(D), 5))
9: Âi,i(D)← θii(D) − B̂i(D) ⊲ Estimate of Ai,i/D

10: end for

11: for i = 1 to d do

12: for j = i+ 1 to d do

13: f0,ei+ej ← Cop(K, 0, ei + ej , Fnoisy)
14: Define θij(D) such that

P(G(0, 1) < θij(D)/
√
2) = f0,ei+ej

15: θij(D)← max(−5,min(θij(D), 5))
16: Âi,j(D)← 1

2
(θij(D)− B̂i(D)

17: −Âi,i(D)− B̂j(D)− Âj,j(D))
18: Âj,i(D)← Âi,j(D) ⊲ Estimate of Ai,j/D and Aj,i/D
19: end for

20: end for

21: Â(D)← (Âi,j(D))
22: B̂(D)← (B̂i(D))
23: if Â(D) is not singular then
24: x̂← − 1

2
B̂(D)tÂ(D)−1

25: else

26: x̂← 0
27: end if

return x̂← projection of x̂ on Bd(0, 1).

Theorem 3 Let ǫ ∈]0, 1[. Consider an objective function
Fnoisy(x) = xtAx+Bx+ C +DG(0, 1), with optimum x∗ in
Bd(0, 1 − ǫ) ⊂ R

d, and D > 0. Assume that 1
D
‖B‖ ≤ 1 and
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1
D
|C| ≤ 1. If A is symmetric positive definite such that its eigenvalues

are lower bounded by some c > 0 and ‖ 1
D
A‖2 ≤ 1, then, when applying

CopQuad, SRN = O(max((λmax/λmin)
2, λ2

max)D
2/N), where λmax

is the maximum eigenvalue of 1
D
A, and λmin > 1

D
c is the minimum

eigenvalue.

Remark: Please note that λmax ≤ 1 by the assumptions in Theorem
3.

Proof 3 Let x and y be two points to be compared in CopQuad:
(x, y) ∈ C := {(ei,−ei)i, (0, ei)i, (0, ei + ej)i6=j}. We denote by ∆x,y the
value ∆x,y := E(Fnoisy(y)− Fnoisy(x)) = F (y)− F (x) and by fx,y the
frequency fx,y := 1

K2

∑

1≤i,j≤K 1
fi
x<f

j
y
, where f i

x and f j
y are as in Sec-

tion 2.

Step 1: Mean Squared Error of frequencies.

Similarly to step 2 of Theorem 1, and using the notation
Φ(x) = P(G(0, 1) < x),

E(fx,y) = Φ

(
∆x,y√
2D

)

E

(

fx,y − Φ

(
∆x,y√
2D

))2

= V ar(fx,y) = O(1/N). (7)

Step 2: Mean Squared Error of Â(D) and B̂(D).

As in Step 3 of the proof of theorem 1, we denote by Φ−1

[m̃,M̃]
: [m̃, M̃ ]→

[−5, 5] the inverse of Φ over these intervals:

h̃(x) =







Φ−1

[m̃,M̃]
(x) if m̃ ≤ x ≤ M̃

−5 if x < m̃

5 if M̃ < x

By assumption, (x, y) ∈ C, 1
D
‖A‖2 ≤ 1 and 1

D
‖B‖ ≤ 1, ∆x,y/

√
2D ∈

[−5, 5] and then, as in Step 3 and 4 of Theorem 1,

E

(

h̃(fx,y)− ∆x,y√
2D

)2

≤ E

(

h̃(fx,y)− h̃

(

Φ

(
∆x,y√
2D

)))2

≤ L(h̃)2E

(

fx,y − Φ

(
∆x,y√
2D

))2

= O(1/N) by Eq. 7. (8)

By applying Eq. 8, we then estimate the mean squared error of Â(D)
and B̂(D):

• B̂i(D) =
√
2h̃(f−ei,ei)/2 and Bi/D = ∆−ei,ei/2D ∀i ∈ {1, . . . , d},

then E(B̂i(D)−Bi/D)2 = O(1/N) by Eq. 8, hence
E‖B̂(D)−B/D‖2 = O(1/N).
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• Âi,i(D) =
√
2h̃(f0,ei)− B̂i(D) and Ai,i/D = ∆0,ei/D −Bi/D,

then E(Âi,i(D)− Ai,i/D)2 = O(1/N) using Eq. 8, and

E(B̂i(D) −Bi/D)2 = O(1/N).

If i 6= j, then

Âi,j(D) =
1

2

(√
2h̃(f0,ei+ej )

−B̂i(D)− Âi,i(D) − B̂j(D)− Âj,j(D)
)

,

and
Ai,j/D =

1/2
(
∆0,ei+ej/D −Bi/D − Ai,i/D −Bj/D − Aj,j/D

)

hence, by proceeding as above,

E(Âi,j(D)− Ai,j/D)2 = O(1/N)

and
E‖Â(D)− A/D‖2F = O(1/N).

Step 3: with probability at least 1−O(1/N), CopQuad returns
an estimate x̂ solution of 2x̂Â(D) = −B̂t(D).

By definition of CopQuad , 2x̂Â(D) 6= −B̂t(D) only if x̂ could not
be properly defined because Â(D) is singular or if we use the projection.

The eigenvalues are continuous (see e.g. [11]); therefore in a neigh-
borhood of A/D, Â(D) has eigenvalues lower bounded by some δ > 0.
Therefore, Â(D) is singular only out of this neighborhood; this occurs, by
Markov’s inequality, with probability O(1/N). Therefore, the first case
occurs with probability at most O(1/N).

With probability at least 1 − O(1/N), the solution x̂ of 2x̂Â(D) =
−B̂t(D) is therefore the projection of − 1

2
B̂(D)tÂ(D)−1. For Â(D) close

enough to A/D and B̂(D) close enough to B/D, this is close to x∗, and
therefore it is inside Bd(0, 1− ǫ).

Step 4: concluding when 2x̂Â(D) = −B̂(D)t.

Define B′ = B/D − B̂(D) and A′ = A/D − Â(D). We have 2x∗A =
−Bt and 2x̂Â(D) = −B̂(D)t.

By substraction, we get

2(x̂Â(D) − x∗A/D) = (B/D)t − B̂(D)t

hence 2(x̂A/D − x̂A′ − x∗A/D) = B′t, using definitions of A′ and B′.

By step 2, all terms in A′ and B′ have expected squared norm O(1/N);
and by step 3 x̂ is bounded, therefore

2(x̂A/D − x∗A/D) = B′t + 2x̂A′

has expected squared norm O(1/N), and

(x̂− x∗) =
1

2
uA−1D

9



with E‖u‖2 = O(1/N).

With λmin > 0 the smallest eigenvalue of 1
D
A, we get

E‖x̂− x∗‖2 = O(λ−2
min/N).

Note that F can be rewritten as

F (x) = (x− x∗)tA(x− x∗) + C′,

where x∗ = − 1
2
BtA−1 and C′ = C − x∗tAx∗.

Then SRN = ‖F (x̂)− F (x∗)‖2 = ‖(x̂− x∗)tA(x̂− x∗)‖2

≤ λ2
max‖x̂− x∗‖2

Hence SRN = O

((
λmax

λmin

)2
D2

N

)

, which is the expected

result.

Step 5: General conclusion

Let us denote by S the event “CopQuad returns an estimate x̂ so-
lution of 2x̂Â(D) = −B̂(D)t” and S̄ its complement. In the following,
diam denotes the diameter. By definition,

SRN = E(Fnoisy(x̂)− Fnoisy(x
∗))

= E(Fnoisy(x̂)− Fnoisy(x
∗)|S)

︸ ︷︷ ︸

=O

(

(

λmax
λmin

)2 D2

N

)

by step 4

P(S)
︸ ︷︷ ︸

≤1

+ E(Fnoisy(x̂)− Fnoisy(x
∗)|S̄)

︸ ︷︷ ︸

≤λ2
max×D2×diam(Bd(0,1−ǫ))

P(S̄)
︸ ︷︷ ︸

=O(1/N)by step 3

Hence the expected result.

5 Experiments

For each experiment, parameters A, B and C satisfying assump-
tions in Theorem 3 are randomly generated. CopQuad then returns
an approximation of the optimum of the noisy quadratic function
F (x) = xtAx+Bx+ C +DG(0, 1). Results are obtained over 50 runs.CopQuad to tackle strong noise. Fig. 1 presents results of
CopQuad in dimension 2 when the standard deviationD satisfies the as-
sumptions in Theorem 3, i.e., ‖B‖/D ≤ 1, |C|/D ≤ 1 and ‖A‖2/D ≤ 1.
The linear rate (in log-log scale) with slope −1 is clearly visible. We
obtained similar graphs (not presented here) for dimensions 5.CopQuad with small noise. Figure 2 then shows the case of a
smaller noise D for dimension 2. Along with the theory ( ‖A/D‖2 does
not satisfy the assumptions), we lose the O(1/N) rate. In the early
stages, CopQuad still seems to converge, but it eventually stagnates
around the optimum. It is counter-intuitive that an algorithm per-
forms worse when noise decreases; nonetheless, in the case 1

D
A → 0,
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Figure 1: Dimension d = 2, over 50 runs. Mean, median and quantiles 10% and
90% are displayed.

the Cop operator always return 0 or 1, thus the estimated parame-
ters are −5 or 5, and the algorithm does not converge. Incidentally,
this is consistent with the bandit literature, where the hardest cases are
when optimal arms have close values. Providing an algorithm able to
cope with D ≤ ‖A‖2 is possible - asymptotically, as for bandit algo-
rithms mentioned above. Progressively widening the projection interval
[−b(N), b(N)] instead of keeping [−5, 5] fixed makes this possible; if we
have a slow enough function b : N 7→ b(N) for defining the interval
[−b(N), b(N)], then we get:

• e.g. log(log(log(N))) in Eq. 8,

• and asymptotically we still get a probability 1/N in Step 3 of
Theorem 3.

So that, for N > N0, we get Theorem 3 (up to the slight increase in
the bound, depending on the choice of the b function) independently of
D ≤ ‖A‖2 - but N0 depends on 1

D
A.

6 Conclusion

We have shown that comparison-based algorithms can reach a regret
O(1/N) on quadratic forms. This partially solves (negatively) a conjec-
ture in [10], and improves results proposed in [4, 9]. Our main assump-
tion is the Gaussian nature of the noise. We do not assume that the
variance is known, but it is supposed to be constant.
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Figure 2: d = 2, D = 0.65.

Future work. We assume an exactly quadratic function; maybe
rates in O(1/N2/3) can be reached for non-quadratic functions under
smoothness assumptions. Also we might extend the present results to
non Gaussian noise.
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