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ABSTRACT
Derivative Free Optimization is known to be an efficient and
robust method to tackle the black-box optimization prob-
lem. When it comes to noisy functions, classical comparison-
based algorithms are slower than gradient-based algorithms.
For quadratic functions, Evolutionary Algorithms without
large mutations have a simple regret at best O(1/

√
N) when

N is the number of function evaluations, whereas stochas-
tic gradient descent can reach (tightly) a simple regret in
O(1/N). It has been conjectured that gradient approxi-
mation by finite differences (hence, not a comparison-based
method) is necessary for reaching such a O(1/N). We an-
swer this conjecture in the negative, providing a comparison-
based algorithm as good as gradient methods, i.e. reaching
O(1/N) - under the condition, however, that the noise is
Gaussian. Experimental results confirm the O(1/N) simple
regret, i.e., squared rate compared to many published results
at O(1/

√
N).

Keywords
Noisy continuous optimization; Comparison-based Algo-
rithms

1. THE BLACK-BOX NOISY OPTIMIZA-
TION PROBLEM

In a real world optimization problem, the analytical form
of the objective function is frequently unavailable. It is com-
mon in this field to obtain only the fitness values of the objec-
tive function: this is the black-box problem. In this setting,
given a search point, an oracle returns the corresponding
fitness value. Furthermore, due to stochastic effects or in-
accurate measurements, the fitness values can be improper:
this is called noise, and the optimization problem is then a
noisy optimization problem. We here consider noisy opti-
mization with constant additive Gaussian noise. Given an
objective function F and a search point x ∈ Rd, the oracle
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outputs the fitness value Fnoisy(x):

Fnoisy(x) = G(F (x), b), (1)

where G(a, b) is a Gaussian random variable with mean a
and standard deviation b > 0.

Regarding some industrial applications, a call to the oracle
might be expensive, requiring heavy computations. Thus,
we aim to find an approximation of the optimum within a
number of evaluations as small as possible. The algorithm
spends N evaluations and then outputs an answer, which is
an approximation - denoted x̂N - of the minimum1 x∗ of F .
With these notations, the simple regret after N evaluations
is defined by:

SRN = E (Fnoisy(x̂N )− Fnoisy(x∗)) = EF (x̂N )− F (x∗).
(2)

On the right-hand side of Eq. 2, the expectation operates on
x̂N which might be a random variable due to the stochastic-
ity of the noisy evaluations or the possible internal random-
ization of the optimization algorithm.

Dupač [5] has shown that noisy quadratic strongly convex
functions can be optimized with simple regret O(1/N), when
the budget (i.e. the number of evaluations) is N . Fabian
[6] has broadened this result to a wider class of functions,
but with only an approximation of this rate: for a function
with arbitrarily many derivatives, a regret O(1/Nα) can be
reached for α < 1 arbitrarily close to 1. Furthermore, this
bound O(1/N) is optimal (see [3]). Shamir in [10] has im-
proved the results, in terms of the non-asymptotic nature of
some of these convergence, and in terms of explicit depen-
dency in the dimension.

These rates are reached by algorithms introduced by
Kiefer and Wolfowitz [8], which approximate the gradient
using finite differences and thus using fitness values. How-
ever, as a refinement of the black-box problem, we might en-
counter some optimization problems where the fitness value
itself is unknown. In this case, an oracle only provides a
ranking of a given set of points, but not the fitness values of
these points. For example in games, an operator can com-
pare two agents, but not directly provide a level evaluation.
In design, with the human in the loop, a user preference is a
comparison between two search points. Searching a Pareto
front might also involve a user providing his preferences.
Comparison based algorithms such as Evolutions Strategies
(ES), Differential Evolution (DE) or Particle Swarm Opti-
mization (PSO) can handle this type of problem. The com-

1w.l.g. we assume that the optimum is a minimum.



parison oracle is also noisy in the sense that the points might
be misranked.

Shamir in [10] has conjectured that the use of approximate
gradients is necessary for fast rates (i.e. rates O(1/N)) in
the noisy strongly convex quadratic case. In this case, the
best known bounds for comparison-based algorithms are a
simple regret O(1/

√
N) (see [1] for Evolution Strategies),

which supports this conjecture. However, we show in the
present paper that, for noisy quadratic forms, a simple re-
gret O(1/N) can be reached by a comparison-based algo-
rithm, combining the “mutate large inherit small” principle
[2] and the use of large population sizes. The “mutate large
inherit small” principle is used in the sense that we have
long distances between current estimates of the optimum
and search points, even when the estimate is close to the
optimum.

Jamieson et al. in [7] have presented a bound for a
comparison-based operator, using a number of comparisons
quadratic O

(
1
ε2

)
for ensuring precision ε in the simple regret

- whereas we only need O
(
1
ε

log 1
ε

)
comparisons. More pre-

cisely, we fully rank O
(
1
ε

)
points; they can be sorted with

O
(
1
ε

log 1
ε

)
comparisons.

Section 2 describes the key idea to get a fast comparison-
based algorithm in a noisy setting. The theoretical aspects
and a precise description of a fast optimization algorithm is
given in Section 3 for the specific case of the sphere func-
tion. In this case, the technicality in the proof is lighter
and allowed a good insight of what we will use when switch-
ing to a larger family of functions: the quadratic functions
in Section 4. Last, we address the experimental aspects in
Section 5.

2. COMPARISON PROCEDURE
The main idea is to estimate the parameters of the ob-

jective function. The algorithm hence builds a model of the
function and provides an approximation of the optimum.
Specifically, comparing 2 search points N times provides an
estimation at distance O(1/

√
N) of one parameter of the

function. This estimation is made possible through the fre-
quency at which the fitness values of one of the search points
is better than the other. In particular, it is crucial to know
the model of noise. Hence, the optimization algorithms of
Sections 3 and 4 consist in a sequence of calls to Cop, given
below.

Comparison Procedure (Cop).

procedure Cop(N , x, y, Fnoisy)
f ← 0
for i = 1 to N do

f ix ← Fnoisy(x)
f iy ← Fnoisy(y)

end for
f ← 1

N2

∑
1≤i,j≤N

1
fix<f

j
y

return f
end procedure

Importantly, this operator can be computed faster than
the apparent O(N2) complexity. Using sorting algorithm,
the complexity is O(N logN).

3. SPHERE FUNCTION

3.1 In dimension 1

We first propose in Alg. 1 an algorithm (Cops1) achieving
regret O(1/N) on the noisy sphere problem in dimension 1.

Algorithm 1 Comparison Procedure for Sphere func-
tion in dimension 1 (Cops1).

Input:
an oracle Fnoisy : x ∈ R 7→ G(|x− x∗|2, 1)
an even budget N

Output:
an approximation x̂ of the optimum x∗ ∈ [−1, 1] of the
objective function F : x 7→ |x− x∗|2

K ← N/2
f ← Cop(K, 1,−1, Fnoisy)
Define x̂ such that P

(
G(0, 1) <

√
8x̂
)

= f
x̂← max(−1,min(1, x̂))

return x̂

Theorem 1. Let Fnoisy(x) = |x − x∗|2 + G(0, 1) be the
noisy sphere function in dimension 1, where x∗ ∈ [−1, 1].
Then the simple regret of Cops1 after N evaluations satis-
fies:

SRN = O(1/N). (3)

Proof. Consider Cops1 on such an objective function.
By definition of Fnoisy and F ,

p = P (Fnoisy(1) < Fnoisy(−1))

= P
(
|1− x∗|2 + G(0, 1) < | − 1− x∗|2 + G(0, 1)

)
= P

(√
2G(0, 1) < (1 + x∗)2 − (1− x∗)2

)
= P

(
G(0, 1) <

√
8x∗
)
. (4)

Step 1: Expectation and Variance of f .
With the notations of Cop, let us define:

∀ i, j ∈ {1, . . . , N}2, 1i,j =

{
1 if f i1 < f j−1

0 otherwise

1i,j is Bernoulli distributed with probability of success p.
f is the output of the Cop procedure. By definition,

f =
1

K2

∑
1≤i,j≤K

1i,j .

The expectation and variance of f are then:

Ef = p

V arf =
1

K4

K∑
i=1

K∑
j=1

Cov

(
K∑
k=1

1i,k,

K∑
k′=1

1j,k′

)

=
1

K4

K∑
i=1

K∑
j=1

K∑
k=1

K∑
k′=1

Cov(1i,k,1j,k′) (5)

If i 6= j and k 6= k′, Cov(1i,k,1j,k′) = 0 by independence. If
i = j (or k = k′), by Cauchy-Schwarz:

Cov(1i,k,1i,k′) ≤
√
V ar(1i,k)V ar(1i,k′) ≤

1

4



This together with Eq. 5 give:

V arf =
1

K4

(
K∑
i=1

K∑
k=1

K∑
k′=1

Cov(1i,k,1i,k′)+

K∑
i=1

K∑
j=1

K∑
k=1

Cov(1i,k,1j,k)

)
,

≤ 1

K4
× K3

2
,

≤ 1

N
.

Step 2: Lipschitz. We denote by Φ the cu-
mulative distribution function of the standard Gaus-
sian: Φ(x) = P (G(0, 1) < x) and m and M such that
Φ−1

[m,M ] : [m,M ]→ [−1, 1] is the inverse of Φ over these in-

tervals. Let us define

h(x) =


Φ−1

[m,M ](x) if m ≤ x ≤M
−1 if x < m

1 if M < x

Let us evaluate the Lipschitz coefficient L(h) of h. Φ−1
[m,M ]

is differentiable over [m,M ] since Φ is differentiable over
[−1, 1] hence its Lipschitz L(Φ−1

[m,M ]) is bounded. h is con-

tinuous, and h is constant over (−∞,m] and [M,∞); hence
the Lipschitz of h is L(Φ−1

[m,M ]) over [m,M ].

Step 3: Concluding. We have, by definition of Cops1
for x̂ and by Eq. 4 for x∗,

x̂ =
h(f)√

8
and x∗ =

h(p)√
8
, (6)

By definition of the simple regret in Eq. 2,

SRN = E|x̂− x∗|2

≤ EL(h)2|f − p|2/8 by Step 2

≤ L(h)2

8N
by Step 1.

Remark 1. The result of Theorem 1 is based on the fact
that the noise is a standard Gaussian. However, this re-
sult still holds as soon as the noise distribution has expecta-
tion 0, finite variance (possibly unknown, see Section 4) and
a bounded Lipschitz. The distribution of the noise, on the
other hand, must be known.

3.2 Multidimensional sphere function
Alg. 2 (Cops) presents a straightforward extension to the

noisy multidimensional sphere. Bd(c, r) denotes the ball of
center c and radius r in dimension d, and ‖.‖ is the Euclidean
norm.

Theorem 2. Let Fnoisy(x) = ‖x − x∗‖2 + G(0, 1) be the
noisy sphere function, with x∗ ∈ Bd(0, 1) ⊂ Rd.Then the
simple regret of Cops after N evaluations is:

SRN = O(d/N).

Proof. The conditions of Theorem 1 are verified for each
application of Cops1. The simple regret for the multidimen-
sional case is the sum of the simple regrets of each restric-
tions.

Algorithm 2 Comparison procedure for the sphere function
(Cops).

Input:
an oracle Fnoisy : x ∈ Rd 7→ G(‖x− x∗‖2, 1)
a budget N (multiple of 2d)

Output:
an approximation x̂ of the optimum x∗ ∈ Bd(0, 1) of the
objective function F : x 7→ ‖x− x∗‖2

K ← N/2d
for i = 1 to d do
Apply Cops1 with a budget K on the unidimensional re-
striction of Fnoisy to {0}i−1 × [−1, 1]× {0}d−i
x̂i be the obtained approximation of the optimum in
[−1, 1].
end for

return x̂ = (x̂1, . . . , x̂d).

4. GENERAL QUADRATIC FORMS
Alg. 3 extends the principle of Section 3 to the optimiza-

tion of a wider class of quadratic functions. ‖ · ‖2 denotes

the matrix norm induced by ‖ · ‖, i.e. ‖A‖2 = sup
x6=0

‖Ax‖
‖x‖ and

‖ · ‖F is the Frobenius norm. (ei) is the standard basis and
At is the transpose of matrix A.

Theorem 3. Let ε ∈]0, 1[. Consider an objective func-
tion Fnoisy(x) = xtAx+Bx+ C +DG(0, 1), with optimum
x∗ in Bd(0, 1 − ε) ⊂ Rd, and D > 0. Assume that
1
D
‖B‖ ≤ 1 and 1

D
|C| ≤ 1. If A is symmetric positive def-

inite such that its eigenvalues are lower bounded by some
c > 0 and ‖ 1

D
A‖2 ≤ 1, then, when applying CopQuad,

SRN = O(max((λmax/λmin)2, λ2
max)D2/N), where λmax is

the maximum eigenvalue of 1
D
A, and λmin >

1
D
c is the min-

imum eigenvalue.

Remark: Please note that λmax ≤ 1 by the assumptions
in Theorem 3.

Proof. Let x and y be two points to be compared in
CopQuad: (x, y) ∈ C := {(ei,−ei)i, (0, ei)i, (0, ei + ej)i6=j}.
We denote by ∆x,y the value
∆x,y := E(Fnoisy(y)− Fnoisy(x)) = F (y)− F (x) and by
fx,y the frequency fx,y := 1

K2

∑
1≤i,j≤K 1

fix<f
j
y
, where f ix

and f jy are as in Section 2.
Step 1: Mean Squared Error of frequencies.
Similarly to step 2 of Theorem 1, and using the notation

Φ(x) = P(G(0, 1) < x),

E(fx,y) = Φ

(
∆x,y√

2D

)
E
(
fx,y − Φ

(
∆x,y√

2D

))2

= V ar(fx,y) = O(1/N). (7)

Step 2: Mean Squared Error of Â(D) and B̂(D).
As in Step 3 of the proof of theorem 1, we denote by

Φ−1

[m̃,M̃ ]
: [m̃, M̃ ] → [−5, 5] the inverse of Φ over these inter-

vals:

h̃(x) =


Φ−1

[m̃,M̃ ]
(x) if m̃ ≤ x ≤ M̃

−5 if x < m̃

5 if M̃ < x



Algorithm 3 Comparison procedure for quadratic func-
tions (CopQuad).

Input:
an oracle Fnoisy : x ∈ Rd 7→ G(xtAx + Bx + C,D)
a budget N (multiple of d(d + 3)− 2)

Output:
an approximation x̂ of the optimum x∗ ∈ Bd(0, 1) of the objective
function F : x 7→ xtAx + Bx + C

1: K ← N
d(d+3)−2

2: for i = 1 to d do
3: f−ei,ei ← Cop(K,−ei, ei, Fnoisy)

4: Define B̂i(D) such that P
(
G(0, 1) <

√
2B̂i(D)

)
= f−ei,ei

5: B̂i(D)← max(−5,min(B̂i(D), 5)) . Estimate of Bi/D
6: f0,ei ← Cop(K, 0, ei, Fnoisy)

7: Define θii(D) such that P
(
G(0, 1) < θii(D)/

√
2
)

= f0,ei
8: θii(D)← max(−5,min(θii(D), 5))

9: Âi,i(D)← θii(D)− B̂i(D) . Estimate of Ai,i/D
10: end for
11: for i = 1 to d do
12: for j = i+ 1 to d do
13: f0,ei+ej ← Cop(K, 0, ei + ej , Fnoisy)

14: Define θij(D) such that

P(G(0, 1) < θij(D)/
√

2) = f0,ei+ej

15: θij(D)← max(−5,min(θij(D), 5))

16: Âi,j(D)← 1
2

(θij(D)− B̂i(D)

17: −Âi,i(D)− B̂j(D)− Âj,j(D))

18: Âj,i(D)← Âi,j(D) . Estimate of Ai,j/D and Aj,i/D
19: end for
20: end for
21: Â(D)← (Âi,j(D))

22: B̂(D)← (B̂i(D))

23: if Â(D) is not singular then

24: x̂← − 1
2
B̂(D)tÂ(D)−1

25: else
26: x̂← 0
27: end if

return x̂← projection of x̂ on Bd(0, 1).

By assumption, (x, y) ∈ C, 1
D
‖A‖2 ≤ 1 and 1

D
‖B‖ ≤ 1,

∆x,y/
√

2D ∈ [−5, 5] and then, as in Step 3 and 4 of Theorem
1,

E
(
h̃(fx,y)− ∆x,y√

2D

)2

≤ E
(
h̃(fx,y)− h̃

(
Φ

(
∆x,y√

2D

)))2

≤ L(h̃)2E
(
fx,y − Φ

(
∆x,y√

2D

))2

= O(1/N) by Eq. 7. (8)

By applying Eq. 8, we then estimate the mean squared
error of Â(D) and B̂(D):

• B̂i(D) =
√

2h̃(f−ei,ei)/2 and Bi/D = ∆−ei,ei/2D

∀i ∈ {1, . . . , d}, then E(B̂i(D)−Bi/D)2 = O(1/N)

by Eq. 8, hence E‖B̂(D)−B/D‖2 = O(1/N).

• Âi,i(D) =
√

2h̃(f0,ei)− B̂i(D) and

Ai,i/D = ∆0,ei/D −Bi/D, then E(Âi,i(D) −
Ai,i/D)2 = O(1/N) using Eq. 8, and

E(B̂i(D)−Bi/D)2 = O(1/N).

If i 6= j, then

Âi,j(D) =
1

2

(√
2h̃(f0,ei+ej )

−B̂i(D)− Âi,i(D)− B̂j(D)− Âj,j(D)
)
,

and

Ai,j/D =

1/2
(
∆0,ei+ej/D −Bi/D −Ai,i/D −Bj/D −Aj,j/D

)
hence, by proceeding as above,

E(Âi,j(D)−Ai,j/D)2 = O(1/N)

and

E‖Â(D)−A/D‖2F = O(1/N).

Step 3: with probability at least 1 − O(1/N),
CopQuad returns an estimate x̂ solution of
2x̂Â(D) = −B̂t(D).

By definition of CopQuad , 2x̂Â(D) 6= −B̂t(D) only if x̂

could not be properly defined because Â(D) is singular or if
we use the projection.

The eigenvalues are continuous (see e.g. [11]); there-

fore in a neighborhood of A/D, Â(D) has eigenvalues lower

bounded by some δ > 0. Therefore, Â(D) is singular only
out of this neighborhood; this occurs, by Markov’s inequal-
ity, with probability O(1/N). Therefore, the first case occurs
with probability at most O(1/N).

With probability at least 1 − O(1/N), the solution

x̂ of 2x̂Â(D) = −B̂t(D) is therefore the projection of

− 1
2
B̂(D)tÂ(D)−1. For Â(D) close enough to A/D and

B̂(D) close enough to B/D, this is close to x∗, and therefore
it is inside Bd(0, 1− ε).

Step 4: concluding when 2x̂Â(D) = −B̂(D)t.

Define B′ = B/D − B̂(D) and A′ = A/D − Â(D). We

have 2x∗A = −Bt and 2x̂Â(D) = −B̂(D)t.



By substraction, we get

2(x̂Â(D)− x∗A/D) = (B/D)t − B̂(D)t

hence 2(x̂A/D − x̂A′ − x∗A/D) = B′t, using definitions of
A′ and B′.

By step 2, all terms in A′ and B′ have expected squared
norm O(1/N); and by step 3 x̂ is bounded, therefore

2(x̂A/D − x∗A/D) = B′t + 2x̂A′

has expected squared norm O(1/N), and

(x̂− x∗) =
1

2
uA−1D

with E‖u‖2 = O(1/N).
With λmin > 0 the smallest eigenvalue of 1

D
A, we get

E‖x̂− x∗‖2 = O(λ−2
min/N).

Note that F can be rewritten as

F (x) = (x− x∗)tA(x− x∗) + C′,

where x∗ = − 1
2
BtA−1 and C′ = C − x∗tAx∗.

Then SRN = ‖F (x̂)− F (x∗)‖2 = ‖(x̂− x∗)tA(x̂− x∗)‖2

≤ λ2
max‖x̂− x∗‖2

Hence SRN = O

((
λmax
λmin

)2
D2

N

)
, which is the expected

result.
Step 5: General conclusion
Let us denote by S the event “CopQuad returns an es-

timate x̂ solution of 2x̂Â(D) = −B̂(D)t” and S̄ its comple-
ment. In the following, diam denotes the diameter. By
definition,

SRN = E(Fnoisy(x̂)− Fnoisy(x∗))

= E(Fnoisy(x̂)− Fnoisy(x∗)|S)︸ ︷︷ ︸
=O

((
λmax
λmin

)2 D2

N

)
by step 4

P(S)︸ ︷︷ ︸
≤1

+ E(Fnoisy(x̂)− Fnoisy(x∗)|S̄)︸ ︷︷ ︸
≤λ2

max×D2×diam(Bd(0,1−ε))

P(S̄)︸ ︷︷ ︸
=O(1/N)by step 3

Hence the expected result.

5. EXPERIMENTS
For each experiment, parameters A, B and C

satisfying assumptions in Theorem 3 are randomly
generated. CopQuad then returns an approxima-
tion of the optimum of the noisy quadratic function
F (x) = xtAx+Bx+ C +DG(0, 1). Results are obtained
over 50 runs.

CopQuad to tackle strong noise. Fig. 1 presents
results of CopQuad in dimension 2 when the standard
deviation D satisfies the assumptions in Theorem 3, i.e.,
‖B‖/D ≤ 1, |C|/D ≤ 1 and ‖A‖2/D ≤ 1. The linear rate
(in log-log scale) with slope −1 is clearly visible. We ob-
tained similar graphs (not presented here) for dimensions
5.

CopQuad with small noise. Figure 2 then shows the
case of a smaller noise D for dimension 2. Along with
the theory ( ‖A/D‖2 does not satisfy the assumptions), we
lose the O(1/N) rate. In the early stages, CopQuad still
seems to converge, but it eventually stagnates around the
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(b) D = 10

Figure 1: Dimension d = 2, over 50 runs. Mean, median
and quantiles 10% and 90% are displayed.

optimum. It is counter-intuitive that an algorithm per-
forms worse when noise decreases; nonetheless, in the case
1
D
A → 0, the Cop operator always return 0 or 1, thus

the estimated parameters are −5 or 5, and the algorithm
does not converge. Incidentally, this is consistent with the
bandit literature, where the hardest cases are when opti-
mal arms have close values. Providing an algorithm able to
cope with D ≤ ‖A‖2 is possible - asymptotically, as for ban-
dit algorithms mentioned above. Progressively widening the
projection interval [−b(N), b(N)] instead of keeping [−5, 5]
fixed makes this possible; if we have a slow enough function
b : N 7→ b(N) for defining the interval [−b(N), b(N)], then
we get:

• e.g. log(log(log(N))) in Eq. 8,

• and asymptotically we still get a probability 1/N in
Step 3 of Theorem 3.

So that, for N > N0, we get Theorem 3 (up to the slight
increase in the bound, depending on the choice of the b func-
tion) independently of D ≤ ‖A‖2 - but N0 depends on 1

D
A.

6. CONCLUSION
We have shown that comparison-based algorithms can

reach a regret O(1/N) on quadratic forms. This partially
solves (negatively) a conjecture in [10], and improves results
proposed in [4, 9]. Our main assumption is the Gaussian
nature of the noise. We do not assume that the variance is
known, but it is supposed to be constant.

Future work. We assume an exactly quadratic function;
maybe rates in O(1/N2/3) can be reached for non-quadratic
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Figure 2: d = 2, D = 0.65.

functions under smoothness assumptions. Also we might
extend the present results to non Gaussian noise.
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