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Abstract—Magnetoencephalography (MEG) and electroen-
cephalography (EEG) source localization is a challenging ill-
posed problem. To identify an appropriate solution out of an
infinite set of possible candidates, the problem requires setting
certain constraints depending on the assumptions or a priori
knowledge about the source distribution. Different constraints
have been proposed so far, including those that impose sparsity
on the source reconstruction in both standard and time-frequency
domains. Source localization in the time-frequency domain has
already been investigated using Gabor dictionary in both a
convex (TF-MxNE) and non-convex way (Iterative Reweighted
TF-MxNE). The iterative reweighted (ir)TF-MxNE solver has
been shown to outperform TF-MxNE in both source recovery
and amplitude bias. However, the choice of an optimal dictionary
remains unsolved. Due to a mixture of signals, i.e. short transient
signals (right after the stimulus onset) and slower brain waves,
the choice of a single dictionary explaining simultaneously both
signals types in a sparse way is difficult. In this work, we
introduce a method to improve the source estimation relying on
a multi-scale dictionary, i.e. multiple dictionaries with different
scales concatenated to fit short transients and slow waves at the
same time. We compare our results with irTF-MxNE on realistic
simulation, then we use somatosensory data to demonstrate the
benefits of the approach on in terms of reduced leakage (time
courses mixture), temporal smoothness and detection of both
signals types.

keywords— Inverse problem; MEEG; iterative reweighted
optimization algorithm; multi-scale dictionary; Gabor transform.

I. INTRODUCTION

Magneto-/electroencephalography (M/EEG) allow for non-
invasive analysis of functional brain imaging with high tem-
poral and good spatial resolution. Various approaches to
tackle the source localization problem from M/EEG data
have been proposed in the literature. The distributed-source
approach models the brain activity with a fixed number of
candidate dipoles distributed over the brain, and estimates
their amplitudes and orientations. As the number of candidate
dipoles that can explain the measured data is much larger
than the number of sensors, source localization is an ill-posed
problem. This implies that there is not a unique solution.
Literature shows that adding supplementary constraints such as
sparse regularization of priors to the neural activation helps to
tackle the problem. Those approaches are based on Bayesian
modeling [1]–[4], or regularized regression [5]–[7]. These
methods implicitly assume stationarity of the source activation.
In contrast, the Time-Frequency Mixed Norm Estimate (TF-
MxNE) [8], Spatio-Temporal Unifying Tomography (STOUT)
[9] and the iterative reweighted TF-MxNE (irTF-MxNE) [10]
improve reconstruction of transient and non-stationary sources

by promoting structured sparsity in the time-frequency (TF)
domain. Those methods compute a sparse group LASSO on
the TF coefficients. TF-MxNE and STOUT apply a composite
convex penalty, the sum of an `2,1-mixed-norm and an `1-norm
penalty, on the Gabor transform of the source time courses. On
the other hand, irTF-MxNE applies a composite non-convex
penalty, the sum of an `2,0.5-quasinorm and an `0.5-quasinorm
penalty on the TF. The non-convex penalties have been shown
to outperform convex approaches both in terms of source
recovery and amplitude bias [11], [12]. However, the choice of
an optimal dictionary for decomposing the mixed data remains
difficult.

To address this issue, we show in this paper how to in-
corporate in the iterative reweighted optimization algorithm a
multi-scale dictionary while keeping computational efficiency.
The optimization problem is solved in the same way as irTF-
MxNE [10] i.e. each iteration is a weighted TF-MxNE, which
we solve using block coordinate descent (BCD) and an active
set strategy [13]. We compare irTF-MxNE with and without
a multi-scale dictionary on simulated and real MEG data. We
demonstrate the benefit of the multi-scale dictionary in terms
of reconstructed source time courses and temporal unmixing
of activations.

Notation The transpose of a matrix A ∈ RM×N is
indicated by AT, and the Hermitian conjugate by AH.
A[i, :] and A[:, j] correspond to the ith row the jth col-
umn respectively, and A[i, j] to the element in the ith

row and jth column of A. ‖A‖Fro indicates the Frobe-
nius norm, and ‖A‖W;p,q the weighted mixed norm with

‖A‖W;p,q =

[∑
i

(∑
j W[i, j]|A[i, j]|q

)p/q]1/p
. The mixed

norm ‖A‖p,q = ‖A‖I;p,q , and ‖A‖p =
(∑

i

∑
j |A[i, j]|

)1/p
II. MATERIALS AND METHODS

A. Inverse problem in the TF domain

Using a dictionary of TF atoms, such as a tight Gabor
frame, Φ ∈ CT×C (T samples, C atoms), the neuronal
activation X ∈ RS×T (S sources) can be modeled as a linear
combination of atoms, X = ZΦH, where Z ∈ CS×C is
the TF coefficient matrix. A Gabor frame Φ is tight when
the Euclidean norm of the input signal and the vector of
TF coefficients are proportional (‖Z‖22 = AΦ‖X‖22 where



AΦ > 0). The MEG/EEG measurements M ∈ RN×T (N
sensors) follows the forward model:

M = GX + E = GZΦH + E (1)

where G ∈ RN×S stands for the forward operator, each
source s can have one or three orientations. E ∈ RN×T is
the measurement noise, which can be assumed to be additive
white noise: E[:, j] ∼ N (0, I) for all j after spatial whitening
[14]. Estimating the coefficients Z given the measurement M
is an ill-posed problem and constraints have to be imposed on
Z to obtain a unique source estimate. For analyzing evoked
responses, we assume that the neuronal activation is spatially
sparse and temporally smooth. This corresponds to a row
sparsity [8], which we promote by applying a composite
non-convex regularization R(Z). The associated regularized
regression problem is:

Z? = arg min
Z

1

2
‖M−GZΦH‖2Fro +R(Z) (2)

with
R(Z) = λspace‖Z‖2,0.5 + λtime‖Z‖0.5

where λspace > 0, λtime > 0. A large regularization parameter
λspace will lead to a spatially very sparse solution, while a
large λtime will promote sources with smooth time series.

B. Fast iterative reweighted TF-MxNE with tight frames

Given a dictionary Φ, the optimization problem in Eq. (2)
can be solved by iteratively minimizing convex surrogate
problems [10]. The regularization term at each iteration k is
a weighted convex mixed norm that can be written as:

R(Z) = λspace‖Z‖W(k)
1 ;2,1

+ λtime‖Z‖W(k)
2 ;1

(3)

with ∀s, c,

W
(k)
1 [s, c] =

(
2

√
‖Ẑ(k−1)[s, :]‖2 + ε(k−1)

)−2
W

(k)
2 [s, c] =

(
2

√
|Ẑ(k−1)[s, c]|+ ε(k−1)

)−1 ,

where W1 and W2 are the weights applied to the TF coef-
ficients, and Ẑ(k−1) are the estimated coefficients at iteration
k − 1. ε(k−1) ∈ R+ is used to prevent infinite weights. Here,
ε is set to 0 and infinite weights are handled as in [10].

For solving Eq. (2), we use BCD [15]. The algorithm
boils down to sequentially computing a gradient step and the
proximity operator (PO) of the `2,1 + `1 norm for each block
s of coefficients. Here a block maps to a location in the brain.
One update of a block of coefficients is given by first a gradient
step:

R = M−GX̂ (4)

X̄[s, :] = X̂[s, :] + µ[s]G[:, s]TR (5)
Z̄[s, :] = X̄[s, :]Φ (6)

followed by the computation of the PO of the weighted `2,1 +
`1 norm [8], [10]:

Z̃[s, c] = Z̄[s, c]

(
1− µ[s]λtimeW

(k)
2 [s, c]

|Z̄[s, c]|

)+

(7)

Ẑ[s, c] = Z̃[s, c]

1−
µ[s]λspace

√
W

(k)
1 [s, c]

‖Z̃[s, :]‖2

+

(8)

with (a)+ = max(a, 0). When Φ is a tight frame, µ[s] is given
by µ[s] =

√
AΦ(‖G[:, s]TG[:, s]‖)−1. Finally:

X̂[s, :] = Ẑ[s, :]ΦH (9)

Eq. (7) and (8) are respectively solutions of the PO for the
weighted `1 norm and for the weighted `2,1 norm. As the `1
PO shrinks coefficients towards zero, if a block of coefficients
were set to zero by the `2,1 PO it would also be set to zero
after the application of the `1 PO. As a consequence, it is
possible to know just by applying the `2,1 PO to X̄[s, :] if the
set of coefficients Z̃[s, :] will be set to zero. Note that this is
just a sufficient condition and we may have to compute all
steps to know if the block is set to zero. This is summarized
in the following lemma.

Lemma 1: Let Φ be a frame with constant AΦ, if ‖X̄[s, :]‖2
≤ µ[s]λspace

√
W

(k)
1 [s, c]/

√
AΦ then Ẑ[s, c] = 0, ∀c.

Computing the TF decomposition at each iteration can be
costly. The consequence of the lemma is that for a lot of source
locations one can avoid computing their TF decomposition
during the optimization just by computing the `2 norm of
the time courses after the gradient step. To speed up the
computation even more, we combine the BCD scheme with an
active set strategy [13], which primarily updates sources that
are likely to be active, while keeping the remaining sources
inactive.

C. Inverse problem with multi-scale tight Gabor frames

A Gabor tight frame is computed by setting two parameters:
the length of the window that defines the time/frequency
resolution, and an overlap parameter that defines the time step
from one window to another. Each source waveform is a sparse
linear combination of atoms from this dictionary. Fixing those
parameters is then critical for having an optimal dictionary.
Learning the dictionary might be a solution to avoid fixing
the parameters, or the need to have an overcomplete dictionary
covering a broad range of scales. However, learning both Z and
Φ simultaneously is a non-convex optimization problem, for
which one needs to alternate between a convex optimization
for the two variables [16].

Let us define a multi-scale TF dictionary, where we con-
catenate Q tight Gabor frames Φq , 1 ≤ q ≤ Q, with different
resolutions. One can realize that this union of tight frames
Φ = [Φ1, . . . ,ΦQ] is also a tight frame with AΦ =

∑
q AΦq

.
The strategy presented previously is therefore still relevant
for a multi-scale dictionary, where the activation Z is a
concatenation of Z1,Z2, ...,ZQ.
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Fig. 1. (a) Simulated source time courses in S1 (blue) and S2 (green). (b)
The explained variance for irTF-MxNE using two different dictionaries: long
window size (ws) 64 with time shift (s) 4 (green), and small ws 16 with s 2
(red). The combination of the two dictionaries is shown in blue. This shows
how the multi-scale dictionary (MSD) improves the explained variance.

III. RESULTS

We first evaluate the accuracy of irTF-MxNE with and
without multi-scale on realistic simulations. We then apply
our new solver on MEG somatosensory data.

A. Simulation

We generated a realistic simulation dataset based on a fixed-
orientation source model with 7549 cortical locations and 102
magnetometers. Two of these locations were selected to be
active in the primary and secondary somatosensory cortex (S1
and S2). The corresponding time courses are shown in Fig. 1-a
in blue (S1) and green (S2). We have both a transient source
around 40 ms and slow waves afterwards around 70, 100 and
150 ms. irTF-MxNE solver improves the source recovery [10].
Therefore, we do not compare the solvers presented here over
active set size or an F1 measure, as both solvers are already
able to recover all the sources. We evaluate our approach by
computing the explained variance between simulated source
courses and the source estimation from each solver as follows:

θ = 1− ‖GXsim −GXest‖2Fro

‖GXsim‖2Fro

(10)

Fig. 1-b shows the explained variance for the irTF-MxNE
with different dictionaries over a logarithmic grid of λspace.
The first Gabor dictionary is constructed with 64 samples (64
ms) window and 4 samples time shift (green), the second
Gabor dictionary is constructed with 16 samples window and
2 samples time shift (red) and the third one is the combination
of the two dictionaries (blue). We observe that the irTF-MxNE
solver using the combination of two dictionaries outperforms
the solver with each dictionary separately in terms of explained
variance measure over all parameters range. Higher values
of log(λspace) > 1.2 impose high penalization on the active
set size, resulting in a too sparse source estimate, where the
solution is not explaining the measurement anymore. The re-
sults show on simulation a source reconstruction improvement,
where it leads to a larger explained variance.

B. Experimental results with MEG somatosensory data

To demonstrate the advantage of irTF-MxNE with a multi-
scale dictionary over the basic irTF-MxNE, we tested different
parameters for different solvers on a MEG dataset: MIND
(for details [17]). Source estimation was first performed using
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Fig. 2. Source reconstruction using somatosensory data with different solvers.
(a) - (b) irTF-MxNE on a small window dictionary with λtime = 1.5 and
λtime = 2.5 respectively. (c) - (d) irTF-MxNE on a long window dictionary
with λtime = 1.5 and λtime = 2.5 respectively. From (a) to (d) λspace =
28.5 (e) irMxNE for λ = 40 and (f) dSPM activation for the four activated
sources.

several solvers: irTF-MxNE, irMxNE [18] and dSPM [19].
Regarding irTF-MxNE, two dictionaries were tested. A dic-
tionary with a 64 samples window and a 4 samples time
shift, which leads to smooth source courses; and a dictionary
with a 16 samples window and a 2 samples time shift, which
helps capture short transient sources. After inspection of the
residual, results showed that at least four sources are necessary
to capture all evoked components. We have therefore fixed
the parameters of the irTF-MxNE solvers so we obtained only
four sources while explaining as much variance as possible.
After that, we experimented with two different parameters
λtime = 1.5 and λtime = 2.5 to show their impact on the
smoothness of the different time sources obtained. Fig.2 (a-b)
demonstrates the four time courses obtained with irTF-MxNE
using the short window dictionary for the selected values of
λtime. We show that for high values of λtime (b), the solver
is not able to capture the short transient component around
40 ms. While for a small value (a), the unmixing is not
reliable since the light blue and the green source estimates
are catching the activity from the red source. Additionally,
the time courses are not smooth. On the other hand, Fig. 2
(c-d) demonstrate the four time courses obtained with irTF-
MxNE using the long window dictionary for the selected
λtime. They confirm that both parameters are not able to
capture the transient effect after the stimulus, although the
time courses are smooth. These four subfigures reveal that
a combination of the two dictionaries should be critical to
acquire source estimates with high precision. Moreover, Fig
2-e displays the amplitudes obtained with irMxNE for five
sources, as for irMxNE, one is not able to obtain the four
relevant sources unmixed [6]. We notice that the light blue
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Fig. 3. Source reconstruction using somatosensory data with a multi-scale
irTF-MxNE. The solver estimates four sources for λspace = 28.5 and
λtime = 1.3. The source locations marked with spheres in right (rh) and
left (lh) hemisphere, and their corresponding activation are color-coded.

source in Fig. 2-(a) to (d) appears as two separate sources in
(e): light blue and purple. If we increase the λ parameter, we
increase the amplitude bias due to the l1 norm of the solver.
If we set it too high (λ = 50) we obtain four sources, but the
blue source which is relevant to the study would be removed
and the duplicated purple source is kept. The last panel Fig. 2-f
displays the source estimates for dSPM values corresponding
to the four locations of the sources obtained with the irTF-
MxNE. These subfigures show that none of irMxNE or dSPM
solvers are able to obtain smooth sources without any leakage
between the time courses.

Source estimation was then achieved using irTF-MxNE
with the combination of the two dictionaries. Fig. 3 shows
source reconstruction using the multi-scale irTF-MxNE for
the regularization parameters λspace = 28.5 and λtime = 1.5.
Each source’s location is marked by a sphere in Fig. 3 left,
and its amplitude over time is color-coded in on the right
panel. The results show a suitable succession of the sources.
The transient source (red) is the only source explaining the
event related field until 48 ms. This red source corresponds to
the contralateral primary somatosensory cortex (cS1) located
in the postcentral gyrus of the parietal lobe (right hemisphere
(rh)). The red sphere on the lateral view coincides with the
smeared dSPM activation around 40 ms. The second source
(light blue) corresponds to the secondary somatosensory cortex
(cS2), and also occurs with dSPM activation around 80 ms.
About 100 ms after stimulus, additional cortical sources are
activated, such as ipsilateral secondary somatosensory cortex
(iS2) (blue-lh), and contralateral medial wall (green-rh).

IV. DISCUSSION AND CONCLUSION

We have presented an improvement in the irTF-MxNE
solver using a multi-scale dictionary to capture the mixture
of the MEG/EEG data. The non-convex optimization problem
is solved by iteratively solving the convex weighted TF-
MxNE problem using block coordinate descent combined with
active set strategy as in [10]. The benefits of the multi-
scale irTF-MxNE have been shown on simulated and MEG
somatosensory data. Both experiments confirm that multi-scale
irTF-MxNE improves the source estimates, in terms of reduced
mixing of the time courses, smoothness and detection of both
short transients and slower waves. In contrast, both solvers are
efficient regarding active set size and amplitude bias, which

is due to the non-convexity of the methods. Hence, the multi-
scale irTF-MxNE should be applied to data where a mixture
of signals coexist, and when the aim is to acquire focal sources
with non-stationary and smooth time courses. This solver will
be made available in the MNE-Python package [20].
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