

Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis

M. Clavel, Thierry Pélissier, T. Montavon, M.A. Tschopp, M.N.

Pouch-Pélissier, J. Descombin, V. Jean, P. Dunoyer, C. Bousquet-Antonelli,

J.M. Deragon

▶ To cite this version:

M. Clavel, Thierry Pélissier, T. Montavon, M.A. Tschopp, M.N. Pouch-Pélissier, et al.. Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis. Plant Molecular Biology, 2016, 91 (1-2), pp.131-147. 10.1007/s11103-016-0448-9. hal-01306579

HAL Id: hal-01306579 https://hal.science/hal-01306579v1

Submitted on 18 Dec 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evolutionary history of double-stranded RNA binding proteins in plants: identification of new cofactors involved in easiRNA biogenesis

Marion Clavel^{1,2}, Thierry Pélissier³, Thomas Montavon⁴, Marie-Aude Tschopp⁵, Marie-Noëlle Pouch-Pélissier³, Julie Descombin^{1,2}, Viviane Jean^{1,2}, Patrice Dunoyer⁴, Cécile Bousquet-Antonelli^{1,2} and Jean-Marc Deragon^{1,2}

¹Université de Perpignan Via Domitia, UMR5096 LGDP, 58 Avenue Paul Alduy 66860 Perpignan Cedex France ² CNRS UMR5096 LGDP, Perpignan Cedex France

³UMR 6293 CNRS - INSERM U1103 – GreD, Clermont Université, 24 avenue des Landais, 63171 Aubière Cedex B.P. 80026 France.

⁴ Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg Cedex, France

⁵ ETH Zürich, Department of Biology LFW D17/D18 Universitätsstrasse 2 8092 Zürich Switzerland

Running title: New DCL4 cofactors involved in easiRNA biogenesis

Requests to: Jean-Marc Deragon, Université de Perpignan, 58 Av. Paul Alduy, LGDP UMR CNRS-UPVD 5096, 66860 Perpignan cedex France, Phone: 33 (0)4 68 66 22 24, Fax: 33 (0)4 68 66 84 99, e-mail: jean-marc.deragon@univ-perp.fr

Keywords: RNAi, siRNA, easiRNAs, double-stranded RNA binding protein, Arabidopsis, evolution

ABSTRACT

In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that *Arabidopsis thaliana* DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs (easiRNAs) pathway.

INTRODUCTION

The double-stranded RNA binding motif (dsRBM) is evolutionarily conserved to mediate specific interaction with double-stranded RNAs (dsRNAs) of various origin and structure, and plays critical roles in a wealth of cellular processes in prokaryotes, eukaryotes and viruses. This motif was first characterized as a 65-70 amino acids domain (St Johnston et al. 1992) that adopts an $\alpha\beta\beta\beta\alpha$ fold and contains conserved residues important for both structure and function (reviewed in (Chang and Ramos 2005; Masliah et al. 2013)). Several dsRBMs can also mediate protein-protein interaction allowing intramolecular packing (Sohn et al. 2007), homodimerization (Hitti et al. 2004; Yang et al. 2010), heterodimerization involving two dsRBMs (Laraki et al. 2008; Qin et al. 2010) or involving a dsRBM and other functional domains (Daniels et al. 2009; Nanduri et al. 2000; Schuldt et al. 1998).

DsRBM-containing proteins are involved in numerous cellular mechanisms ranging from localization and transport of messenger RNAs, through maturation and degradation of RNAs, to viral response and signal transduction. The animal Staufen protein is a striking example of the versatility achieved by a single dsRBM-containing protein. This protein contains no additional domain but five dsRBMs with varying affinities towards dsRNA and proteins. Staufen is essential for establishing the correct polarity of the *Drosophila* embryo by anchoring two specific maternal mRNAs, *oskar* and *bicoid*, at the opposite poles of the oocyte (St Johnston et al. 1991). The association of Staufen with the 3'UTR of *bicoid* is essential for the transport of the resulting ribonucleoprotein (RNP) complex along microtubules (Ferrandon et al. 1994), while the association of Staufen with *oskar* is more specifically involved in regulating translation after mRNA deposition (Micklem et al. 2000). More recently, STAU1 (human Staufen) was shown to bind the 3'UTRs of messengers base paired with *Alu* transcripts and to induce, with the help of UPF1 a known nonsense mediated decay factor, a specific degradation pathway (Gleghorn et al. 2013; Kim et al. 2007). STAU1 association to 5'UTR hairpins has also been shown to enhance translation of other targeted mRNAs (Dugre-Brisson et al. 2005).

DsRBM-containing proteins were also found to be tightly linked to RNA interference mechanisms. Animal Drosha and Dicer, which are part of the RNase III family, have been extensively studied for their ability to generate from dsRNA precursors, small RNA molecules involved in transcriptional or post-transcriptional gene regulation. In a pathway that is conserved in human, flies and nematodes, Drosha is responsible for the first nuclear cleavage of microRNA precursor hairpins (Lee et al. 2003) while Dicer acts in the cytoplasm on this cleavage product to generate small RNA duplexes (Bernstein et al. 2001; Hutvagner et al. 2001). Despite the presence of a dsRBM in each of these proteins, their action requires the presence of other dsRBM-containing protein acting as cofactors. For instance, the dsRBM of Drosha seems to retain little ability to bind RNA while both dsRBMs of its cofactor, DGCR8/Pasha, are necessary to bind dsRNA while mediating the interaction with Drosha (Denli et al. 2004; Gregory et al. 2004; Han et al. 2004; Han et al. 2006; Yeom et al. 2006). Similarly, Dicer proteins are accompanied by non catalytic dsRBM-containing protein, Loquacious and R2D2 in flies (Saito et al. 2005; Tomari et al. 2004), RDE-4 in worms (Tabara et al. 2002), and TRBP and PACT in human cells (Chendrimada et al. 2005; Lee et al. 2006), that assist the processing and/or strand selection of small RNA duplexes therefore promoting the formation of the RNA induced silencing complex (RISC).

dsRBM-containing proteins are also found in plants, and most of these proteins have been linked to RNA interference or related phenomenon (Kiyota et al. 2011; Manavella et al. 2012). In the model species, Arabidopsis thaliana, the most studied are the four DICER-LIKE (AtDCL) proteins, which exhibit a domain organization similar to the animal Dicers, with one (for AtDCL2) or two (for AtDCL1, 3 and 4) C-terminal dsRBMs. AtDCL1 is responsible for the production of 21-nt microRNAs from Pol II precursor transcripts (Kurihara and Watanabe 2004) as well as for the production of phased cis natural antisens siRNAs, while AtDCL2 cleaves the primary convergent transcript into 24-nt duplex in this pathway (Borsani et al. 2005). AtDCL2 is also implicated in gene silencing induced by exogenous dsRNAs, as is AtDCL4 (Bouche et al. 2006; Dunoyer et al. 2007). AtDCL4 also generates phased trans-acting siRNAs (Gasciolli et al. 2005) or transposon-derived 21-nt epigenetically activated small interfering RNAs (easiRNAs) (Creasey et al. 2014; McCue et al. 2012; Sarazin and Voinnet 2014) using dsRNA provided by the action of RNA-dependent RNA polymerase 6 (AtRDR6), and is also responsible for the formation of some microRNAs (Rajagopalan et al. 2006). Finally, AtDCL3 acts with RNA-dependent RNA polymerase 2 (AtRDR2) in the RNA-dependent DNA methylation (RdDM) pathway, to produce 24-nt siRNAs that guide DNA methylation, mostly to repeated sequences and transposable elements, thus participating in genome defense (Xie et al. 2004).

As for animals, some plant DCLs necessitate dsRBM-containing non-catalytic cofactors named DRB (for double stranded RNA binding). Arabidopsis possesses five known DRBs (AtDRB1 to 5) (Hiraguri et al. 2005), each containing two N-terminal dsRBMs. AtDRB1, also known as HYL1, is required for AtDCL1-mediated processing of miRNA precursors (Kurihara et al. 2006). AtDRB1 seems to act as a dimer and to interact with AtDCL1 via its second dsRBM (Yang et al. 2010), while the first dsRBM binds miRNA precursors as well as mature miRNA duplexes (Eamens et al. 2009; Song et al. 2007), assisting in the cleavage and in the miRNA strand selection. AtDCL4 is assisted by AtDRB4 (Nakazawa et al. 2007) and this protein seems to be essential for the *in vitro* activity of AtDCL4 (Fukudome et al. 2011). Similarly, in case of geminivirus infection, AtDRB3 seems to interact with AtDCL3, impacting the methylation of the viral genome (Raja et al. 2014). Furthermore, AtDRB2, AtDRB3 and AtDRB5 have been implicated in an atypical miRNA biogenesis pathway (Eamens et al. 2012a; Eamens et al. 2012b), and AtDRB2 and AtDRB4 affect the quantity of siRNAs acting in RdDM, suggesting a role for these two proteins in this particular pathway (Pélissier et al. 2011). More recent data, however, suggest that AtDRB2 modulates transposon element derived siRNA accumulation mostly through an indirect pathway (Clavel et al. 2015). Finally, AtDRB4 seems to have a role in resistance against pathogens, distinct from its action alongside AtDCL4 (Jakubiec et al. 2012; Zhu et al. 2013).

In this work, we reconstruct the evolutionary history of the DRB family in the Viridiplantae lineage. We discovered the presence of a new DRB family, we name DRB6, absent from Brassicaceae but present in all other vascular plant species tested. DRB1 to 6 are systematically composed of two different types of dsRBM (type 1 and 2) that have evolved under different constraints and likely fulfill complementary functions. We also uncovered a second new DRB family (named DRB7) conserved in all vascular plants and harboring a single dsRBM that evolved in a concerted manner with the second dsRBM of DCL4. We present evidence suggesting that DRB7 and DRB4 are both involved in easiRNA biogenesis.

RESULTS AND DISCUSSION

As a first approach, we collected the sequence of all *Arabidopsis* proteins containing at least one dsRBM and no other conserved domains (here after defined as DRBs). Based on these criteria, in addition to the already described five AtDRBs (AtDRB1 to 5), two other proteins encoded by the At1g80650 and At4g00420 loci and presenting a single dsRBM, were identified. The dsRBM from these seven proteins were aligned (see Supplemental Figure S1) and used to construct a phylogenetic tree (Figure 1). This initial analysis suggests that the AtDRBs 1 to 5 are systematically composed of two types of dsRBM (Type I and II) that form a distinct clade from the Type III dsRBM present on the At1g80650 and At4g00420 proteins. This type III motif is surprisingly closely related to the second dsRBM present in the C-terminal region of the AtDCL4 enzyme (Figure 1). This second dsRBM of AtDCL4 (AtDCL4.2 in Figure 1) is the only case where a dsRBM present in a DCL protein is closely related to a dsRBM present in a DRB protein (not shown).

To test if the situation in *Arabidopsis* is representative of species in the Viridiplantae lineage, we looked for the presence of DRBs in the completely sequenced genomes of five Chlorophyte (green algae), a bryophyte, a lycophyte, four monocotyledon and twelve dicotyledon species representing the diversity of Viridiplantae (see Material and Methods for a list of species used and supplementary Table 1 for the sequence of all DRBs used in this analysis). DRBs containing at least two dsRBMs are present in all plant species while DBRs containing a single dsRBM are present in all Angiosperm but absent from the bryophyte and lycophyte species tested. No DRB could be detected in the five Chlorophyte genomes tested strongly suggesting that they are completely absent from this monophyletic phylum. This is surprising since DRBs are largely represented in animal species (Fierro-Monti and Mathews 2000; Tian et al. 2004) and a complex system of small RNAs exists in at least some Chlorophytes (Zhao et al. 2007). Based on these observations, the likely hypothesis is that RNAi machinery and DRBs were present in the common ancestor of the Viridiplantae but that DRBs were lost specifically in the Chlorophyte phylum and that the overall small RNA biogenesis process was either conserved (for *Chlamydomonas reinhardtii* and *Volvox carteri* (Zhao et al. 2007)) or lost (for the microalgae *Ostreococcus lucimarinus* (Cerutti et al. 2011)) depending on the specific Chlorophyte

lineage. Based on this, one may speculate that the Chlorophyte DICER machinery evolved to generate small RNAs without the need of DRB cofactors or that another RNA binding protein fulfill this role.

Evolutionary history of multiple dsRBM DRBs

We first decided to study the evolutionary history of DRBs containing multiple dsRBMs. To do so we fused and aligned dsRBM sequences from our eighteen selected species (see above) and used this alignment (see Supplemental Figure S2) to build a phylogenetic tree (Figure 2). We observed from this analysis that plant DRBs can be grouped in four major clades that we named according to the *Arabidopsis thaliana* DRB families.

One clade represents the DRB1 family and members from this family are found in all species tested, in one or several versions. DRB1 proteins possess two dsRBMs separated by a linker of around 20 amino acids (Figure S3). The position of the first dsRBM related to the N-terminal amino acid is also constrained and 15 amino acids precede the first dsRBM in bryophyte, lycophyte and dicotyledon species while this region is of 35 amino acids for monocotyledon species. These results suggest that the position of the two dsRBMs in DRB1 proteins is important for their function. DRB1s also have, closely after the second dsRBM (less than 40 amino acids), a well-conserved arginine and lysine-rich region (KR-rich) (see Supplemental Figure S4).

A second, more complex, clade is composed of members of the DRB2-3-5 families. All members of this clade possess two dsRBMs precisely separated by a linker of 19 amino acids (Figure S3). The two dsRBMs are located at the very N-terminal region of the protein as only a single amino acid is present before the first dsRBM (Figure S3). The very high positional conservation of the dsRBMs strongly suggests that this is a critical factor for function. *P. patens* and *S. moellendorffii* DRBs are found as outgroup of this clade while vascular plants DRBs can be further divided in two subclades, one of which corresponds to the DRB2 family. The *A. thaliana* DRB3 and DRB5 proteins result from a recent segmental duplication shared by all three Brassicaceae species tested (Blanc et al. 2003) and our phylogenetic analysis supports the fact that they belong to the same family. Therefore, for simplicity and to conserve as much as possible the previous nomenclature, we suggest naming the second

subclade, the DRB3-5 family. All vascular plants possess at least one DRB2 and one DRB3-5 protein, but some species have several versions of each.

The third clade is composed of members of the DRB4 family. This family is present in all vascular plants but is absent from the two bryophyte and lycophyte genomes tested. In all vascular plants, DRB4 proteins are composed of three dsRBMs (named the DRB4A subfamily), except for Brassicaceae species (including *Arabidopsis*), where DRB4 proteins are composed of only two dsRBMs (named the DRB4B subfamily). A likely scenario to explain this situation is that the coding capacity for the first dsRBM of DRB4 was lost in the common ancestor of Brassicaceae species. A direct consequence of this observation is that the many functional analyses conducted using the *A. thaliana* DRB4 (Fukudome et al. 2011; Nakazawa et al. 2007) may not be fully representative of the situation in most vascular plants for this family. Here again the position of the three dsRBMs of DRB4A proteins is highly conserved with the exception of the linker between the first and second dsRBM of dicot DRB4A that is much more variable in length (from 35 to 299 amino acids, see Figure S3). The position of the two dsRBMs of Brassicaceae DRB4B is also well conserved (Figure S3).

The fourth clade is composed of DRB proteins, with two dsRBMs, present in all vascular plants but absent in bryophyte, lycophyte and from Brassicaceae species. We named this family DRB6. Here again a likely scenario to explain this situation is that the gene coding for DRB6 emerged in the common ancestor of vascular plants but was lost much later in the common ancestor of Brassicaceae species. DRB6 proteins show two structural similarities with DRB1 proteins: a more internal positioning of the two dsRBMs compared to DRB2, DRB3-5 and DRB4 and the presence of a well-conserved arginine and lysine-rich region (KR-rich) localized after the second dsRBM (see Figure S3 and S4). Since DRB6 is absent from *A. thaliana*, nothing is known on the function of this protein at the moment. Therefore, one important conclusion from this analysis is that DRB families in *Arabidopsis* are quite atypical compared to most plant species and that conclusions reached using this species may not always be applicable to all plant lineages.

Evolution of dsRBMs present in multiple dsRBM DRBs

We next decided to address questions concerning the origin and evolution of dsRBMs present in multiple dsRBM DRBs. One of our objectives is to determine if these dsRBMs can be classified in two distinct types as suggested be our initial analysis using A. thaliana proteins (Figure 1) and if one dsRBM of each type is always associated with DRBs of the different families. We therefore, this time, collected and aligned the different dsRBMs individually, without taking into account their protein of origin and build a phylogenetic tree using this alignment (see Supplemental Figure S5 and Figure 3). We observed that the dsRBMs indeed form two well-supported clades. The first clade (type I dsRBM) contains all dsRBMs present in the first (more N-terminal) region of DRB1, DRB2-3-5, DRB4B and DRB6 proteins and in the first and second position of the DRB4A proteins. The second clade (type II dsRBM) contains all dsRBMs present in the second (more C-terminal) region of DRB1, DRB2-3-5, DRB4B and DRB6 proteins and in the third position of the DRB4A proteins. This result suggests that two different types of dsRBM evolving under different selection pressure are always associated with the different multiple dsRBM DRBs and that a DRB with type I and II dsRBMs was already present in the plant common ancestor. Based on this result, it is likely that the RNA-binding properties of these DRBs depend on the combination of the two non-redundant types of dsRBMs that form the true RNAbinding module. In support to this conclusion, several in vitro studies clearly demonstrated the different RNA-binding properties of the two individual dsRBMs of plant and animal DRBs and their cooperative nature to bind efficiently RNA in vivo (Han et al. 2006; Micklem et al. 2000; Qin et al. 2010; Yang et al. 2010).

When analyzed separately, the DRB1 and DRB6 type I dsRBMs group in the same clade and the same is true for the type II dsRBM of these proteins (Figure 3). This result is in agreement with the structural similarities observed previously among DRB1 and DRB6 proteins (Figure 2 and S3) and support the notion that these two families, although clearly distinct, are closely related.

Evolutionary history of single dsRBM DRBs

We next searched our collection of DRBs for proteins having a single dsRBM. This search was complicated by the fact that some of these proteins may merely be non-functional truncated versions of multiple dsRBM DRBs and/or result of incorrect *in silico* definition of genic organization.

Therefore, to circumvent these problems, we only retained single dsRBM DRBs that were conserved at least in two different plant species. Using this criterion, a single family of mono dsRBM DRBs was identified that we named DRB7 (Figure 4). This family includes proteins coded by the At1g80650 and At4g00420 (renamed AtDRB7.1 and AtDRB7.2) that possess a dsRBM closely related to the second (closest to the C-terminal end) dsRBM of DCL4 (Figure 1). DRB7 proteins are found in all vascular plants but are absent from the bryophyte and lycophyte species tested. To precise the evolutionary link between DRB7 and DCL4, we collected and aligned their dsRBMs (see Supplemental Figure S6) and used this alignment to build a phylogenetic tree (Figure 4, see also Supplementary Table 1 for a list of DRB7 and DCL4 sequences used). This analysis strongly suggests that the single dsRBM of DRB7 and the second dsRBM of DCL4 evolved in a concerted manner. This can be inferred from the fact that all plant DRB7 sequences are not found in a single clade (that would be distinct from a second DCL4 clade) but rather that DRB7 and DCL4 sequences from monocotyledon and DRB7 and DCL4 sequences from dicotyledon species form two distinct clades (Figure 4). Therefore, it is likely that both dsRBMs have a common origin and that both proteins were present in the common ancestor of vascular plants but also that DRB7 and DCL4 sequences evolved from the common ancestor in a concerted manner in the mono- and dicotyledon lineages. Although the DRB7 function is for the moment unknown, our results can best be explained if DRB7 proteins cooperates with DCL4 in a yet to define pathway.

Impact of AtDRB7 loss of function on known AtDCL4 in vivo substrates.

AtDRB4 is a well-characterized cofactor of AtDCL4 and is important for the biogenesis of tasiRNAs and some miRNAs (Adenot et al. 2006; Rajagopalan et al. 2006). To determine if one or both of the two AtDRB7 proteins could also participate as AtDCL4 cofactor in these two pathways, we selected *Arabidopsis* mutants defective in the production of AtDRB7.1, AtDRB7.2 or both proteins. Figure 5 shows that, as expected, several AtDRB4/AtDCL4-dependent small RNAs (tasiRNAs, miRNA822, miRNA839) underaccumulate in *drb4* but are present at a level similar to wild-type in the single (*drb7.1* or *drb7.2*) or double (*drb7.1/drb7.2*) mutant lines. Similarly, polIV-dependent siRNA

2011), is not affected in *drb7* mutants (Figure 5 and data not shown). The introduction of *drb7* mutations into the *drb4* background does not enhance the *drb4* molecular phenotype (Figure 5) further suggesting that if AtDRB7 is indeed a cofactor of AtDCL4, it is not involved in these pathways.

Recently, AtDCL4 has been implicated in transcription termination of an endogenous *Arabidopsis* gene named FCA (Liu et al. 2012). To determine if *Arabidopsis* AtDRB7 proteins could be involved as a AtDCL4 cofactor in this process, we performed QRT-PCR to monitor the levels of FCA read-through products in single and double *drb7* mutant lines compared to two *dcl4* null mutant lines (*dcl4-2* and *dcl4-5*). However, in contrast to published results (Liu et al. 2012), we were not able to observe a significant increase of FCA read-through products in the two *dcl4* mutant lines nor in single and double *drb7* mutant lines (Figure S7). We were therefore unable to document a role for AtDRB7 in these putative AtDCL4-dependent transcription termination events.

Recently, a new class of epigenetically activated siRNAs from transposable elements (easiRNAs), whose production depends on AtDCL4, AtDCL2 and AtRDR6, has been described (Creasey et al. 2014; McCue et al. 2012; Sarazin and Voinnet 2014). These 21-22 nucleotides easiRNAs are abundant in the DECREASED DNA METHYLATION 1 (ddm1) mutants (Creasey et al. 2014; McCue et al. 2013; McCue et al. 2014; Nuthikattu et al. 2013), as well as in the vegetative nucleus of pollen grains and dedifferentiated plant cell cultures (Slotkin et al. 2009; Tanurdzic et al. 2008). We therefore tested if one or both AtDRB7 proteins could be involved in the biogenesis of easiRNAs. By far, the major contributor of easiRNAs is represented by the Athila family of retrotransposons. The internal domain downstream of the Athila gag-pol-encoding ORF, also known as Transcriptionally Silent Information (TSI), is particularly prone to produce 21-22 nt easiRNAs (McCue et al. 2014; Slotkin 2010). While Athila full-length transcripts initiate within the 5' LTR region, specific TSI transcription originates from internal sequences and was associated with three different types of transcripts (Steimer et al. 2000). Using two different probes located in the TSI 3' part (within the TSI-A region as defined in (Steimer et al. 2000)), we observed that 21-nt easiRNAs were not significantly affected by the loss of AtDRB7.2 or AtDRB4 (Figure 6A and B). However, a strong increase in AtDCL3-dependent 24 nucleotides siRNAs was noted in *ddm1 drb7.2* and *ddm1 drb4* double mutants, and in the *ddm1 drb4 drb7.2* triple mutant compared to the *ddm1* mutant (Figure 6A and B). Such a situation is analogous to what was observed when the easiRNA pathway is perturbed in a *ddm1 rdr6* double mutant and could reflect a switch from AtRDR6/AtDCL4 towards AtRDR2/AtDCL3 processing of the templates (Creasey et al. 2014; Sarazin and Voinnet 2014). Interestingly, a substantial overaccumulation of AtDCL2-dependent 22-nt easiRNAs in the drb4, but not drb7.2, mutated plants was also observed suggesting that AtDCL2 loading on AtRDR6-derived templates becomes facilitated only when the AtDRB4 cofactor is lost. Monitoring the accumulation of easiRNAs targeting the 5'part of TSI, we observed a similar situation for 21- and 22-nt but not 24-nt easiRNAs (Figure 6A and B). Indeed, no massive shift to 24-nt siRNAs was observed; only a modest increase of 24-nt easiRNAs occurs in *ddm1 drb4* and *ddm1 drb4 drb7.2* mutants compared to *ddm1* (Figure 6A and B). To explain this discrepancy, it should be noted that TSI transcription is rather complex as three main TSI transcripts accumulate, two polyA+ RNAs of 5000 and 2500 nucleotides and a polyA- RNA of 1250 nucleotides. While these transcripts overlap within the TSI 3' region, only the 5000-nt RNAs can be detected with a 5' specific-probe (Steimer et al. 2000). Additionally, the Athila2 and 6A subfamilies are the main suppliers of easiRNAs (Nuthikattu et al. 2013), and the TSI 5' part probes can only detect Athila6A members-derived easiRNAs while the 3' probes can detect a wider range of Athila2 and 6A subfamilies loci-derived easiRNAs. These differences in targeting specificity for the 5' and 3' probes are likely to be at the origin of the differences in easiRNAs populations we observed. Elucidating the complex mechanisms involved in easiRNA biogenesis is a challenging topic (Sarazin and Voinnet 2014) and would certainly benefit from the identification reported here of new cofactors impacting this pathway, such as the AtDRB7.2 and AtDRB4 proteins.

TSI-specific easiRNAs are preferentially incorporated into AGO1 and regulate target genes displaying complementary sequences (McCue et al. 2013; McCue et al. 2014). This is the case for the Athila6A derived AMS-specific easiRNAs (Figure 6A) that strongly downregulate the AMS gene in *ddm1* plants (Mc Cue et al, 2013). Figure 6C confirms such impact on AMS mRNA levels, and also shows that this downregulation was not changed in our double or triple mutant plants. A similar result was obtained for another known easiRNA target, the LACS7 transcript (McCue et al. 2013) indicating that modification of small RNAs pattern in *ddm1 drb4*, *ddm1 drb7.2* or *ddm1 drb4 drb7.2* mutants does not impact targets of easiRNAs.

Using the same probes, no variation in small RNA populations was observed when using *drb7.1* instead of *drb7.2* background (Figure S8), suggesting that in contrast to AtDRB7.2, AtDRB7.1 is not involved in easiRNA biogenesis but possibly in another yet to define DCL4-dependent pathway.

AtDRB7.2 is interacting with AtDRB4 but not with AtDCL4

To test if AtDRB7.2 could interact directly with AtDCL4, a situation that could explain the concerted evolution signature of Figure 4, we used a BiFC strategy. Using as positive control the expected AtDRB4-AtDCL4 interaction, we observed that AtDRB7.2 interacts strongly with AtDRB4 but not directly with AtDCL4 (Figure 7, for additional positive and negative controls of the BiFC experiment see Figure S9 and S10). This result, combined to our inability to pull-down AtDCL4 using a tagged version of AtDRB7.2 (data not shown), suggest that AtDRB7.2 exists mainly, in vivo, in complex with AtDRB4 and not with AtDCL4. Therefore, since the concerted evolution signature is apparently not based on a direct contact between the two proteins, it is tempting to propose that AtDRB7.2 and AtDCL4 cooperate to bind a common ligand. However, our genetic results (see Figure 5 and 6) suggest that none of the tested AtDCL4 end-products (including 21-nt easiRNAs) are affected by the loss of AtDRB7.2. Surprisingly, the absence of AtDRB4 does not modify the accumulation of 21-nt easiRNAs either (Figure 6), suggesting that AtDCL4 is able to generate 21-nt easiRNAs without involving those DRBs and that the concerted evolution signature we observed in Figure 4 cannot be explained by the cooperative binding of AtDCL4 and AtDRB7.2 to easiRNA precursor molecules. Therefore, the molecular origin of this signature is yet to be determined and could result from the cooperative or competitive binding of both proteins to a common RNA ligand yet to identify or occurring in specific and/or discrete cell types.

Conclusion

By retracing the evolutionary history of DRB proteins in plants we were able to identify two new families we named DRB6 and DRB7. The earlier discovery of the DRB6 family was impaired by its absence in the model species *Arabidopsis*. DRB6 share structural similarities with DRB1 and it is tempting to speculate that it could also be involved in the production of miRNAs, except in

Brassicaceae where, other DRBs (such as AtDRB2, AtDRB3 and AtDRB5; Eamens et al., 2012a; Eamens et al, 2012b) could play its part.

Determining precisely the role of DRB7 proteins will require more work. We show here that one of the two Arabidopsis DRB7 proteins (AtDRB7.2) is involved, in combination with AtDRB4, in the easiRNA pathway, by inhibiting the accumulation of DCL3-dependent 24nt siRNAs from easiRNAgenerating loci. However, the increased accumulation of those 24nt siRNAs in drb4 or drb7 mutant background has no impact on the regulation of easiRNA target accumulation. How AtDRB7 and AtDRB4, in association or not with DCL4, negatively regulate the accumulation of those 24nt siRNAs remains to be determined. One possibility is that AtDRB4/AtDRB7 may be inhibitors of DCL3 activity. This inhibitory effect can be mediated through a direct interaction with DCL3 that will either compete for binding of DCL3 cofactors or directly inhibit its processing on particular substrate. Alternatively, AtDRB4/AtDRB7 may directly sequester specific dsRNA precursors, thereby preventing their access and processing by DCL3. Finally, given that this inhibitory effect is only observed in a *ddm1* mutant background, it is also possible that this mutation triggers a change in the homeostasis of either DCL3, its cofactor(s), or of factor(s) required for the production of these particular polIV-dependent dsRNAs. This change may, in turn, makes DCL3-mediated processing more susceptible to the presence or absence of AtDRB4/AtDRB7. This is particularly striking in the drb4 mutant background where opposite molecular phenotypes are observed for 24nt TSI 3'partderived siRNA in presence or absence of DDM1 (Figures 5 and 6). Although the reason for this difference is currently unknown, one interesting factor to test would be DRB2 as increased accumulation of several polIV-dependent siRNA were previously observed in drb2 mutant background (Clavel et al. 2015; Pélissier et al. 2011). Although closely related to AtDRB7.2, AtDRB7.1 does not seems to be involved in any small RNA pathway tested so far and its function will also need to be further investigated in the future.

METHODS

Sequence selection, multiple sequences alignments and phylogenetic reconstruction

Twenty-three species representing the diversity of the Viridiplantae lineage were searched for the presence of DRBs. At the root of the lineage, we have selected five chlorophytes (Chlamydomonas reinhardtii, Volvox carteri, Coccomyxa subellipsoidea, Micromonas pusilla and Ostreococcus lucimarinus), one bryophyte (*Physcomitrella patens*), and one lycophyte (*Selaginella moellendorffii*). The four monocotyledons species we have selected (Sorghum bicolor, Zea mays, Setaria italica and Oryza sativa) are representative of the three major subclades of this lineage. For the analysis of the DRB7 family, we used the Brachypodium distachyon instead of the Oryza sativa protein due to a sequence quality problem for this gene in O. sativa. To represent the dicotyledons, we used twelve species, one at the root of this lineage (Aquilegia coerulea), one at the root of the Pentapetalae (Mimulus guttatus) an outgroup of the Malvidae (Eucalyptus grandis), seven Malvidae species representing the four major subclades of this group (Citrus sinensis, Theobroma cacao, Thellungiella halophile, Brassica rapa, Arabidopsis thaliana, Populus trichocarpa and Ricinus communis) and two Fabidae species representing the two subclades of this group (*Cucumis sativus*, *Phaseolus vulgaris*). Blast searches were performed starting from known Arabidopsis dsRBMs. However, to make sure we did not miss any DRBs, each time a new dsRBM was found in a given species it was itself used as a probe in a new BLAST search. By using this iterated BLAST procedure we are very confident that we did not miss any dsRBM containing proteins and that we have collected all DRBs in species we have studied.

Sequences were aligned using the multiple sequence comparison by log-expectation (MUSCLE v3.7) software (Edgar 2004). Alignment shading was obtained using BOXSHADE v3.21. Trees were reconstructed using the fast maximum likelihood tree estimation program PHYML (Guindon and Gascuel 2003) using the LG amino acids replacement matrix (Le and Gascuel 2008). Statistical support for the major clusters were obtained using the approximate likelihood-ratio test (aLRT) (Anisimova and Gascuel 2006).

Plant material and plant growth conditions

The *drb4-1* and *ddm1-2* mutant lines are in Col0 background and were described previously (Curtin et al. 2008; Jeddeloh et al. 1999). The *drb7.2* mutant corresponds to a GABI-Kat line (GK-525B11; background Col0) bearing a tDNA insertion into the 3rd intron of the At4g00420 gene. The *drb7.1* mutant in the Nössen (No) genetic background was obtained from the "RIKEN *Arabidopis* transposon mutants" ressources (PST 12013) and contains a Ds insertion into the 2nd exon of the At1g80650 gene. Absence of DRB7.1 and 7.2 transcripts was ascertained by semi-qRTPCR using exon-specific primers surrounding the integration sites. Double drb7.1 drb7.2 mutant lines were obtained by crossing and a Col x No crossed line was used as control. Plant seeds were stratified for two to four days at 4°C before growth in chambers on soil at 23°C under a 16h-light/8h-dark cycle.

RNA isolation and hybridization

Total RNA was extracted as described in (Pélissier et al. 2004), using immature floral inflorescences (stages 1-12) or aerial parts from 2 weeks-old seedlings. For the detection of small RNAs, 15µg of total RNA samples were heat-treated in 1.5 volume of standard formamide buffer and loaded on a 15% polyacrylamide (19 :1 acrylamide :bis-acrylamide) – 8.3M urea - 0.5X TBE gel and separated by electrophoresis. The samples were electroblotted to hybond-NX membranes (GE healthcare) and fixed following a carbodiimide-mediated cross-linking procedure (Pall et al. 2007). Pre-hybridization and hybridization was carried out in 5X SSC, 20mM Na₂HPO₄ pH7.2, 7% SDS, 2X Denhardt solution, 50mg/ml herring DNA at 50°C. Filters were washed twice with 3X SSC, 5% SDS at 50°C for 10 min, followed by one to two washes with 1X SSC, 1% SDS at 50°C for 10 min. Signals were visualized by autoradiography or by using a phosphorimager (Molecular Imager FX; Bio-Rad) for quantification.

QRT-PCR analysis

2 μ g of total RNA were DNase treated using the Promega RQ1 kit following manufacturer's recommendations. 0.2 μ g of treated RNA was reverse transcribed using PrimeScript RT reagent kit (Perfect real time, Takara) in a final volume of 10 μ l, using either a mix of oligodT and random hexanucleotides or a mixture of gene specific primers for fca 3' end analysis experiments (rt7-R and

act2-R). One μ l of cDNA was used for amplification, using the Eco Real-Time system (Illumina) and SYBR Premix Ex Taq II (Tli RnaseH Plus) (Takara) in a final volume of 15 μ l. Actin2 RNA was used as input control to normalize the expression levels, with a minimum of two biological repeats per experiments. Primers used can be found in Table S2.

BiFC constructs

DRB4 and DRB7.2 open reading frames flanked by AttB1 and AttB2 sites (see Table S2 for primer sequences) were amplified from *Arabidopsis* cDNA clones (Columbia ecotype), cloned into Gateway vector pDONR221 using BP recombination (Invitrogen), and sequenced. An LR reaction between the entry vector and the complete set of four pBiFP vectors (Azimzadeh et al., 2008) produced the final expression vectors, where coding sequences are cloned in fusion with the N- and C-terminal parts of YFP (Hu et al., 2002), either as N-terminal or C-terminal fusions, under the control of the cauliflower mosaic virus 35S promoter. cDNA of DCL4 was cloned, in fusion with the N- and C-terminal parts of YFP, either as N-terminal or C-terminal fusions under the control of its endogenous promoter, in pB7GW34 vector using the "MultiSite Gateway Three-Fragment Vector Construction Kit" (Invitrogen). For fluorescence complementation tests, all eight compatible combinations between protein pairs (i.e., providing both parts of the YFP) were assayed in transient expression. A C-terminal fusion of the Glutathion S-transferase (GST) with the C-terminal part of the YFP (kindly provided by N. Lukhovitskaya, IBMP, France) was used a negative control with the appropriate compatible combination of DCL4, DRB4 or DRB7.2 YFP fusions.

Transient assay in Nicotiana benthamiana leaves

Each expression vector was introduced in *Agrobacterium tumefaciens* strain GV3101 by electroporation. *Agrobacterium* bacterial cultures were incubated overnight at 28°C with agitation. Each culture was pelleted, and resuspended in 10mM MgCl2, 200 μ M Acetosyringone buffer to an OD₆₀₀ of 1.5 and put 2 hrs under gentle agitation at room temperature. To enhance transient expression of BiFC fusion proteins, the P19 viral suppressor of RNA silencing was coexpressed (Voinnet et al.,

2003). Equal volumes of each bacterial culture were mixed before infiltration and YFP fluorescence was scored 3 to 4 d post-infiltration with a confocal microscope (LSM780, ZEISS).

ACKNOWLEDGEMENTs

This work was supported by l'Agence Nationale de la Recherche (ANR-06-BLAN-0203-02), by the CNRS, by the Université de Perpignan (UPVD). It was also published under the framework of the LABEX : ANR-10-LABX-0036_NETRNA and benefits from a funding from the state managed by the French National Research Agency as part of the Investments for the future program. M. C. and T.M. were supported by a grant from the French Ministry of Research and M-A.T. by a core grant from ETH-Z.

FIGURE LEGENDS

Figure 1: Phylogenetic analysis of <u>D</u>ouble <u>S</u>tranded <u>R</u>NA binding <u>M</u>otifs (dsRBMs) of *Arabidopsis thaliana* <u>D</u>ouble stranded <u>R</u>NA <u>B</u>inding proteins (DRB) and of the <u>DiCer-Like 4</u> protein (DCL4) (see Table S1 for protein sequences and Figure S1 for the alignment). Selected informative statistical supports (approximate likelihood-ratio test (aLRT) data) are indicated. A schematic representation of the position of the different conserved domains in each DRB family is presented (see also Figure 3 and S3).

Figure 2: Phylogenetic analysis of the DRB proteins having multiple dsRBMs. The phylogenetic tree was obtained by fusing and aligning the dsRBMs of 110 DRB proteins from 18 plant species (see Table S1 for protein sequences and Figure S2 for the alignment). Selected informative statistical supports (approximate likelihood-ratio test (aLRT) data) are indicated. Names of the different DRB families are indicated with a schematic representation of the position of the different conserved domains in each family (see also Figure S3). The classification as type I or type II dsRBM was obtained by analyzing the individual motifs (see Figure 3). Species codes are the following: Pp: *Physcomitrella patens*, Sm: *Selaginella moellendorffii*, Sb: *Sorghum bicolor*, Zm: *Zea mays*, Si:

Setaria italic, Os: Oryza sativa, Ac: Aquilegia coerulea, Mg: Mimulus guttatus, Eg: Eucalyptus grandis, Cs: Citrus sinensis, Tc: Theobroma cacao, Th: Thellungiella halophile, Br: Brassica rapa, At: Arabidopsis thaliana, Cus: Cucumis sativus, Pv: Phaseolus vulgaris, Pt: Populus trichocarpa, Rc: Ricinus communis.

Figure 3: Phylogenetic analysis of individual dsRBMs present in multiple dsRBM DRBs. Selected informative statistical supports (approximate likelihood-ratio test (aLRT) data) are indicated (see Table S1 for protein sequences and Figure S5 for the alignment). Names of the different DRBs are indicated in which the last number after the dot (1, 2 or 3) denotes the position of the dsRBM in the protein (1 being the most N-terminal). The two different clades define the two types of dsRBM (I or II). The color code defined here was used in the schematic presentation of the DRB families in Figure 2.

Figure 4: Phylogenetic analysis of individual dsRBMs present in the single dsRBM DRB7 family and in the most C-terminal region of the DCL4 family. Selected informative statistical supports (approximate likelihood-ratio test (aLRT) data) are indicated (see Table S1 for protein sequences and Figure S6 for the alignment). Bd: Brachypodium distachyon

Figure 5: Impact of AtDRB7 loss of function on known AtDCL4 *in vivo* substrates. DRB4, but not DRB7 proteins, is required for proper accumulation of polIV-dependent siRNAs (TSI), tasiRNAs and DCL4-dependent miRNAs (miR822 and 839). Total RNA extracts from immature flowers were blotted and hybridized sequentially with the indicated probes. While DCL1-dependent miRNA171 is unaffected in all mutant combinations, significant change in small RNA level/pattern is observed in the *drb4* mutant background only; no additional impact is visible when *dr7.1* and *drb7.2* mutations are combined with *drb4*. Because Col0 was used as control following introgression of the *drb7.1* Nössen (No) mutant allele into *drb4 drb7.2* line, three individual plants of the progeny were analyzed to minimize potential effects of mixed genetic backgrounds. Values for 21-nt RNA accumulation (or 24-

nt for TSI 3' part probe 2) are normalized to U6 RNA and are expressed as a ratio relative to the wildtype control plants. Variation of more than 1,5 fold are highlighted in bold.

Figure 6: Impact of AtDRB7.2 loss of function on the easiRNA pathway and on targets of the easiRNA pathway. A. To properly compare easiRNA accumulation patterns, total RNAs of immature floral inflorescences were extracted from Col0 or siblings segregating from a single ddm-/- drb4+/drb7.2+/- parental plant. Blotted RNAs were probed with the indicated probes. AtDRB4 and AtDRB7.2 both impact the processing of easiRNA precursors. As expected AtDRB4 also impact the production of tasiRNA (tas2) and a AtDCL4-AtDRB4 dependent miRNA (mir822) but none of the two proteins impact a AtDCL1-AtDRB1 dependent miRNA (mir171). For tas2, 21nt AtDCL4dependent tasiRNAs are reduced in *drb4* and low levels of 22-24nt species accumulate due to compensatory functions of AtDCL2/AtDCL3, as expected when AtDCL4 activity is reduced on tas2 precursor (Gasciolli et al., 2005). B. Accumulation of 22- and 24-nt siRNAs relative to the 21-nt level. Hybridization results from only one of the two TSI 5' or 3' probes are shown as both probes in each case, gave similar results. Values are means derived from two individual siblings (A.) +/- SEM and are given relative to *ddm1* set arbitrarily to 1. C. qRTPCR analyses of AMS and LACS7 expression in different genetic backgrounds. Targeting of AMS and LACS7 mRNAs by AGO1-loaded 21nt-siRNAs in *ddm1* plants is not affected by the additional *drb4* and *drb7.2* mutations. Values normalized to actin2 are means derived from three individual siblings (only two for triple mutants) +/- SEM and are represented relative to Col0 set arbitrarily to 1.

Figure 7 : BiFC visualization of AtDRB7.2 interaction with AtDRB4. Shown are confocal images of *Nicotiana benthamiana* epidermal cells coinfiltrated with Agrobacterium cultures harboring different combination of expression vectors (indicated on the left of the panels). Scale bars and the position of nucleus are shown. Positive control for the BiFC experiment corresponds to coexpression of AtDRB4 and AtDCL4, fused to the indicated YFP moieties (one example of two different combinations is shown). As previously reported (Hiraguri et al., 2005; Zhu et al., 2013), AtDRB4 was found to be associated with AtDCL4 in the nucleus. YFP complementation was also observed when AtDRB7.2

and AtDRB4 were coexpressed (one example of two different combinations is shown) and showed similar nuclear localization as the one observed with AtDRB4 and AtDCL4. By contrast, none of the combinations between AtDRB7.2 and AtDCL4, nor any of the negative controls involving GST fusion as one of the partner (not shown), gives a visible fluorescent signal. For additional positive and negative controls of the BiFC experiment see Figure S9 and S10.

SUPPLEMENTARY MATERIAL

Table S1: Sequence of the proteins used in this study.

Table S2: Sequence of the primers used in this study.

Figure S1: Alignment of the *Arabidopsis thaliana* dsRBMs present in DRB proteins and in the most C-terminal region of the DCL4 protein. Names of the different DRBs are indicted followed by a number (1 or 2) indicating the position of the dsRBM in the protein (1 being the most N-terminal). At1g80650 and At4g00420 have a single dsRBM. This alignment was used to build the phylogenetic tree of Figure 1.

Figure S2: Alignment of the fused dsRBMs present in multiple dsRBM DRBs used to build the phylogenetic tree of Figure 2.

Figure S3: Positioning of the dsRBMs in the different DRB families. The average size (in amino acids) of the linker regions before the first dsRBM and connecting internal dsRBMs is presented (with standard deviations) for each category except for the most variable linkers (V*) where only the lower and higher sizes are presented.

Figure S4: Identification of conserved Arginine-Lysine rich (RK-rich) region in proteins from the DRB1 (A) and DRB6 (B) families. In A, only the DRB1 second dsRBM and its immediate flanking region is shown. In B, only the DRB6 C-terminal end is shown. Species codes are as in Figure 2.

Figure S5: Alignment of individual dsRBMs present in multiple dsRBM DRBs used to build the phylogenetic tree of Figure 3. Species codes are as in Figure 2.

Figure S6: Alignment of individual dsRBMs present in the single dsRBM DRB7 family and in the most C-terminal region of the DCL4 protein family. This alignment was used to build the phylogenetic tree of Figure 4. Species codes are as in Figure 2.

Figure S7: Impact of AtDCL4 and AtDRB7 losses on the transcription termination of FCA. No significant change in read-through transcription was observed for the mutant lines tested, using seedlings (A) or immature flowers (B) total RNAs as template. Primers used are diagnostic for the rt7 region (Liu et al. 2012), several hundred base pairs downstream of the FCA polyA termination signal. Actin2 is used for normalization and the accurate control Col0, No or Col x No is set arbitrarily to 1. Values are means derived from at least two biological repeats +/- SEM, except for individual siblings segregating from drb4 +/- drb7.1 +/- drb7.2 -/- plants.

Figure S8: AtDRB7.1 loss of function has no impact on the processing of easiRNA precursors. Blotted RNAs were probed with the indicated probes; U6 RNA was used as loading control.

Figure S9: Negative controls of the BIFC experiments. Negative controls using a GST protein fused to the N- or C-terminal part of YFP fragments (YFP^N or YFP^C) in combination with the complementary AtDCL4 (A), AtDRB4 or AtDRB7.2 (B) YFP fusions. The fusion of the YFP fragment was always done at the C-terminus of the GST while the fusion of the complementary YFP fragment was done either at the N-terminus (for example YFP^N-AtDCL4) or C-terminus (for example AtDRB7.2- YFP^N) of the three tested proteins. (C). Negative controls using additional swaps (other than the ones shown in Figure 7) of AtDCL4 and AtDRB7.2 YFP fusion proteins. (D) Negative controls of AtDRB7.2 and AtDRB4 fusion YFP co-expressed with cucumber mosaic virus 2b protein (CMV2b) (Wang et al. 2004) corresponding YFP fusion. Scale bars and the position of nucleus are shown. BIFC experiments were done as explained in Figure 7 and in the Material and Methods section.

Figure S10: Positive controls of the BIFC experiments. New swaps (other than the ones shown in Figure 7) were done to challenge the positive interaction between AtDRB4 and AtDRB7.2. We fused this time the C-terminal part of YFP to the C-terminus of AtDRB4 and the N-terminal part of YFP to the C-terminus of AtDCL7.2 (A) and the C-terminal part of YFP to the N-terminus of AtDRB4 and the N-terminal part of YFP to the N-terminus of AtDCL7.2 (B). (C) A positive control showing the expected interaction between cucumber mosaic virus 2b protein (CMV2b) and importing alpha1 (NbIMP- α 1) (Wang et al. 2004). (D) Same experiments as in Figure 7 but showing a broader view. Scale bars and the position of nucleus are shown. BIFC experiments were done as explained in Figure 7 and in the Material and Methods section.

REFERENCES

- Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouche N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7 Curr Biol 16:927-932 doi:10.1016/j.cub.2006.03.035
- Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative Syst Biol 55:539-552
- Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference Nature 409:363-366 doi:10.1038/35053110
- Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome Genome Res 13:137-144 doi:10.1101/gr.751803
- Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis Cell 123:1279-1291
- Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs EMBO J 25:3347-3356 doi:10.1038/sj.emboj.7601217

- Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function Eukaryot Cell 10:1164-1172 doi:10.1128/EC.05106-11
- Chang KY, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform FEBS J 272:2109-2117 doi:10.1111/j.1742-4658.2005.04652.x
- Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing Nature 436:740-744 doi:10.1038/nature03868
- Clavel M et al. (2015) Parallel action of AtDRB2 and RdDM in the control of transposable element expression BMC Plant Biol 15:70 doi:10.1186/s12870-015-0455-z
- Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis Nature 508:411-415 doi:10.1038/nature13069
- Curtin SJ, Watson JM, Smith NA, Eamens AL, Blanchard CL, Waterhouse PM (2008) The roles of plant dsRNA-binding proteins in RNAi-like pathways FEBS Lett 582:2753-2760 doi:S0014-5793(08)00584-X [pii]
- 10.1016/j.febslet.2008.07.004
- Daniels SM et al. (2009) Characterization of the TRBP domain required for dicer interaction and function in RNA interference BMC Mol Biol 10:38 doi:10.1186/1471-2199-10-38
- Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex Nature 432:231-235 doi:10.1038/nature03049
- Dugre-Brisson S, Elvira G, Boulay K, Chatel-Chaix L, Mouland AJ, DesGroseillers L (2005) Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs Nucleic Acids Res 33:4797-4812 doi:10.1093/nar/gki794
- Dunoyer P, Himber C, Ruiz-Ferrer V, Alioua A, Voinnet O (2007) Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways Nat Genet 39:848-856 doi:10.1038/ng2081
- Eamens AL, Kim KW, Curtin SJ, Waterhouse PM (2012a) DRB2 is required for microRNA biogenesis in Arabidopsis thaliana PLoS One 7:e35933 doi:10.1371/journal.pone.0035933

- Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes RNA 15:2219-2235 doi:10.1261/rna.1646909
- Eamens AL, Wook Kim K, Waterhouse PM (2012b) DRB2, DRB3 and DRB5 function in a noncanonical microRNA pathway in Arabidopsis thaliana Plant signaling & behavior 7:1224-1229 doi:10.4161/psb.21518
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res 32:1792-1797
- Ferrandon D, Elphick L, Nusslein-Volhard C, St Johnston D (1994) Staufen protein associates with the 3'UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner Cell 79:1221-1232
- Fierro-Monti I, Mathews MB (2000) Proteins binding to duplexed RNA: one motif, multiple functions Trends in biochemical sciences 25:241-246
- Fukudome A, Kanaya A, Egami M, Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T (2011) Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4 RNA 17:750-760 doi:10.1261/rna.2455411
- Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs Curr Biol 15:1494-1500 doi:10.1016/j.cub.2005.07.024
- Gleghorn ML, Gong C, Kielkopf CL, Maquat LE (2013) Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay Nat Struct Mol Biol 20:515-524 doi:10.1038/nsmb.2528
- Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs Nature 432:235-240 doi:10.1038/nature03120
- Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood Syst Biol 52:696-704

- Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing Genes Dev 18:3016-3027 doi:10.1101/gad.1262504
- Han J et al. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex Cell 125:887-901 doi:10.1016/j.cell.2006.03.043
- Hiraguri A et al. (2005) Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana Plant Mol Biol 57:173-188 doi:10.1007/s11103-004-6853-5
- Hitti EG, Sallacz NB, Schoft VK, Jantsch MF (2004) Oligomerization activity of a double-stranded RNA-binding domain FEBS Lett 574:25-30 doi:10.1016/j.febslet.2004.07.080
- Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA Science 293:834-838 doi:10.1126/science.1062961
- Jakubiec A, Yang SW, Chua NH (2012) Arabidopsis DRB4 protein in antiviral defense against Turnip yellow mosaic virus infection Plant J 69:14-25 doi:10.1111/j.1365-313X.2011.04765.x
- Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein Nat Genet 22:94-97 doi:10.1038/8803
- Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE (2007) Staufen1 regulates diverse classes of mammalian transcripts EMBO J 26:2670-2681 doi:10.1038/sj.emboj.7601712
- Kiyota E, Okada R, Kondo N, Hiraguri A, Moriyama H, Fukuhara T (2011) An Arabidopsis RNase III-like protein, AtRTL2, cleaves double-stranded RNA in vitro Journal of plant research 124:405-414 doi:10.1007/s10265-010-0382-x
- Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis Rna 12:206-212
- Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions Proc Natl Acad Sci U S A 101:12753-12758 doi:10.1073/pnas.0403115101

- Laraki G, Clerzius G, Daher A, Melendez-Pena C, Daniels S, Gatignol A (2008) Interactions between the double-stranded RNA-binding proteins TRBP and PACT define the Medipal domain that mediates protein-protein interactions RNA Biol 5:92-103
- Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix Mol Biol Evol 25:1307-1320 doi:10.1093/molbev/msn067
- Lee Y et al. (2003) The nuclear RNase III Drosha initiates microRNA processing Nature 425:415-419 doi:10.1038/nature01957
- Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway EMBO J 25:522-532 doi:10.1038/sj.emboj.7600942
- Liu F, Bakht S, Dean C (2012) Cotranscriptional role for Arabidopsis DICER-LIKE 4 in transcription termination Science 335:1621-1623 doi:10.1126/science.1214402
- Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1 Cell 151:859-870 doi:10.1016/j.cell.2012.09.039
- Masliah G, Barraud P, Allain FH (2013) RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence Cellular and molecular life sciences : CMLS 70:1875-1895 doi:10.1007/s00018-012-1119-x
- McCue AD, Nuthikattu S, Reeder SH, Slotkin RK (2012) Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA PLoS Genet 8:e1002474 doi:10.1371/journal.pgen.1002474
- McCue AD, Nuthikattu S, Slotkin RK (2013) Genome-wide identification of genes regulated in trans by transposable element small interfering RNAs RNA Biol 10:1379-1395 doi:10.4161/rna.25555
- McCue AD, Panda K, Nuthikattu S, Choudury SG, Thomas EN, Slotkin RK (2014) ARGONAUTE 6 bridges transposable element mRNA-derived siRNAs to the establishment of DNA methylation EMBO J doi:10.15252/embj.201489499

- Micklem DR, Adams J, Grunert S, St Johnston D (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation EMBO J 19:1366-1377 doi:10.1093/emboj/19.6.1366
- Nakazawa Y, Hiraguri A, Moriyama H, Fukuhara T (2007) The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway Plant Mol Biol 63:777-785 doi:10.1007/s11103-006-9125-8
- Nanduri S, Rahman F, Williams BR, Qin J (2000) A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR EMBO J 19:5567-5574 doi:10.1093/emboj/19.20.5567
- Nuthikattu S, McCue AD, Panda K, Fultz D, DeFraia C, Thomas EN, Slotkin RK (2013) The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs Plant physiology 162:116-131 doi:10.1104/pp.113.216481
- Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated crosslinking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot Nucleic Acids Res 35:e60
- Pélissier T, Bousquet-Antonelli C, Lavie L, Deragon JM (2004) Synthesis and processing of tRNArelated SINE transcripts in Arabidopsis thaliana Nucleic Acids Res 32:3957-3966
- Pélissier T, Clavel M, Chaparro C, Pouch-Pélissier MN, Vaucheret H, Deragon JM (2011) Doublestranded RNA binding proteins DRB2 and DRB4 have an antagonistic impact on polymerase IV-dependent siRNA levels in Arabidopsis RNA 17:1502-1510 doi:rna.2680711 [pii]

10.1261/rna.2680711

- Qin H, Chen F, Huan X, Machida S, Song J, Yuan YA (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction RNA 16:474-481 doi:10.1261/rna.1965310
- Raja P, Jackel JN, Li S, Heard IM, Bisaro DM (2014) Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses Journal of virology 88:2611-2622 doi:10.1128/JVI.02305-13

- Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana Genes Dev 20:3407-3425 doi:10.1101/gad.1476406
- Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells PLoS Biol 3:e235 doi:10.1371/journal.pbio.0030235
- Sarazin A, Voinnet O (2014) Exploring new models of easiRNA biogenesis Nat Genet 46:530-531 doi:10.1038/ng.2993
- Schuldt AJ, Adams JH, Davidson CM, Micklem DR, Haseloff J, St Johnston D, Brand AH (1998) Miranda mediates asymmetric protein and RNA localization in the developing nervous system Genes Dev 12:1847-1857
- Slotkin RK (2010) The epigenetic control of the Athila family of retrotransposons in Arabidopsis Epigenetics 5:483-490
- Slotkin RK, Vaughn M, Borges F, Tanurdzic M, Becker JD, Feijo JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen Cell 136:461-472 doi:10.1016/j.cell.2008.12.038
- Sohn SY, Bae WJ, Kim JJ, Yeom KH, Kim VN, Cho Y (2007) Crystal structure of human DGCR8 core Nat Struct Mol Biol 14:847-853 doi:10.1038/nsmb1294
- Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body Proc Natl Acad Sci U S A 104:5437-5442 doi:10.1073/pnas.0701061104
- St Johnston D, Beuchle D, Nusslein-Volhard C (1991) Staufen, a gene required to localize maternal RNAs in the Drosophila egg Cell 66:51-63
- St Johnston D, Brown NH, Gall JG, Jantsch M (1992) A conserved double-stranded RNA-binding domain Proc Natl Acad Sci U S A 89:10979-10983
- Steimer A, Amedeo P, Afsar K, Fransz P, Mittelsten Scheid O, Paszkowski J (2000) Endogenous targets of transcriptional gene silencing in Arabidopsis Plant Cell 12:1165-1178
- Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans Cell 109:861-871

- Tanurdzic M et al. (2008) Epigenomic consequences of immortalized plant cell suspension culture PLoS Biol 6:2880-2895 doi:10.1371/journal.pbio.0060302
- Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB (2004) The double-stranded-RNAbinding motif: interference and much more Nat Rev Mol Cell Biol 5:1013-1023 doi:10.1038/nrm1528
- Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry Science 306:1377-1380 doi:10.1126/science.1102755
- Wang Y, Tzfira T, Gaba V, Citovsky V, Palukaitis P, Gal-On A (2004) Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization J Gen Virol 85:3135-3147 doi:10.1099/vir.0.80250-0
- Xie Z et al. (2004) Genetic and functional diversification of small RNA pathways in plants PLoS Biol 2:E104 doi:10.1371/journal.pbio.0020104
- Yang SW, Chen HY, Yang J, Machida S, Chua NH, Yuan YA (2010) Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing Structure 18:594-605 doi:10.1016/j.str.2010.02.006
- Yeom KH, Lee Y, Han J, Suh MR, Kim VN (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing Nucleic Acids Res 34:4622-4629 doi:10.1093/nar/gkl458
- Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii Genes Dev 21:1190-1203 doi:10.1101/gad.1543507
- Zhu S et al. (2013) Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens Cell reports 4:1168-1184 doi:10.1016/j.celrep.2013.08.018

Figure 1

Figure 2

Figure 3

Figure 5

■ ddm1 ■ ddm1 drb7.2

ddm1 drb4
ddm1 drb4 drb7.2

Figure 6

Figure 7

AtDCL4-2	1	AKSLIHETCVANCWKPEHFECCEEEGEGHLKSEVYKVILEVEDAPNMT-LECYGEARAWKKGAAEHAAQAAIW	C
At1g80650	1	AKSVLHEMCASKRWRPPVVECCNVDGPCHLRLETYKVMVEIRDSSGKTVLECEGDPRRKKKAAAEHAAEGALW	Y
At4g00420	1	AKSQLYNLCSVRHWKAPLYEYIA-BGPCHMKIFTGKVTVEMKEDSRITVLECFGNPQYKKKIAAEQAAEAALW	Y
AtDRB1-2	1	<u> </u>	AI
AtDRB1-1	1	FKSRLQEYAQKYKLPTPVYEIVK-EGFSHKSLFQSTVILDGVRYNSLPGFFNRKAAEQSAAEVALR	Е
AtDRB4-2	1	<u> </u>	SI
AtDRB2-2	1	<u>YKNLLQBIAQRVGAPLPRYTTFR-SGLGHQPVFTGTVELAGITFTGDP-AKNKKQABKNAAMAAWS</u>	ST
AtDRB3-2	1	<u>YKNLLQETAHRAGLDLPVYTSVR-SGPGHIPTFSCTVELAGMSFNGES-AKTKKQAEKNAAIAAWF</u>	Sī
AtDRB5-2	1	<u>YKNLLOETAHRAGLDLPMYTSVR-SGSCHFEGFSCTVELAGMTFTGES-AKIKKQAEKNAAIAAWS</u>	ST
AtDRB5-1	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKASVNFNGEIFESPTYCSULRQAEHAAAEVSLN	v
AtDRB3-1	1	YKNQLQELAQRSCFSLPSYTCTR-EGPDHAPRFKASVNFNGEIFESPTYCSTLRQAEHSAAEVALS	A
AtDRB2-1	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKATVNFNGEIFESPQYCSTLRQAEHSAAEVALN	A
AtDRB4-1	1	YKGQLQAYALQHNLELEVYANER-EGEPHARRERCNVTFCGQTFQSSEFFPHLKSABHAAAKIAVA	S

EgDRB1 1	FKSRLODY	AHKTGLPTPI	VETHKECAL	ESQERSIVI	TVNGVKYNS:	LP-GFCNRKAA	QSAAEVALLELCKN	NLIQEYVOKLSYVIP	RWKCPKDEASRRAPL	FSCTVEVGGICYTG	DTARTKKQAEIQAARTA	LLAV
ACDEB1 1	FUSRIOSF	SOKAGETSEV	VETIKEGRS	TEPSERSTVI		LP-GFFNRKTAL	OSAAEVALMKLCKN	NILOE VAOKMNYAIP	SWVCRTHEAPCKKTS	VECTVD/GGIKYIG	ASANTKKEAEI KAARTA	
AtDRB1 1	FKSRLOEY	AOKYKLPTPV	YEIVKEGPS	KSLFQSTVI	LDEVRYNS	LP-GFFNRKA	OSAAEVALRELCKN	NLLQEYAQKMNYAIP	LYQCOKVETLGRVTQ	FTCTVEIGGIKYTC	AATRTKKDAEISAGRTA	LLAI
ThDRB1 1	FKSRLQEY	AQKYKLPTPV	VYETVKEGPS	RSLFQSTVI	IVNGVRYDS	LP-GFFNRKA <mark>A</mark> B	ÕSAAEVALQELC KN	NLLÕEYAÕKMNYAIP	LYQCQKCETPGRGIÑ	FTCTVEIGGIKYTG	ATTKTKRDAEISAGRTA	LIAI
BrDRB1-1 1	FKSRLQEY	AQRYKLPTPI	YETIKEGPSI	KPLFQSTVI	IVNDVRYDS	LP-GFFNRKA <mark>A</mark> I	QSAAEVALQELCKN	NLLQEYAQKMNYAIP	LYQCQRSETLGRAPQ	FTCTVEIGGIKYTC	AATKTKKEAEISAGRTA	LIAI
BrDRB1-2 1	FKSRLODY	ACKYKLPTPI	YETVKEGPS	KSLDQSTVI	IVDGVRYDS:	LP-GFFNRKA	QSAAEVALQELCKN	NLLQEYAQKMNYAIP	LMOCOKSETTERAPK	FTCTVFIGGIKYTC	AATKIKREADISAGRTA	LIAI
OSDRB1-1 I	FUSRIOEY	AOKTGLOTPE	VHTFKEGPS	TEPVEKSTV	TINTSIGS.	LP-GF SNRKA	OSAAEVALMETCK	NILOEVAOKMNVATP	SVICTK-SASGLAD-	FIGTVEIGGIOYIG	AAARTKKDAEIKAARTA	T.T.AT
OsDRB1-3 1	FKSRLOEY	AQKAGLQTPE	YHTFKEGPS	EPVFKSTVV	VINNTSYDS	LP-GFFNRKAA	OSAAEVALMEICK	NLLQEYAQKMNYAIP	SVICTK-SASGLAP-	FICTVEIGGIQYIG	AAARTKKDAEIKAARTA	LLAI
SbDRB1-1 1	FKSRLQEY	AQKVGITTLE	YHTLKEGPSI	HEPVFKSTVV	VVNNTRYDS	LP – GF F S RKA <mark>A</mark> E	Q S <mark>AAEVAL</mark> ME I CKN	NLLQEYAQKMNYA I P	SYICTK-QASGP-	FICSVEIGGILYIG	AA <mark>ARTKK</mark> GAE I K <mark>AA</mark> RTA	LLAI
ZmDRB1 1	FKSRLQEY	AQRVGIPTPE	YHTLKEGPS	IEPVFKSTVF	VNNTKYDS	LP-GFFSRKAA	QSAAEVALMEICKN	NLLQEYAQKMNYAIP	SVICTK-QASGVAP-	FVCSVBIGGILYIG	AAARTKKEAEIKAARTA	LLAI
SbDRB1-2 1	FKSRIODY	AOKAGLPTE	YHTLKEGPS YHTLKEGPS	TEPVEKSTVI	LVNNTTYDS	LP-GFFSRKA	OSAAEVALMEICKN	NLLQEYAQKMNYAIP	SWICTK-QASEVAL-	FICTVEIGCIQVIC	AAARIKKEAD I KAARTA AARUKKEAD I KAARTA	LLAI
CSDRB1 1	FKSRLOPY	AOKAGIPTEV	VETTKEGPS	TEPWERSTVI		LP-GFFNRKA	OSAAEVALVELCK	NLLOF YAOKMNYAIP	LWOCRKDEASGKVO-	FSCTUDIGDIRYIC	GAAKTKKEAFIKAARTA	LLAI
PvDRB1 1	FKSRLQEY	AOKAGLPTPV	YETVKEGPS	EPSFRSTVI	IVNDVRYDS	LP-GFSNRKA <mark>A</mark> I	OSAAEVALVELCK	NLLQEYAQKMNYAMP	M ^Y QCKKDETPGRASV	FSCTVDIGGILYIG	GAAKTKKEAEIKAARTA	LLAI
PtDRB1-1 1	FKSRLQEY	AQKAGLPTPV	YETIKEGPS I	HEPSFRSTVI	I VKDVRYDS	L P – G F F N R K A A I	QSAAEVALVELCKN	NLLQEYAQKMNYAIP	LYECQKDETPGRGLV	FKCTVDIGGIRYIG	ASTKTKK <mark>EAE</mark> IKAARTA	LLAI
PtDRB1-2 1	FKSRLOEY	AQKAGLPTPV	YETIKEGPSI	HEPSERSTV1	IVKEVRYDS	LP-GFFNRKAAI	QSAAEVALVELCKN	NLLQEYAQKMNYAIP	LVECQKDETPGRGLV	FKCTVEIGGIRYIG	ASAKTKKEAEIKAARTA	LLAI
CUSDEB1 1	FUSRIODY	AOKKGLPTPV AOKVGLPTPV	VETIKEGPS	TEPSERSTVI	LVNDIRIDS.	LP-GFFNRKAAL	OSAAEVALMELCKI	NILOE VAOKMNYAIP	LYLCOKNESPERGTL	FRCTVBIGGIHYIG	AVAKTKKBAEIKAARIA	
TCDRB1 1	FKSRLOFY	AOKVGLPTPV	YETIKEGPS	EPSERSAVI	IVNDVRYDS	LP-GFFNRKA	OSAAEVALMELCKN	ILLOEYAOKMNYAIP	VWOCLKDEAPGRGDH	FSCTVEIGGIRYIG	AAARTKKEAFIKAARTA	LLAI
PpDRB1 1	YKSQLQEY	AQKQGLMSPS	SYEYVKEGASI	HEPRFKSTV/	VNGRGYES	AP-GYP <u>TIER</u> SAE	HAAAKAALDFLCKN	NLLQEFAQKHGYPLP	QYŘSVR-QGEEHSLV	FSSTVEIAGVSYSC	GC <mark>akskkeaeikaart</mark> a	LLAI
SmDRB1 1	YKSQLQEF	AQKSGWTVPQ	<u>YDSIKQGLP</u>	ILPRFQASVE	EVNGVKYES	ED-GFPNLKAAD	HSAAKKALDSLCKN	VULQEYAQRNGFSLP	IVQIEI-TGPS::NSV	FAATVEIGGVLYKG	GTAKSKKEAEVKAARTA	ILAI
SbDRB4A-1 1	FKTOLSVY	AOKLGKVPPI	YKLIOEGPA	IAPRFNAEV	TIDEOTOGR	ELLYYKIKDA	AAAAEVALDLLYKN	NFIQEIAQKEGILLP	VWNWVP-TNKEYSTA	YKSSVQIKCEIFEG	EPRTSKKOAEMNAAKIA	YHH
SiDRB4A 1	VKSBLOIV	AOKRGKOLPS	VRTIVECSL	TAALEKSEVT	TDCOTES	DE - VCRUUKEAU	TAAAEVALMSLYK	NILOELAOKEGEPLP	VMSHTS-DUSVOVIM	EXSTVVF0DGSF0G	E DENTKKOAEMNAARVA	FOHF
SbDRB4A-2 1	YKNOLOEY	AOKRGKLIPS	VRPTHGGSLI	RAPLFKSEVI	TIDGOTFES	PE-YCRTMKEAD	TAAAKVALMFLYKM	NLLQEFVOKEGFPLP	TYDTL-DVSNYSAA	FISTVBIOGATERC	EPGNTKKQAEMNAAKIA	FOHF
ZmDRB4A 1	YKSQLQIY	AQKRGKLLPS	YRPIHGGSL	HAPLFKSEVI	FIDGQTFES	PE – YCHTMKEAE	TVAAKVALMSLYKN	NLLQELVQKEGFPLP	IYNTAS-DVSNYSAA	FVSTVEIHGVTFHG	KPGN <mark>TKKQAE</mark> MNAAKSA	FEHF
ZmDRB2 1	YKNQLQEL	AQRSCFNLPS	YTCLREGPDI	HAPRFKAAVN	FNGEOFES	PG – FFSTLRQAD	HAAAEVALAALYKN	NLLQEVAQRVGAPLP	LYTTER-SGVGHLPV	FTCTVELAGITFTG	DHAKNKKQAEKNAASAA	WSAL
SDDRB2 I OSDRB2 1	YKNQLQEL YKNOLOEI	AORSCENLPA	VTCL REGPD	TAPRFKAAV	TNGEOFES	PG-FFTTLROAD	HAAAEVALAALYKI	VILOEVAORVGAPLP	SVTTER-SGLGHLPV	FUCTVEILAGINFTG	DPAKNKKOAEKNAASAA	WSAU
SiDRB2 1	YKNOLOEL	AORSCENLPA	YTCLREGPDI	APREKAAV	FNGEOFES	PG-FFTTLROAD	HAAAEVALAALYKN	ILLOEVAORVGAPLP	SYTTER-SGLGHLPV	FICTVELAGIITFTG	D PAKNKKOAFKNAASAA	WSA
MgDRB2-1 1	YKNÕLÕEL	AÕRSCFNLPS	YMCIREGPD	HAPRFKAAVN	FNGESFES	PS-FCSTLRQAE	HSAAEVALNALYKN	NLLÕEVSÕRVGASLP	AYTTFR-TGLGHLPV	FTGTVELAGVIFTG	EPAK <mark>NKKQ</mark> AE <mark>KNAAM</mark> AA	WLSI
MgDRB2-2 1	YKNQLQEL	AQRSCFNLPS	YTCIREGPD	HAPRFKAIVO	FNGENFEC	PH-YCSNLRQAP	HSAAEAALASIYKN	NLLQEIAQRVGSPLP	RYTTFR-SGLGHLPV	FTGTVELAGIVFKG	EPAKNKKQAEKNAALAS	WLSI
AcDRB2 1	YKNQLQEL	AORSCENLP	YTCIREGPO	HAPRFKATV	NENGEVEES		HSAAEVALNSLYKN	NLLQEVSQRVGAALP	QYTTLR-SGLGHFPV	FTCTVDLAGITFTG	HPAKNKKQAEKNAAMAA	WASI
BrDRB2-2 1	YKNOLOEL	AORSCENLPS	TCIREGPDI	HAPRFKATVN	IFNGETFES	PH-YCSTIROAD	HSAAEVALGALYK	NLLOEIAORVGAPLP	RVTTFR-SGLGHOPV	FIGTVELAGIIFIG	DOAKNKKOAEKNAAMAA	WSSI
AtDRB2 1	YKNQLQEL	AQRSCENLPS	YTCIREGPD	HAPRFKATV	FNGEIFES	PQ-YCSTLRQAE	HSAAEVALNALYKN	NLLQEIAQRVGAPLP	RYTTFR-SGLGHOPV	FTGTVELAGITFTG	D PAKNKKQAEKNAAMAA	WSSI
ThDRB2 1	YKNQLQEL	AQRSCFNLPS	SYTCIREGPD1	HAPRFKATV <mark>N</mark>	FNGEIFES	PQ – YCSTLRQAE	H <mark>SAAEVAL</mark> NALYKN	NLLQE I AQRVGAPLP	RYTTFR-SGLGHQPV	FTGTVELAGITFTG	DPAK <mark>NKKQAE</mark> KNAA <mark>M</mark> AA	WSSL
BrDRB2-1 1	YKNQLQEL	AQRSCFCLPS	YTCI REGPDI	IAPRFKATV	NFNGEIFES		HSAAEVALGALYKN	NLLQEIAQRVGAPLP	RYTHFR-SCLCHOPV	FTGTVELAGITFTG	DPAKNKKOAEKNAAMAA	WSSI
PVDRB2-2 1	YKNOLOEL	AORSCENTES	TCIREGPD	HAPRFKATV	VENGETFES	PH-YCSTIROAD	HSAAEVALNALYK	VILLOE TAORVGAPLP	UVTTVR-SGLGHLPV	FIGIVELAGIIFIG		WSAU
PvDRB2-1 1	YKNQLQEL	AQRSCFNLPS	YTCIREGPD	HAPRFKATV	FNGEIFES	PQ-YCSTLRQAE	HSAAEVALNSLYKN	NLLQEIAQRVGAPLP	QYFTFR-SGLGHLPV	FTGTVELAGIMFTG	EPAKNKKQAEKNAAM AA	WSSI
RcDRB2 1	YKNQLQEL	AQRSCFNLPS	YTCIREGPD1	HAPRFKATV <mark>N</mark>	NFNGEIFEC	PH – YCSTLRQAE	HSAAEVALTSLYKN	NLLQE IAQRVGAPLP	QYTTFR-SGLGHQPV	FTGTVELAGIT FTG	E PAKNKKQAE <mark>KNAAM</mark> AA	WSSI
TCDRB2 1	YKNQLQEL	AQRSCENLPS	YTCIREGPDI	HAPRFKATV	FNGETFES	PH-YCSTLROAD	HSAAEVALQSLYKN	NLLQEIAQRVGAPLP	QYTTFR-SGLGHLPV	FTGTVELAGITFTG	EPAKNKKQAEKNAAMAA	WTSI
SmDRB235-1 1	TKNOLOEL	AORSCENTPA	VSCIREGPD	HAPRFKATV	VENGEVEES	PT-YFSTIRHAD	HAAAEVALSSLYK	VI.I.OETAORAGVPI.P	TYTTVR-SGEGHLPV	FIGIVELAGIAFIG		WSSI
SmDRB235-2 1	YKNOLOEL	AQRSCFNLP4	YSCIREGPDI	HAPRFKAAV	FNGEVFES	PN-YCSTIROAD	HAAAFLALNVLEKN	NLLQETAORANVPLP	TYTTTR-SGPGHLPV	FTCVVEVAGMNFTG	DAGKTKKQAEKNAAMAA	WATI
Pp1DRB235-3 1	YKNQLQEL	AQRSCINLPA	YACIREGPDI	HAPRFKATVS	FNGEIFES	PN – YCNTLRQAE	HAAAEVALNTLCKN	NLLQETAQRAGVSLP	VYSTTR-SGPGHLPV	FTCTVELAKMTFSC	EA <mark>AKTKKQAE</mark> KNAA <mark>M</mark> AA	WSAI
PpDRB235-2 1	YKNQLQEL	AQRSCFNLPA	YACIREGPDI	HAPRFKATV	FNGEVFES	PN-YCNTLROAD	HAAAEVALNTLCKN	NLLQETAQRAGVSLP	VYATTR-SGPGHLPV	FTCTVEVANMSFSG	EAAKTKKQAEKNAAMAA	WSAI
OSDRB35-1 1	YKNOLOEL	AORSCENTPA	VVCTREGPD	HAPRFKATV	TENGETEDIC	PS-NCTTIROAD	HAAAEVALARLYK	NILOETAURAGUSIP	VYANTR-SGPGHEPV	FSSTVELACMSEAG	D PAKTKKIJA EKNAAMAA	WSSI
ZmDRB35-1 1	YKNOLOEL	AORSCESLPS	YVCTREGPDI	APRERAV	FNGETFEG	PS-GCTTLROAD	HAAAEVALARLYKN	NLLQETAHRAGLKLP	AYTTVR-SGPGHSPV	FSSTVELAGLSFAG	DPARTKKQAEKNAAM AA	WSST
AcDRB35-2 1	YKNQLQEL	AQRSCFNLPC	YTCIREGPD1	HAPKFRASVN	NFNGEIFEG	PS-YCTTLRQAE	H <mark>a</mark> aaeval <mark>st</mark> lykn	NLLQESAHRAGLNLP	VYTTER-SGPGHLPV	YISIVELAGMNFTG	E S <mark>artkkqae</mark> knaamaa	WSAI
AcDRB35-1 1	YKNQLQEL	AQRSCFNLPS	YACIREGPDI	HAPRFKATV	FNGENFES	PG-FCTTLRQAD	HSAAEVAL SELYKN	NLLQETAHRAGLNLP	VYTTVR-SGPGHVPV	FHSTVELAGLSFTC	EPAKTKKQAQKNAAIAA	WSVI
FODRB35-1 1	YKNRLUEL	AORSCENTPA	SUSCIREGED	APREKATV	TENGETFES.	PT-FCSTIROAD	HAAAEVALNILIKK	NLLOETAHRAGINIP	AVSTIR-SCPCIER	ESCIVELACKSETC	E DARTKKOAOKNAAMAA	WAA
SiDRB35 1	YKNOLOEL	AORSCENLPS	YACIREGPDI	HAPRFKATV	FNGETFES	PV-FCSTLROAD	HAAAEVALNELYKM	NLLQETAHRAGLKLP	VYTTVR-SGPGHTPV	FTCTVELAGKTFTG	NPGKTKKQAQKNAAMAA	WSEI
OsDRB35-2 1	YKNQLQEL	AQRSCFNLPS	YACIREGPDI	HAPRFKATV	NFNGETFES	PA-FCSTLR <mark>L</mark> AF	H <mark>a</mark> aaeval <mark>ne</mark> lykn	NLLQETAHRAGLKLP	VYTTIR-SGPGHTPV	FTCTVELAGMTFTG	NPG <mark>KTKKQAQ</mark> KNAA <mark>M</mark> AA	WSEL
SbDRB35 1	YKNQLQEL	AQRSCFNLPS	YSCIREGPDI	HAPRFKATV	NFNGEMFES	PA-FCSTLRQAE	HAAAEVALNELYKN	NLLQETAHRAGLKLP	IYTTIR-SGPGHTPV	FTCTVELAGKTFTG	NPGKTKKQAQKNAAMAA	WSDL
2mDRB35-2 I TCDRB35-2 1	YKNQLQEL YKNOLOEI	AORSCENLPS	VACTREGPD	HAPRFKATVN HAPRFKATVN	TENGENFES	PV-FCSTLROAD	HAAAEVALNELYKI	NLLQETAHRAGLKLP	VVTTVR-SGPGHTPV	FACTVELAGKAFTG	NPEKTKKOAOKNAAMAA	WSEL
CsDRB35-1 1	YKNOLOEL	AORSCENLPS	YSCIREGPD	APRFKAAV	FNGETFES	PT-FCSTLROAD	HAAAEVALDVLYKN	NLLQETSHRAGLKLP	VYTTVR-SGPGHGPV	FSCTVELAGVSFTG	EPAKTKKQAOKNAALAA	WSAT
PtDRB35-1 1	YKNÕLÕEL	AÕRSCFNLPS	SYSCIREGED	IAPRFKSTVN	NFNGETFES	PT-FYS <mark>TLR</mark> ĨAF	HAAAEVALNTLYKN	NLLÕETAHRAGLKLP	VYTTIR-SGPGHVPV	FSCNVELAGMSFTG	E SARTKKQAQKNAAMAA	WSAL
TcDRB35-1 1	YKNQLQEL	AQRSCFNLPS	YSCIREGPDI	HAPRFKATVN	NFNGETFES	PT-FCSTLRQAP	HAAAEVAL STLYKN	NLLQETAHRAGLNLP	LYTTVR-SGPGHVPV	FSCTVELGGMSFTG	EPARTKKQAQKNAAMAA	WSAI
PtDRB35-2 1	YKNOLOEL	AORSCENLPS	SYSCIREGPDI VSCIREGPDI	HAPRFKATV	NFNGETFES.	PT-FCSPIRLAD	HAAAEVALNTLYKN	NLLOETAHRAGLKLP	VMTHIR-SCPCHVPV	FSCTVELAGMSFTG	E PARTKKQAQKNAAMAA	WSSI
BrDRB35-1 1	YKNOLOEI	AORSCESLPS	YTCIREGPDI	HAPRFKASV	FNGEIFKS	PT-YCSTIROAD	HAAAEVSLNVLYK	NLLOETAHRAGLDLP	MYTSVR-SCSYNFPA	FSCTVELAGMSFTG	ESAKTKKOAEKNAAIAA	WSS
AtDRB5 1	YKNÕLÕEL	AQRSCENLPS	TCIREGPD	HAPRFKASV	FNGEIFES	PT-YCSTLRQAP	HAAAEVSLNVLYKN	NLLQETAHRAGLDLP	MYTSVR-SGSCHFPG	FSCTVELAGMTFTG	ESAKTKKQAEKNAAIAA	WSSI
ThDRB35-1 1	YKNQLQEL	AQRSCFNLPS	YTCIREGPD	HAPRFKASV	FNGEIFES	PT-YCSTLRQAD	HAAAEVSLNVLYKN	NLLQETAHRAGLDLP	MYTSVR-SGSCHFPA	FSCTVELAGMSFTG	ESAKTKKQAEKNAAIAA	WSSL
BrDRB35-2 1	YKNOLOE	AORSCENTES	MTOTREGEDI	APREKACVN	NENCET ENC		HSAAEVALIALYKN	NLLOSTAHRAGLDLP	VYTSVR-SGPGHIPT	FSCTVELAGMSEIG	E SAKTKKQAEKNAAIAA	WFSI
AtDRB3 1	YKNOLOFT	AORSCESLES	TCTREGED	HAPREKASV	FNGEIFES	PT-YCSTLROAD	HSAAEVALSALYKN	NLLOETAHRAGLDIP	VYTSVR-SGPGHIDT	FSCTVELAGMSENC	ESAKTKKOAEKNAATAA	WFS
BrDRB35-3 1	YKNQLQEL	AQRSCESLPS	TCTREGPDI	HAPRFKACVN	FNGEIFES	PT-YCSTLRQAP	HSAAEVAL SALYKN	NLLQETAHRAGLDLP	VYTSVR-SGPGHVPT	FSCTVELAGMRENG	ESAKTKKQAEKNAAIAA	WFSI
MgDRB35 1	YKNQLQEL	AQRSCFNLPS	YACIREGPD	HAPRFKASV	FNGEIFES	PT-YSTTLRQAE	HSAAEAALNSLYKN	NLLQE TSHRAGLKLP	LYTTVR-SGPGHVPV	FTSTVDLAGMTFTG	ESAKTKKQAE KNAAITA	WSAL
EGDRB35-2 1	YKNQLQEL	AORSCENLPS		APREKACVN	NENGELEES	ES-YCNTLROAD	HAAAEVALNVLYKN	NLLOP TAHRAGLNLP	VYTTVR-SGPGHVPT	FTCTVGIAGMSFTG	E SAKTKKQAEKNAAIAA	WSTI
CsDRB35-2 1	YKNOLOEI	AORSCENTES	TCIREGPD	HAPREKASVA	TENGETFES	PS-YCTTIROAD	HAAAEVALNULYK	NLLOETAHRAGINI P	VYTTVR-SGPGHVPT	FUCTVELAGMNFTG	PAKTKKOAEKNAATAA	WSAT
RcDRB35-2 1	FKNQLQEL	AQRSCFNLPS	YACVREGPD	HAPRFKASV	FNGEIFES	PS-YCTTLROAD	HAAAEVALNVLYKN	NLLQETAHRAGLNLP	VYTTIR-SGPGHVPT	FTCTVELAGMNFTG	E PAKTKKQAEKNAAIAA	WSAI
PtDRB35-4 1	FKNQLQEL	AQRSCFNLPS	YACTREGPD	HAPRFKASV	FNGEIFES	PS-YCTTLRQAE	HAAAEVALNVLYKN	NLLQETAHRAGLNLP	VYTTVR-SGPGHVPV	FICTVELAGMNFTG	EPAKTKKQAE <mark>KNAAI</mark> AA	WSAI
PtDRB35-3 1	FKNQLQEL	AQRSCENLPA	AYACI REGPDI	APRFKASV	FNGEIFES	ES-YCTTLROAD	HAAAEVALNVLYKN	NLLQETAHRAGLNLP	AVTIVR-SGPGHVPV	FUCTVELAGMNFTG	BPAKTKKQAEKNAAIAA	WSAU
ACDRB4A-1 1	YKGOLOUT	AOKRNIST	VISIOTEDICSS	APREKATW	TVDGOCIDIDE	VE-FFRUIKEAS	HAAAKVAESSIVK	NYLOPLITRKEGES TP	NUMUTL-SCASHUDT	ST STVDVEGNTYNG STVDVEIGVVHG	VAARTKKOAEINAAKVA	YFSI
AcDRB4A-2 1	YKSOLONY	AOKRSLISPV	VSCVSEGSP	ALREKAMV	TVDGOTFES	LD-FFRTLKEA	HAAAKAAFSSLHK	NLLOELTAKEGFSIP	VFTTIK-SGASHVPL	FTSSVEVEGDVEHG	VAAKTKKQAEINAAKVA	FLSI
EgDRB4A 1	YKNOLOTE	AOKRNLAUPI	VCSEHEGEP	SREERCOVS	IDERTINT	KE – FYNTTKEAD	HAAAKTALMSMYKS	SLLOFFTOKOGHCLP	VWDTIR-OGESHTEI	EVSTVELEGENEK	O EAKTKKMAETISAAKVA	YTI

AtDRB4B	1	¥КСQL	OAYA	LQHNLE	ΠPV	ANER	EGPPI	HAPRF	RCNVI	ECCQ	TROSS	SE-FF	PIK	SADR	A A K I	VASI	YKNLI	QEIA	KESSI	LLPFY)	A TAT –	SCPS	APTET	STVEF	ACKVES	GEEAK	TKKLAEN	ISAAKVA	FMSI
BrDRB4B	1	YKSQL	0 S Y A	LKQNME	LPV	AAER	QGPA	HAPRF	RCKVI	vccg	TEQSÇ	2E-FC	PITK	A A D H I	AAKV	ATAST	YKNLL	QEIA	OKENSI	LPVY	GUST-	SCPSH	APTET	STVEF	AGNVYR	GEEAK	TKKLAEN	INAAKVA	FMSI
ThDRB4B	1	YKSQL	Q S Y A	LKQNIE	LPV	AAE	QGPA	HAPRF	RCKVI	vceo	TOQGE	SE-FI	мпк	AADHI	AAA K I	ALASI	YKNLI	QEIA	KESSI	LPVY	ALAT-	SCPS	APSEI	STVEF	AGKFFR	GEEAK	TKKLAEN	ISAAKVA	FMSI
CusDRB4A	1	YKNKL	ONFS	KRGLT	ПРM	YTCER	DGPPI	HASRF	RCKVE	IDCK	ТҮрсі	LE-FI	IGINK	DADNA	AVA KV	ALMSI	YKNLI	QEMA	KGCLO	GLPAY	s⊡so_–	SCEVII	VEVEV	STVKVC	GEENFE	CKPSR	TKKQAE	ISAAKVA	YFTI
PtDRB4A-2	1	FKNQL	QTYA	KRNFT	REV	YSCER	VGPPI	HAIRF	KCKVI	VNCQ	TYDSF	RE-YF	PITS	KA⊃NA	A A A K A	ATMST	YKNLL	QDMA	QREGCO	GLPTYI	7 II E K -	SGEAH	APTFI	STVEII	DGVNET	G KEAR	NKKQAEN	ISAAKIA	YTAR
PtDRB4A-1	1	FKSQL	ΟΤΥΑ	KRNFA	ΠPV	YSCER	VGPP	SSRE	KCKVI	VNCQ	TFESI	LE – YF	STIN	KADHI	A A A K A	AT MST	YKNLL	QELA	QREGCO	GLPTY	SINK –	SGEAH	VPTFI	STVEI	EGEIFT	IGQGAK	TKKQAE	ISAAKTA	YTAI
PtDRB4A-3	1	FKNQL	ΟΤΥΑ	KRNFT	LPV	YSCER	VGPP	HASRF	KCKVI	VNCQ	ттрық	2E – YF	PINN	KADL	A A A K A	AT MST	YKSLI	QELA	QREGCO	GLPTY	VIDK-	SGEAH	VPTEV	SKVDII	EGEIFT	IGQG AK	TKKQAE	ISAAKIA	YTAI
TCDRB4A	1	YKNQL	QVFA	RKRNVD	LPV	SCEC	EGPPI	HASRF	RCKVI	FNEQ	TYDSI	E-FF	PIIK	EADHA	AAKI	AT SST	YKNLI	QELT	OKEGCI	PLPVY	FTTR-	SGEAH	ASTEV	SIVEVI	KGNVFT	GQEAK	TKKHAE	LAAKV A	YMKI
PvDRB4A	1	YKNQL	QSFA	OKKNLG	LPV	SSEW	EGPPI	HAMC :	KCKVI	IDCH	TYDSI)K-L3	(STIK	DADH	AADA	AT MST	YKNLL	QELA	<u>OKEGF</u>	DIPIY	SINK-	KCEAH	MPIFV	ѕн <u>үк</u> үі	EGGLFT	GQEAK	SKKQAEN	ISAAKVA	YMAI
CsDRB4A	1	YKNQL	OSYT	KKNLP	LPM	YSCER	EGPPI	HASRF	KCKVI	IDGQ	TYDSI	IQ – F I	PITK	EAEHI	AAKV	ATMSI	YKNVL	QELA	OKEAY	ALPVYI	N KQ –	SGESH	APTEV	STVEV	GGEVFS	GQGAK	SKKQAE	(SAAKVA	YMRI
AcDRB6	1	HKSLI	SoHI	OKSTLP	PPS	ILTT R	EGV	-SGKY	TSTV	VDGV	VYKSS	SE-GE	LRSK	DAÐQI	DAAKV	ALENI	CKSII	NPFA	VKMSLQ	QMPTY:	FNTL-	-SQGI	LPIFI	STCIPFI	IGNTY	GKPGR	NKKEAEF	LAARSA	IESI
CusDRB6	1	YKNHL	нэүт	<u>oka</u> kia	VPV	QTID	DCSPS	SLEKY	RSTV	IVDEV	HYVSI	N - TI	RNR	AA⊃QI	DAARV	AFEYI	CKSIT	SPAT	DKMCLI	ERPIY	гикн–	-NQCS	VAFEQ	SILVFI	DGVVY	SDLGR	TKKEAE	LAARAA	ILSI
CsDRB6-2	1	YKNRL	O Y T	KAGLP	LPT	RSKN	DCFP	IVPRE	WAQVE	VNCK	TYASI	G–RI	THVK	EADQI	DAART	ALEHI	CKSIT	N DYC.	AKINLI	KKPEY:	FTTF-	- CNEK	HPVFI	SSMVFI	NGETYK	GEVAG	SKKMAEQ	LAARAA	IQSI
MgDRB6	1	YKNRL	QYT	HRASMP	LPI	ETFN	DCAQ	: ASK	RSRVV	IVDCV	CETSI	N - TI	SNRK	ASDQI	D A A K H	AT IGT	CKSII	IND YA	VKMNII	DIPSYI	LUNE –	SKELS	VPVEG	SSLNL	GGVTYV	GAAGR	NRKEAEQ	FAARSA	ILSI
EgDRB6	1	YKNRL	QD Y T	<u>o</u> kimvh	FPI	¹ NTIN	ECSQ	HAPRY	RSTVF	VDCK	SFTSI	N - TI	PQKK	EADQI	₹V₽QI	ALELI	CKSIT	ND YA	AKMNLI	EMPNYI	RIIQ-	- PQCA	VPVFA	SSLVFI	NGVTY	GDVGK	SKKEAE	LAARAA	IQSI
PvDRB6-1	1	YKNRL	HЭFA	TREGIA	IPV	QTVS	ECEPI	INPK	RSTV	IVACI	SYTSÇ	∑S-TI	PQKK	AA⊃QI	SRL	ALEIT	CKSII	[Nio Y A	SKLHII	EGPSYI	v v Q Q	QQGGV	LPVFT	TSLVFI	NGTSY	IGD P A R	TKKEAE	SAAHTA	ILSI
PvDRB6-2	1	HKNRL	QEFA	<u>OKCNIA</u>	ΠPV	QTNN	ECQQ	HAPRF	RSKVV	IVDCM	SYISÇ	2S-TF	FSHRK	TAPQI	DAA R L	AMECI	CKSIT	NIC YA	TKLKLI	EGPTYI	K∎VQ-	-QEGL	LPSFI	SSLVFI	NGTSY	GDAAR	NKKDAEQ	LAASAA	ILSI
PtDRB6	1	YKNRL	<u>ODY</u> T	OKSSLQ	LPV	QTLN	EGPAI	HMPRF	RSTV	IVDCA	R Y R SÇ	2K – TF	FLHRK	AA⊐QI	DVAN L	ATESI	CKSIT	NPFA	VKVNRI	ЕКРТҮІ	v∎vQ-	-SPGL	LPVFI	SULVE	DGVSY	GDAGR	NKKEAEQ	LAARAV	ILS
RcDRB6	1	YKNRL	QEYT	QRQSLQ	LPI	QTVN	DCYP	IDPKF	RSTVI	VDCD	EYTSI	IN – TF	FSHRK	EADQI	DV₽KL	AITSI	CKSII	NDYA	VKMQLI	EMPTYI	VK-	QC-CL	FPIFV	SSVFI	NCVTYN	GDIGR	TKKEAEQ	LAARAA	VLSI
CsDRB6-1	1	HKNRL	QEHA	QRSGIP	LPV	QSHN	ECFQ	HAPKF	RASVS	SVDGV	TYTSI	N - TI	FSHRK	AA⊃QI	ΣVΩKΙ	AI ECI	CKSIT	NÞFA	VKMNLI	ELPAY	SIIRQ-	-SEAL	LPVFV	SSLVFI	NGVTYI	GEPGR	SKKEAEQ	LAARAV	IRTI
TCDRB6	1	HKNRL	QEYT	QRSSIP	LPV	QTTN	ECSL	HAPRF	RSTVI	VDCT	SYTSI	D-TI	FSHRK	AA⊃QI	DAAKV	AT DC I	CKSIT	NÞFA	vkmnmi	EMPSYI	NUIQ-	-SEGL	IPLEV	SSLVFI	NDVTYS	GKTGR	NKKEAEQ	LAARAA	LLSI
OsDRB6	1	YKSKL	Õ⊡ A T	QANKQ	LPI	CTKC	KGEHI	QLK	KSTVN	(VDG)D	EFSSI	F-CI	IRRVK	DA⊡QI	DAAKV	AYDTI	CKSIT	НЭΥТ	TKTKTI	DQPEY	SVTK-	-TEGS	VTPYV	SSVSF	АСНТҮЛ	GGA AR	NKKDAEQ	KAARAA	VKSI
SiDRB6	1	HKNRL	QEFA	VRTQKK	LPI	⁷ NVER	ECEY	HPKF	RCTVI	VGCQ	KESSI	rg-si	FSRKK	EADQI	DAARV	AYEIT	CKSIT	YPFA	VKTKTA	ARPSYS	SED	CLKEP	FTMFV	GSVVFI	DGNTY	GESAS	NKKDAQQ	NAARAV	IKSI
SbDRB6	1	HKNRL	QSFA	ERTYKK	PPV	KVES	DCAS	HQP KF	RCTVI	vGGÕ	QISSI	AG-SI	PDRKK	EADQI	DAA R I	AYEI I	CKSIT	NPFA	VKTKT	TWPSYS	SLVYI	EKP – –	LTLA	AIVVFI	DGNSY	IGE SAR	NKKDABQ	NAARAV	IKSI
ZmDRB6	1	YKNRL	0SFA	ERTYKK	TPI	KVES	DCQS	i QP KE	TCTVI	VGDQ	QISSSI	rg-si	FSRKK	EADQI	DAARV	AYEI	CISIT	IDFA	VKTKT	TLPSY	SVVCV	CLKKP	LTLEA	AIVVFI	DGNAYH	ICESAP	NKKDAEQ	NAVARVV	/IKSI

Figure S3

34.7 +/- 1.5	20.1 +/- 1.1	DRB1 monocot
15.2 +/- 0.6	19.8 +/- 1.0	DRB1 dicot
V* (28-59)	23 +/- 1.3	DRB6 monocot
V* (13-77)	18.8 +/- 3.3	DRB6 dicot
1	19.1 +/- 0.3	DRB2-3-5
4	14 +/- 4,7	DRB4B only Brassicaceae

1	23 +/- 3.8	16	DRB4A monocot
1	V* (35-299)	11.9 +/- 0.6	DRB4A dicot (except Brassicaceae)

А

Second DRSM

KR-rich region

PpDRB1	1	1 CHNFICEFROEHSUNGEPLEOMKSVR-OGEEHSLVESSEVETAEVSESECEAKSKKEADUKAARVAATOATOATOPAEPHIAUSE-VDOPGLVANFVKAOOKRK	REGRLHPVVVEEPLATRV
MgDRB1	1	1 CKNLLÖEYAÖKMNYATPÄYECLEEROGKTEMYSCTVEVGGTKYTGASANTKKEAEIKAARTALISISENOTSSNSVYTVVP-KEEKVSDHGIAAOEV-PTPÄVKEF	KKRSLKKKMQQQQWKKKR
AcDRB1	1	1 CKNLLOEYAOKMNYALPSYVCRTHEAPCKKTSYFCTVDIGGIOYICATAPTKKEAELKAARTALLAIOTNTSRAESNPNCSHELTVLP-CKRKGTEPDAE-KET-POPMKE	KKTKEKKSKKORSLONRI
OsDRB1-1	1	1 CKNLLÕEYAÕKMNYATPSYICTE-PASGLAP-FLCTVEIGGIÕYIGAAARTKKDAETKAARTALLAIÕCOSEGSANGATKYIVVP-GKRVGKEVEKRPIET-PÄPLKA	KKGGFKKKWNÄRKFÄKKD
OsDRB1-3	1	1 CKNLLQEYAQKMNYAIPSYICTK-SASGLAP-FICTVEIGGIQYIGAAARTKKDAEIKAARTALLAIQCOSEGSANGATKYIVVP-GKRVGKEVEKMPIET-PKPLKI	KKGGFKKKWNKRKFMKKD
OsDRB1-2	1	1 CKNLLQEYAQKMNYAIPSYICTK-SASGLAP-FICTVEIGGIQYIGAAARTKKDAEIKAARTALLAIQCQSEGSANGATKYIVVP-GKRVGKEVEKRPIET-PKPLKV	KKGGFKKKWNKRKFMKKD
ZmDRB1	1	1 CKNLLOEYAOKMNYAIPSYICTK-OASGVAP-FVCSVEIGGILYIGAAARTKKEAEIKAARTALLAIOSOSEGGANGAKKYIVVP-GORPDKETNKNPTET-PIPLRV	KKRGSRKKWNKRKFRRMA
SiDRB1	1	1 CKNLLQEYAQKMNYAIPSYICTK-QASGVAP-FVCTVEIGGIQYIGAAARTKKEAEIKAARTALLAIQGQSEGCGNGATKYIVVP-GQREVKETDKKPTET-PKSLKV	KKSGGRKKWNKRKFMRKT
SbDRB1-1	1	1 CKNLLQEYAQKMNYAIPSYICTK-QASG-P-FICSVEIGGILYIGAAARTKKGAEIKAARTALLAIQCQSEIVANGVKNYIVVP-GQRPIKETDKKPIGE-PKPLKV	KKRGSKRKWNKRKFMGMA
SbDRB1-2	1	1 CKNLLQEYAQKMNYAIPSYICTK-QASGVAP-FICTVEIGGIQYIGAAARTKKEAEIKAARTALLAIQGQSEGCANGAKKYIVVP-GQRPVKETDKKPTET-PKPLKV	KKRGSKRKWNKKKLVGMA
ThDRB1	1	1 CKNLLQEYAQKMNYAIPLYQCQKCETPGRGINFTCTVEIGGIKYTGATTKTKRDAEISAGRTALIAIQLESENNLFSCNTQLTVLP-CEKKTLGAGSPVKET-IKSPKA	RRAQFKRKAPKGKRRVAK
AtDRB1	1	1 CKNLLQEYAQKMNYAIPLYQCQKVETLGRVTQFTCTVEIGGIKYTGAATRTKKDAEISAGRTALLAIQSDTKNNLANYNTQLTVLP-CEKKTIQAAIPLKET-VKTLKA	RKAQFKKKAQKGKRTVAK
BrDRB1-1	1	1 CKNLLQEYAQKMNYAIPLYQCQRSETLGRAPQFTCTVEIGGIKYTGAATKTKKEAEISAGRTALIAIQSES-KMDLANNYSTQLTVIP-CEKKTVEVASPVKETIIKTPKA	RRAQFKKKARKGKLKVAK
BrDRB1-2	1	1 CKNLLQEYAQKMNYAIPLYQCQKSETTGRAPKFTCTVEIGGIKYTGAATKTKREAEISAGRTAHIAIQSES-KIDLANNHSTQLTVLP-CEKKTVEVASPVKET-IKTPKA	RRAQFKRKAKKGKRKAAG
CusDRB1	1	1 CKNLLQEYAQKMNFAIPLYQCQKDDGPGRGSLFSCTVEIGGIRVTGAVAKTKKEAEIKAARTALLAIQSCPNSLSEKSVNQVQLTVIPSCKRKEAADCSVKPKS-TASPRA	KKGRFKRFKRGVLRNR
PvDRB1	1	1 CKNLLQEYAQKMNYAMPMYQCKKDETPGRASVFSCTVDIGGILYICGAAKTKKEAEIKAARTALLAIQSSATHASQNQVGHPKLTVLP-CRKRVAESVSIADEN-SNTPKF	KKARFKRKSSKRKNPRDK
CsDRB1	1	1 CKNLLQEYAQKMNYATPLYQCRKDEASGKVQ-FSCTVEIGDIRYIGGAAKTKKEAEIKAARTALLAIQSSASELSGNSAGNTQLTVLP-SRKRGPEVANNPEET-VNVPKA	KKGRFKKKILKMKRPGGR
RcDRB1	1	1 CKNLLQEYAQKMNYAIPLYLCQKNESPGRGTLFKCTVEIGGIHYIGASAKTKKEAEIKAARTALLAIQLSASESSHNSIGNCQLTVIP-FRKRGAETAAVLEEA-MNVPKA	KKARFRKKTLKKKHSGNK
TCDRB1	1	1 CKNLLQEYAQKMNYAIPVYQCLKDEAPGRCPHFSCTVEIGGIRYIGAAARTKKEAEIKAARTALLAIQSSTLELSNKVVGNSQLTVIP-CRKRAMETASNPEEA-VNVPKA	KKTRFKKKMLKAKLSGNS
PtDRB1-1	1	1 CKNLLQEYAQKMNYAIPLYEQQKDETPGRGLVFKCTVEIGGIRYIGASTKTKKEAEIKAARTALLAIQSSGSDKQSGSSQLTVIP-CRKRGVEASFQ-EEA-ENVP-KP	KKARFKKKMLKKKLSRDR
PtDRB1-2	1	1 GKNILQEYAQKMNYATPLYEGQKDETPGRGLVEKGYVELGGHRYLGASAKYKKEAELKAARYALLAIQSSGSDKPSGNSQLYVIP-CRKRGVETSVQ-EEM-ANIP-K	KKARFKKKRLKNKLSGDR

В

KR-rich region

PvDRB6-1	1	VOGWFPOVKNLRYOSKNYSLRPPRDOMCTYPDLOLLLFMVVOV
AcDRB6	1	ĒTEMLDOOPCADOĒRTASSSGTKRGMINEKNTOVELPUDGCŠRVOAL
CusDRB6	1	EEPVGYHATIGSKRKSKNURKARKKLCMENRVADETSOTAAPCSVAR
OsDRB6	1	VRPAAEPASNPSEQAV-HVSKKHKDNKVRGPEVKEERVAQ
SiDRB6	1	IVPAVGTSANPSAKAVSGSKKRKGRVGGADVNGEMVAKEH
SbDRB6	1	AVPAVGTSANPSSANVGHSKSKKRKGRV
ZmDRB6	1	VVPAVGTSVNPSSANVSRSKKRKGRVEGAGGNDEWVAKGH
TcDRB6	1	VPTAVAESLPVGESSSRKRRKKKRAKLDTEUQ
EgDRB6	1	VPSSTEQQPIAATNPGKKRRKN
CsDRB6-1	1	VPEVLEOH SEGESSSTNKRKKNKRKANKKLREDAQPCVSAQPLTQVPPCSVAQ
PtDRB6	1	LHPVSEOPLVVDFGSSSAKKRRKNKKKDNKETDTOFPTDAIPLNOASPCSVAO
RcDRB6	1	VHPVSGOSVDVALESGKKRRKNKKKPNKKLRSESO

ZmDRB6-2	1	CKSILIEFAVKTKTTLPSVSVVCVCLKKPLTLFAAIVVFDGNAYHGESAPNKKDAEQNAARVVIKSI
OSDRB6 - 2	1	CKSILHEYTTKTKTDOPEYSVTKTEGSVTPYVSSVSFAGHTYTGGAARNKKDAEQKAARAAVKSL CKSILNEYMUKMNIDI DSVIUNE-SKEISVDVECSSINICCVTVVCAACPNPKEAFOFAADSALIST
CusDRB6-2	1	CKSILSEYTDKMGLERPIYTTKHNQGSVAFFQSTLVFDGVVYTSDLGRTKKEAEQLAARAAILSI
PvDRB6-12	1	CKSIINEYASKLHIEGPSYNTVQQQQGGVLPVFTTSLVFNGTSYTGDPARTKKEAEQSAAHTAILSI
PvDRB6-22	1	CKSILNEYATKLKLEGPTVKTVQQEGLLPSFISSLVFNGTSYTGDAARNKKDAEQLAASAAILSI
CSDRB6-22	1 1	CKSTLINGYCAKINLKKDEYTTTFGNEKHDVFISSMVFNGETYKGEVAGSKKMABOLAARAATOSI CKSTLINGYAVKMOLEMDTVNWVK-OG-GLEDTEVSSSVFNGVTYNGDTGRWKKEABOLAARAAVLSI
EgDRB6-2	1	CKSILNEYAAKMNLEMPNYRTIQPQGAVPVFASSLVFNGVTYTGDVGKSKKEAEQLAARAAIQSL
CsDRB6-12	1	CKSILNEFAVKMNLELPAYSTRQSEALLPVFVSSLVFNGVTYTGEPGRSKKEAEQLAARAVIRTL
ZmDRB4A-1	1	YKSRLOBLCOKRRWAPPLWEPTR-BGPAHAPLFRATVVVNGERFSSRDEGEKSLKEAYNLAAMAAFDNL YKSRLOBLCOCRRWAPPLWEPTR-CACDAHAPLFRATVVVNGERFSSRDEGEKSLKEAYNLAAMAAFDNL
CusDRB4A-1	1	FKTKLOPLCHRKSYKIPEWSVVK – OGODHDPREEAWVTVDGKOPCSPT – PSKSSKOAONDAAKLAFDFF
CsDRB4A-1	1	YKTKLQELCHQRVWNLPVYTTAK-QGLDHNPRFQATVTVNDQSFTTPD-LYKSSKEAQNDAARIAFQHF
MgDRB4A-1	1	NKSKLQEFCQRRNWELPEYTIVK – VGPDHMARFTAVVNVNGHRFETPE – PCKSAKDAONTAARIAFNHF
FVDRB4A-1	1 1	YKTKVOHLCORKSWTTPDDYNTTR-BOPDHDPRFISTVTVNGVSNETPS-ATRNAKSAONDAAMLAFLHF YKSKLOBLCHHRSWSDPEVAAVK-BOPDHMPSFTGTVSLNGSSBRTPH-ACRSSKEAONEAARLAFDHF
ZmDRB6-1	1	YKNRLQSFAERTYKKTPIYKVES-EGQSHQPKFTCTVEVGDQQFSSTG-SFSRKKEAEQDAARVAYEIL
OsDRB35-11	1	YKNQLQELAQRSCFSLPSYVCTR-EGPDHAPRFKATVTFNGETFDGPS-NCTTLRQAEHAAAEVALARL
ZMDRB35-11 OSDRB2-1	1 1	Y KNOLOBILAORS CF SILPSYVCTR – BGPDHAPRFRAAVTFNGE THE GPS – GCTHL ROABHAAAE VALARI Y KNOLOBILAORS CF NI. DAVTCIR – EGPDHADREKAAVNFNGE OBESPG – FF THI ROABHAAAE VALAAI
ZmDRB2-1	1	YKNQLQELAQRSCFNLPSYTCLR-EGPDHAPRFKAAVNFNGEQFESPG-FFSTLRQAEHAAAEVALAAL
MgDRB2-21	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKAIVCFNGENFECPH-YCSNLRQAEHSAAEAALASI
CSDRB35-11	1	YKNOLOBIAORSCFNLPSYSCIR-BGPDHAPRFKAAVNFNGETFESPT-FCSTLROABHAAAEVALDVL YKNOLOBIAORSCFNLPSYSCIR-BGPDHAPPFKAWVNFNGETFESPT-FCSULPOABHSAAFAALTTT
PVDRB35-11	1	YKNDIGHLAGRSCFNHESNSCIR – BGPDHAPREKAEVNFNGETESPT – FCSHLROABHAMAEVAUNTH YKNRI-OBLAORSCFNHEAWSCIR – BGPDHAPREKAEVNFNGETESPT – FCSHLROABHAMAEVAUNTH
OsDRB35-21	1	YKNQLQELAQRSCFNLPSYACIR-EGPDHAPRFKATVNFNGETFESPA-FCSTLRLAEHAAAEVALNEL
ZmDRB35-21	1	Y KNOLOELAORSCFNLPSYSCIR – EGPDHAPRFKATVNFNGEMFESPV – FCSTLROAEHAAAEVALNEL
Madresser 1	1 1	Y KNOLOBILAORS CFNILPSYSCIR – BOPDHAPRFKATVNFNGETHESPA – FCSHLROABHAAAEVALNTI Y KNOLOBILAORS CFNILPSYACIR – BOPDHAPRFKASVNFNGETBESPT – Y STULROABHSAAEAALNSI
RcDRB35-21	ī	FKNQLQELAQRSCFNLPSYACVR-EGPDHAPRFKASVNFNGEIFESPS-YCTTLRQAEHAAAEVALNVL
AtDRB5-1	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKASVNFNGEIFESPT-YCSTLRQAEHAAAEVSLNVL
EgDRB35-21	1	YKNOLOBIAORSCFNLPSVACIR – EGPDHAPREKACVNFNGEIFESPS – YCNTLROABHAAAEVALNVL YKNOLOBIAORSCENTPSVECIR – EGPDHAPREKACVNFNGEIFESPS – YCNTLROABHAAAEVALNVL
MgDRB2-11	1	Y KNOLOBLA ORSCENNESSMECTR – BOPDHAP KNRASVNENGETNESPS – TCTTL KOABHAAAE VALN VI Y KNOLOBLA ORSCENLESSMECTR – BOPDHAPREKA AVNENGESBESPS – FCSEL ROABH SAAE VALN AU
EgDRB2-1	1	YKNQLQELAQRSCFNLPSYACIR-EGPDHAPRFKAVVNFNGESFESPS-YCSTLRQAEHSAAEVALHSL
AtDRB3-1	1	YKNQLQELAQRSCFSLPSYTCTR-EGPDHAPRFKASVNFNGEIFESPT-YCSTLRQAEHSAAEVALSAL
RCDRB2-1 PvDRB2-11	1 1	Y KNOLOBILAORS OF NILPSYTCIR – BEPDHAPRFKATVNFNEEIFE OPH – Y OSTILROABH SAAE VALTSI. Y KNOLOBILAORS OF NILPSYTCIR – BEPDHAPRFKATVNFNEEIFE SPO – Y OSTILROA BH SAAE VALTSI.
CusDRB2-1	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKATVNFNGEIFECPQ-YCSTLRQAEHSAAEVALNAL
AtDRB2-1	1	YKNQLQELAQRSCFNLPSYTCIR-EGPDHAPRFKATVNFNGEIFESPQ-YCSTLRQAEHSAAEVALNAL
CSDRB2 - 1	1	Y KNOLOBLA ORSCENLPSYTCIR – BOPDHAPREKATYNENGEIRESPH – Y CSULROABH SAAEVALSSL Y KNOLOBLA ORSCENL DSYTCIR – BOPDHA DREK ATWNENGEIRESPH – Y CSULROA BH SAAEVALNSL
OSDRB4A-2	1	YKSQLQIYAQKKKLLPSYQTIR – EGPGHASRFKSVVTVDGKAFESPE – YFHTVKEAESAAAKLALMSL
ZmDRB4A-2	1	YKSQLQIYAQKRGKLLPSYRPIH-GGSLHAPLFKSEVTIDGQTFESPE-YCHTMKEAETVAAKVALMSL
MgDRB4A-2	1	YKNQLQQYGQKQNIGFPVYSSES-EGPPHSRRFRSRVSLNGKSYETVE-FFPTLKEAEQAAAKVACQEL YKCOLQAYDI OHNIRL DYYANEB, BCDDHADDER CNWRECCORDOSSE, BEDRIKSAEHAAAKVACQEL
$E \sigma D R B 4 A - 2$	1	YNGOLOTFAOKRNLALPIWCSEH-BGPPHAPKNRCNVIFCGOINOSSE-FFFPHLNSABHAAAKIAVASH YKNOLOTFAOKRNLALPIWCSEH-BGPPHSRRFRCOVSIDGRTYETKE-FYNWLKEABHAAAKIAVASH
CusDRB4A-2	1	YKN <mark>ŘLÔNFSÔKRGLTLPMYTCER – DGPPHASRFRCŘVEIDG</mark> KTYESLE – FHGTLKDAENAVAKVALMSL
PvDRB4A-2	1	YKNQLQSFAQKKNLGLPVYSSEW-EGPPHAMCFKCKVTIDGHTYESDK-LYSTLKDAEHAAAEAALMSL
CSDRB4A-2	1	Y KNOLOSY TOKKNL PI PMYSCER – DGPPHASRFKCKVT I DGOTYESHO – FFPULKEADHEAAKVALMSI YKSKLODYLOOANKOLDIYCUKC – KGEHHOLKEKSUVMYDGEEDSSTE – CHRRYKDAEODAAKVAYDTI
EgDRB6-1	i	YKNRLQEYTQKIMVHFPIYNTIN-EGSQHAPRYRSTVFVDGKSFTSPN-TFPQKKEAEQNVAQIALELL
CsDRB6-21	1	YKNRLQEYTQKAGLPLPTYRSKN-EGFPHVPKFWAQVEVNGKTYASTG-RFTHVKEAEQDAARTALEHI
PvDRB6-11	1	YKNRLH©FATRSGIAIPVYQTVS-©GEPHNPKFRSTVWVAGISYTSQS-TFPQKKAA©QEASRLALEIT YKNPLOOYTHPASMPLDIVETEN-CAOHASKEPSDWWVDCVCETSDN-TESNPKASEODAAKHAIICH
PvDRB6-21	1	HKNRLOEFAOKCNIAL PVYOTNN – EGOOHAPRERSKVWVDGWSYISOS – TESHRKTAEODAARLAMECL
RCDRB6-1	1	YKNRLQEYTQRQSLQLPIYQTVN-EGYPHDPKFRSTVLVDGEEYTSHN-TFSHRKEAEQDVAKLALTSI
CsDRB6-11	1	H <u>KNRLO</u> EHAORSGIPLPVVQSHN-EGFQHAPKERASVSVDGVTYTSPN-TFSHRKAAEODVAKIALECI
EgDRB1-1	1	FKSRI-ODYAHKTGLPTPLWEWIK-DGALHESOFRSWVTVNGVKYNSLP-GFCNRKAABOOAARVAFEIT
ZmDRB1-1	1	FKSRLQEYAQRVGIPTPEYHTLK-EGPSHEPVFKSTVFVNNTKYESLP-GFFSRKAAEQSAAEVALMEI
OsDRB1-11	1	FKSRLQEYAQKAGLQTPEYHTSK-EGPSHEPVFKSTVVINNTSYGSLP-GFSNRKAAEQSAAEVALMEI
OSDRB1-21	1 1	FKSRLOEVAOKAGLOTPEYHTFK-EGPSHEPVFKSTVVINNTSYDSLP-GFFNRKAAEOSAAEVALMEI FKSRLOEVAOKAGLOTDEVHTFK-EGPSHEDVEKSTVVINNTSYDSLP-GFFNRKAAEOSAAEVALMEI
AtDRB1-1	ī	FKSRLQEYAQKYKLPTPVYEIVK-EGPSHKSLFQSTVILDGVRYNSLP-GFFNRKAAEQSAAEVALREL
MgDRB1-1	1	FKSRLQEFSQKAGFTSPVYETIK-EGRSHEPSFKSTVIVNNVRYDSLP-GFFNRKTAEQSAAEVALMKL
KCDRB1-1	⊥ 1	FKIS REQEYAQKKGLPTEVMENTK – EGENSERSENSENSEN SEVITVNDIRYDSLP – GFFNRKAAEQSAAEVALMEE FKIS REGENA OKVGLPTEVVENTK – EGENSERDTEH SEVITVNDVRVDSLD – GFSNRKAAEQSAAFVALMEE
CsDRB1-1	1	FKSRLQEYAQKAGIPTPVYETIK-EGPSHEPWERSTVIVDDVRIDSLP-GFFNRKAAEOSAAEVAUVEL
PvDRB1-1	1	FKSRLQEYAQKAGLPTPVYETVK-EGPSHEPSFRSTVIVNDVRYDSLP-GFSNRKAAEQSAAEVALVEL
EgDRB1-2	1	CKNLIQHYVQKLSYVIPRWKCPKDBASRRAPLFSCTVEVGGICYTGDT - ARTKKQABIQAARTALLAV
AtDRB1-2	1 1	CNNLLOBYAOKMNYAIPLYACCOKVETLGRVTOFTCWVEIGGIKYTGAATRWKKDAFISAGRTAULAI
OsDRB1-22	1	CKNLLQEYAQKMNYAIPSYICTK-SASGLAP-FICTVEIGGIQYIGAAARTKKDAEIKAARTALLAI
OSDRB1-32	1	CKNLIQEYAQKMNYAIPSYICTK-SASGLAP-FICTVEIGGIQYIGAA-ARTKKDAEIKAARTALLAI
USDRB1-12 ZmDRB1-2	1 1	CANELO BIAGAMANIALISMICTA - PASGLAR - FILONVEIGGIQYIGAA - AKHKKUATSIKAARTATLAI CKNLLOBYAOKMNYA IPSVICTA - OASGVAD - BVCSVEIGGILVIGAA - ARHKKEABIKAARTATLAI
PvDRB1-2	1	CKNLLQEYAQKMNYAMPMYQCKKDETPGRASVFSCTVDIGGILYIGGAAKTKKEAEIKAARTALLAI
CsDRB1-2	1	CKNLLQEYAQKMNYAIPLYQCRK-DEASGKVQFSCTVEIGDIRYIGGAAKTKKEAEIKAARTALLAI
KCDKB1-2	т	CKNLINGSYAYKMNYA IPLMLCQKNESPGRGTLFKCNVEIGGIHYIGAS – AKWKKEANSIKAARTAWLAI

CusDRB1-2	1	CKNLIQEYAQKMNFAIPLYQCQKDDGPGRGSLFSCTVEIGGIRYIGAVAKIKKEAFIKAARTALAI
OsDRB4A-3	1	YKNLLQELAQKHGFSLPVYSTTS-DGSVQVPMFKSTVVFQDGSFQGEP-ANTKKQAEMNAARVAFQHF
ZmDRB4A-3	1	YKNLLQELVQKEGFPLPIYNTAS-DVSNYSAAFVSTVEIHGVTFHGKPGNTKKQAEMNAAKSAFEHF
MgDRB4A-3	1	HKNLLQEFAQRKGLLCPSYETTS-SGMSHRPSFVSTVEVGSNTYTGAEAKTKKLAEMNAAKVAYCAL
MgDRB2-12	1	YKNLLQEVSQRVGASLPAYTTFR-TGLGHLPVFTGTVELAGVIFTGEPAKNKKQAEKNAAMAAWLSL
MgDRB2-22	1	YKNLLQEIAQRVGSPLPRYTTFR-SGLGHLPVFTGTVELAGIVFKGEPAKNKKQAEKNAALASWLSL
Osdrb2-2	1	YKNLLQEVAQRVGAPLPSYTTER-SGLGHLPVFTCTVELAGITFTGDPAKNKKQAEKNAASAAWSSL
ZmDRB2 - 2	1	YKNLLQEVAQRVGAPLPLYTTER-SGVGHLPVFTCTVELAGITFTGDHAKNKKQAEKNAASAAWSAL
EgDRB2-2	1	YKNLLQEIAQRVGAPLPHYSTFR-SGLGHLPVFTGTVELAGIIFTGVPAKTKKQAEKNAAMAAWSSL
CsDRB2-2	1	YKNLLQEIAQRVGAPLPQYTTIR-SGLGHLPVFTGIVELAGIAFTGEPAKNKKQAEKNAAMAAWTSL
PvDRB2-22	1	YKNLLQEIAQRVGAPLPHYTTYR-SGLGHLPVFTGIVELAGISFTGEP-AKNKKQAEKNAAMAAWSAL
CusDRB2-2	1	YKNLLQEIAQRVGAPLPQYTTFR-SGLGHLPVFTGIVELAGITFTGEPAKNKKQAEKNAAMAAWSAL
PvDRB2-12	1	YKNLLQEIAQRVGAPLPQYFTFR-SGLGHLPVFTGTVELAGIMFTGEPAKNKKQAEKNAAMAAWSSL
AtDRB2-2	1	YKNLLQEIAQRVGAPLPRYTTFR-SGLGHQPVFTGTVELAGITFTGDPAKNKKQAEKNAAMAAWSSL
RcDRB2-2	1	YKNLLQEIAQRVGAPLPQYTTFR-SGLGHQPVFTGTVELAGITFTGEPAKNKKQAEKNAAMAAWSSL
AtDRB5-2	1	YKNLLQETAHRAGLDLPMYTSVR-SGSCHFPGFSCTVELAGMTFTGES-AKTKKQAEKNAAIAAWSSL
AtDRB3-2	1	YKNLLQETAHRAGLDLPVYTSVR-SGPGHIPTFSCTVELAGMSFNGES-AKTKKQAEKNAAIAAWFSL
MgDRB35-2	1	YKNLLQETSHRAGLKLPLYTTVR-SGPGHVPVFTSTVDLAGMTFTGESAKTKKQAEKNAAITAWSAL
PvDRB35-2	1	YKNLLQETAHRAGLNLPVYTTIR-SGPGHGPNFSCTVEIAGKHFTGDPARTKKQAQKNAAMAAWAAL
EgDRB35-12	1	YKNLLQETAHRAGLNRPAYSTIR-SGPGQLPGFSCTVELAGKSFTGEPARTKKQAQKNAAMAAWSAL
ZmDRB35-22	1	YKNLLQETAHRAGLKLPIYTTIR-SGPGHTPVFACTVELAGKAFTGNPGKTKKQAQKNAAMAAWSEL
OsDRB35-22	1	YKNLLQETAHRAGLKLPVYTTIR-SGPGHTPVFTCTVELAGMTFTGNPGKTKKQAQKNAAMAAWSEL
ZmDRB35-12	1	YKNLLQETAHRAGLKLPAYTTVR-SGPGHSPVFSSTVELAGLSFAGDPARTKKQAEKNAAMAAWSSL
OsDRB35-12	1	YKNLLQETAHRAGLKLPVYTTVR-SGPGHSPVFSSTVELAGMSFAGDPAKTKKHAEKNAAMAAWSSL
RcDRB35-12	1	<u>YKNLLQETAHRAGLKLPVYTTVR-SGPGHVPVFSCTVELAGMSFTGEP-ARTKKQAQKNAAMAAWSAL</u>
CsDRB35 - 12	1	YKNLLQETSHRAGLKLPVYTTVR-SGPGHGPVFSCTVELAGVSFTGEP-AKTKKQAQKNAALAAWSAL
EgDRB35-22	1	YKNLLQETAHRAGLNLPVYTTVR-SGPGHVPTFTCTVGIAGMSFTGESAKTKKQAEKNAAIAAWSTL
CsDRB35-22	1	YKNLLQETAHRAGLNLPVYTTVR-SGPGHVPIFTCTVELAGMNFTGEPAKKKQAEKNAAIAAWSAL
RcDRB35-22	1	YKNLLQETAHRAGLNLPVYTTIR-SGPGHVPTFTCTVELAGMNFTGEPAKKKQAEKNAAIAAWSAL
EgDRB4A-3	1	YKSLLQEFTQKQGHCLPVYDTIR-QGESHTPIFVSTVEIEGENFKGQEAKKKMAETSAAKVAYTIL
CusDRB4A-3	1	YKNLLQEMAQKGGLGLPAYSTSQ-SGEVHVPVFVSTVKVGEENFEGKP-SRTKKQAEMSAAKVAYFTI
AtDRB4B-2	1	YKNLLQEIAQKESSLLPFYATAT-SGPSHAPTFTSTVEFAGKVFSGEEAKTKKLAEMSAAKVAFMSI
CsDRB4A-3	1	YKNVLQELAQKEAYAL PVYNTKQ-SGESHAPTFVSTVEVGGEVFSGQG-AKSKKQAEMSAAKVAYMRL
PvDRB4A-3	1	YKNLLQELAQKEGFQLPIYSTNK-KGEAHMPIFVSHVKVEGGLFTGQEAKSKKQAEMSAAKVAYMAL

BdDCL4-2	1	AKSFLFELCAASYMKPPEFQLCIEEGPSHLRRFTYKVIVQI-RGPSETLLECYSDAKLQKKAAQEHAAQGALWYL
ZmDCL4-2	1	<u>ARSFLYELCAANYWKPPEFELCNDEGPSHLRKFTCKVLIEI-TGTSVSLLECYSDPKLOKRAAOEHAAEGALWYL</u>
SiDCL4-2	1	ARSFLYELCAANYWKPPEFELCKDEGPSHLRKFTCKVLVQI-MGPSATLLECYSDPKLQKKAAQEHAAQGALWCL
SbDCL4-2	1	ARSFLYELCAANYWKPPDFELCKGEGPSHLRKFTCKVLTQI-TGTSATLLECYSDPKLQKKAAHEHAAEGALWYL
AtDRB7-2	1	AKSQLYNLCSVRHWKAPLYEY-IAEGPCHMKIFTGKVTVEMKEDSRITVLECFGNPQYKKKIAAEQAAEAALWYL
BrDRB7-2	1	<u>AREQLYKLCGVRHWKAPLYTFFNQDGPDNTKLFKVEVSVEIKEASGITVLECFGDPHNKKKIAAEQAAEVALWFL</u>
CusDRB7	1	AKSLLFEICTANHWQPPLFECCEEEGPSHAKKYRFKVRIEM-KGDCEAVVECYGNLQTRKKVAAEHAAEGALWYL
AtDCL4-2	1	AKSLLHETCVANCWKPPHFECCEEEGPGHLKSFVYKVILEV-EDAPNMTLECYGEARATKKGAAEHAAQAAIWCL
BrDCL4-2	1	AKSLLRETCVANCWKTPEFVCC-EEGPAHLKTFSYKVILEV-VDAPNMTLECYGEAKPTKKSASEQAAQAALWCL
CusDCL4-2	1	ARSRLYEVCAANHWNRPSFDCMNEEGPSHLKMFTYKVVLEI-EEAPDTIFEFFGAPHLKKKAAAEHAAEAALWYL
PrpDCL4-2	1	ARARLYEICAANYWEPPLFECCNEEGPSHLKLFTFKVVVKI-EEAPDMILECFGSPHGNKKAAAEHAAEGALWYL
PtDCL4-2	1	ARSRLREICAANSWKPPSFECCTEEGPSHLKSFTYKVVVEI-EEAPEMSFECVGSPQMKKKAAAEDAAEGALWYL
RCDCL4-2	1	AKSRLHDICAANCWKPPLFECCYEEGPSHLKSFSYKVIVEI-EAAPDMILECFGAPREKKKAAAEHAAEGALWYL
AtDRB7-1	1	AKSVLHEMCASKRWRPPVYECCNVDGPCHLRLFTYKVMVEIRDSSGKTVLECFGDPRRKKKAAAEHAAEGALWYL
BrDRB7-1	1	AKSLL <mark>HEMCISKRWKPPVYD</mark> CCNVDGPCHMRLFTYKVVVEIRDSSGTTVLECFGDPKHKKKAAAEHAAEGALWYL
PtDRB7	1	AKSQLLETLAANKWKPPLFECFKEEGP <mark>CHKKL</mark> FTYKV <mark>AIRI-EGEAST</mark> VLECFGYPKPTKKAAAEHAAEGALWYL
RcDRB7	1	AKS <u>OLHEICVANNWKPPLYECCKEEGPCHORLFTFKVIVEM-IGAEYIVLECYGI</u> PKIKKKTAAEHAAEGALWYL
PrpDRB7	1	ARSOLYEICVGKKWKLPLYECCKEEGPPHMRKFTYKVIVEI-EETEKTVLECFGAPHSKKKSAAEHAAEAALWYL
BdDRB7	1	ARAKLNDFCSAIGWKYPKYDF-AEQGPNKN-LFTCKATVHV-DAITDTIVECFSESKPQKKAAREQAAQGILWCL
SiDRB7-1	1	<u>ARLRLPKICAAIGWKEPSFDF-EEQGPPHNKLFICKVTVHL-EGLVNTVMECFSDPKPKKKAAQDHAAQAALWCL</u>
SiDRB7-2	1	ARLRLPKICAAIGWKEPSFDF-EEQGPPHNKLFICKVTVHL-EGLVNTVMECFGDPKPKKKAAQDHAAQAALWCL
Sb0DRB7	1	ASLRELKICKVIGWKEPQFDF-EEQGPQHNKTFKCKVTVHL-DGLLNTIMECFSKPNPRKKAARENAAQGALWCL
ZmDRB7	1	ASSRLPKICKAGWKEPSFDF-EEQGPPHNRIFTCKVTVHL-DGLVNTIMECFSDPKPKKKAARENAAQGALWCL

Figure S7

DIC

Merge

Α

YFP

AtDCL4-YFP^N + AtDRB7.2-YFP^c

AtDCL4-YFP^c + AtDRB7.2-YFP^N

С

YFP

Merge

DIC

А

D

Table S1: Sequence of the proteins used in this study. Species codes are as in Figure 2 and 4

>AtDRB1

MTSTDVSSGVSNCYVFKSRLQEYAQKYKLPTPVYEIVKEGPSHKSLFQSTVILDGVRYNSLPGFFNRKAAEQSAAEV ALRELAKSSELSQCVSQPVHETGLCKNLLQEYAQKMNYAIPLYQCQKVETLGRVTQFTCTVEIGGIKYTGAATRTKK DAEISAGRTALLAIQSDTKNNLANYNTQLTVLPCEKKTIQAAIPLKETVKTLKARKAQFKKKAQKGKRTVAKNPED IIIPPQPTDHCQNDQSEKIETTPNLEPSSCMNGLKEAAFGSVETEKIETTPNLEPPSCMNGLKEAAFGSVETEKIETT PNLEPPSCMNGLKEAAFGSVETEKIETTPNLEPSSCMNGLKEAAFGSVETEKIETTPNLEPPSCMNGLKEAAFGSVE TEKIETTPNLESSSCMSGLKEAAFGSVETEASHA

>PpDRB1

MPVPLSQRASEKIDFAMYKSQLQEYAQKQGLMSPSYEYVKEGASHEPRFKSTVWVNGRGYESAPGYPTLRSAEHA AAKAALDFLQKTQFKVVPVHESGLCKNLLQEFAQKHGYPLPQYKSVRQGEEHSLVFSSTVEIAGVSYSGGCAKSKKE AEIKAARTALLAIQATQPAEPHIAVSPVDQPGLVANFVKAQQKRKRKGRLHPVVVEEPLATRVKQCVGQIPEPVQL NQVHQVPYMHQIPQVHQMSQGPQVPQIPQYHHVIPVNQVGQQYSVNPGTFPAQNVSPNDVKKEPMSNVGAHDNL VTQLDIGKKSVASHKPVAGTESKLVAKVVDVKEAAVSDVQRAAVEVEPTAVHQISITTDVIKESRNVKISNVKANAV LETLTTGSKRNSPLIEPRVNEESSPSQKLVPTALKSPAASQRAVGRNFMDVQLPIKRRHKDH

>SmDRB1

MYKSQLQEFAQKSGWTVPQYDSIKQGLPHLPRFQASVEVNGVKYESEDGFPNLKAAEHSAAKKALDSLTGGANGA STDASGSSMTGLCKNVLQEYAQRNGFSLPIYQIEITGPSHNSVFAATVEIGGVLYKGGTAKSKKEAEVKAARTAILAI K

>OsDRB1.1

MKKKSAPTPLPPETANTSPAPIGATAGIRVENCYVFKSRLQEYAQKAGLQTPEYHTSKEGPSHEPVFKSTVVINNTS YGSLPGFSNRKAAEQSAAEVALMEIVKSIPANANIPAVQETGLCKNLLQEYAQKMNYAIPSYICTKPASGLAPFLCTV EIGGIQYIGAAARTKKDAEIKAARTALLAIQGQSEGSANGATKYIVVPGKRVGKEVEKRPIETPKPLKAKKGGFKKK WNKRKFMKKDGQAVDVEKDEARVAGDAHDSDVLMQPTVITQEASCGTLFLQPCEEAKRVEDEPPRDIEMVQPDK ENQHSDAALVQPDDEARVEQEPSRDISVVQPNEEAISAKQEPSIDAATLQPKEEAMKTGCVALVLCLNISVDPPDVI KISPCVRKECWIDPFSMAAPKALETIGKTLHSQYERWQPKARYKLQLDPTLEEV

>OsDRB1.2

MDMPPTPLPPETANTSPAPNGATAGIRVENCYVFKSRLQEYAQKTGLQTPEYHTFKEGPSHEPVFKSTVVINNTSY DSLPGFFNRKAAEQSAAEVALMEIVKSIPANANIPAVQETGLCKNLLQEYAQKMNYAIPSYICTKSASGLAPFICTVE IGGIQYIGAAARTKKDAEIKAARTALLAIQGQSEGSANGATKYIVVPGKRVGKEVEKRPIETPKPLKVKKGGFKKKW NKRKFMKKDGQAVDVEKDEARVAGDAHDSDVLMQPTVITQEASCGTLFLQPCEEAKRVEAEPPRDIEMVQPDKE NQHSDAALVQPDDEARVEQEPSRDISVVQPNEEAISGKQEPSIDAAILQPKEEASSVKQEPFIDTAMLQACKEAGSV ELGPARDTVISQLNEQDRAVKQEPAGDIVVPQPDVHARVVKE

>0sDRB1.3

MDMPPTPLPPETANTSPAPNGATAGIRVENCYVFKSRLQEYAQKAGLQTPEYHTFKEGPSHEPVFKSTVVINNTSY DSLPGFFNRKAAEQSAAEVALMEIVKSIPANANIPAVQETGLCKNLLQEYAQKMNYAIPSYICTKSASGLAPFICTVE IGGIQYIGAAARTKKDAEIKAARTALLAIQGQSEGSANGATKYIVVPGKRVGKEVEKMPIETPKPLKIKKGGFKKKW NKRKFMKKDGQAVVEKDEARVAGDAHDSDVLMQPTVITQEASCGTLFLQPCEEAKRVEAEPPRDIEMVQPDKEN QHSDAALVQPDDEARVEQEPSRDISVVPPNEEAISVKQEPSIDAAILQPKEEASSVKQEPFIDTAMLQACKEAGSVEL GPARDTVISQLNEQDRGVKQEPAGDTAVPQPDVDARVVKEESPRTEPNGEATNMKETPKNSAVCNSPETKEFGDI TAMGSDPPATNMSEE

>SbDRB1.1

MDGGGAASLDAAFAGATVAVAPAGIRVENCYVFKSRLQEYAQKVGITTLEYHTLKEGPSHEPVFKSTVVVNNTRYE SLPGFFSRKAAEQSAAEVALMEIAMSETRGIPAVVSYSFVHIMPLRTAGSAVGGGEDEASGVGAEQRHAALARVAA EGGADERGDRVAQSFSSMVSSASIGDACRTCAAAGGGGGGGGGGGGGCGWGSSGAGQETGLCKNLLQEYAQKMNYAIPS YICTKQASGPFICSVEIGGILYIGAAARTKKGAEIKAARTALLAIQGQSEIVANGVKNYIVVPGQRPIKETDKKPIGTPK PLKVKKRGSKRKWNKRKFMGMANQIAEEDVQEGHEMLLQYDSENSRRIEYELPGDTAMVQFNKEAIMMQPGEG DMIVQLEPPSDPAEVQHNKEATHPATLKW

>SbDRB1.2

 $MDGGGAASPDTAICIAPGPGPIVAVPPAGIRVENCYVFKSRLQEYAQKAGLPTPEYHTLKEGPSHEPVFKSTVLVNN\\TTYESLPGFFSRKAAEQSAAEVALMEIAMSAPVAETRSIPAVQETGLCKNLLQEYAQKMNYAIPSYICTKQASGVAP$

FICTVEIGGIQYIGAAARTKKEAEIKAARTALLAIQGQSEGCANGAKKYIVVPGQRPVKETDKKPTETPKPLKVKKRG SKRKWNKKKLVGMANQIVDAQKDVEGLGMLLQYDHEEAGRIEYELSRDTAMVQFNKEVIVMQPGEGDRIVQPES PRDPAQVQHNNAARSVEQDPLSNTEVVMPNNEAITIEHEPLSAYVPLQSNGDSTDVKEAPSNTSMMQGEESETTR QEAPHTGELVQPN

>SiDRB1

MDGGGAAPHDAATNISPAPNVAAAPTGIRVENCYVFKSRLQEYAQKAGLPTPEYHTLKEGPSHEPVFKSTVVVNN TKYDSLPGFFSRKAAEQSAAEVALMEIVKSVPPTETKSIPAVQETGLCKNLLQEYAQKMNYAIPSYICTKQASGVAPF VCTVEIGGIQYIGAAARTKKEAEIKAARTALLAIQGQSEGCGNGATKYIVVPGQREVKETDKKPTETPKSLKVKKSGG RKKWNKRKFMRKTDQIVDAEKDGAREAGDVHDSDVPMQTTITEEPSRDSIILHLDDEARRVEMEHLRDVATLQP DKEARSVNQGLAMLLHSEEAIRVEHDLPRDTAMVQSNREVVMLQSDEEARKPPRDPVTVQPNEEARSVKQEPLSS AEAAKPNMEGRTVEEESARAYVALQFNRDAKDVKEELPSNTVMMQCEETETIKQEAPQSGELEEPPN

>PtDRB1.1

MLTNEGFSGVSNCYVFKSRLQEYAQKAGLPTPVYETIKEGPSHEPSFRSTVIVKDVRYDSLPGFFNRKAAEQSAAEV ALVELAKAGEINESTSQPVNETGLCKNLLQEYAQKMNYAIPLYECQKDETPGRGLVFKCTVEIGGIRYIGASTKTKKE AEIKAARTALLAIQSSGSDKQSGSSQLTVIPCRKRGVEASFQEEAENVPKPKKARFKKKMLKKKLSRDRINNAQSEL TEKLNIVNGQSGSEADQTDKSAIRGANCKLLTMETTMTFQDGKSDTNLNGENI

>PtDRB1.2

MPTNEGFSGVSNCYVFKSRLQEYAQKAGLPTPVYETIKEGPSHEPSFRSTVIVKEVRYDSLPGFFNRKAAEQSAAEV ALVELAKAGQINESTSQPVHETGLCKNLLQEYAQKMNYAIPLYECQKDETPGRGLVFKCTVEIGGIRYIGASAKTKK EAEIKAARTALLAIQSSGSDKPSGNSQLTVIPCRKRGVETSVQEEMANIPKPKKARFKKKRLKNKLSGDRIDNAQSE LTENLDTMDGQSGSETDQTDGSIIRGANCKPLAMGTTMTAHDGKPDTDLNERETSDTKGALTSNDSGNPGSGQSA SPNFNQINHGTGAEISAESNAGKGKVTGIIEATSMANTPVLAQIGASNA

>BrDRB1.1

MTANEVSSGVSNCYVFKSRLQEYAQRYKLPTPLYETIKEGPSHKPLFQSTVIVNDVRYDSLPGFFNRKAAEQSAAEV ALQELAKSSDLTQSVSLPVHEMGLCKNLLQEYAQKMNYAIPLYQCQRSETLGRAPQFTCTVEIGGIKYTGAATKTKK EAEISAGRTALIAIQSESKMDLANNYSTQLTVIPCEKKTVEVASPVKETIIKTPKARRAQFKKKARKGKLKVAKDLED STIPPQPTEHCQNQQLNLEPSSCVNGFKEAAFASVETEASQA

>BrDRB1.2

MTANEVPSGVSNCYVFKSRLQEYAQKYKLPTPIYETVKEGPSHKSLFQSTVIVDGVRYDSLPGFFNRKAAEQSAAEV ALQELSKSTELGQCVSLPVHEMGLCKNLLQEYAQKMNYAIPLYQCQKSETTGRAPKFTCTVEIGGIKYTGAATKTKR EAEISAGRTALIAIQSESKIDLANNHSTQLTVLPCEKKTVEVASPVKETIKTPKARRAQFKRKAKKGKRKAAGTIIPP EPTEHCQNDQQPENVEKTLNLEPSSCLNGFKEDSTFASVETEANLA

>EgDRB1

VSNCNLFKSRLQDYAHKTGLPTPLYETIKEGALHESQFRSTVTVNGVKYNSLPGFCNRKAAEQSAAEVALLELAKSG EISEGISQPVHETGLCKNLIQEYVQKLSYVIPRYKCPKDEASRRAPLFSCTVEVGGICYTGDTARTKKQAEIQAARTAL LAVQSSTPTDSQLTVPSKKRATETSPFNVRQSSPENSTMNQNGEDDAAQEQLSLRRSALIRARQNPQCF

>ThDRB1

VSNCFVFKSRLQEYAQKYKLPTPVYETVKEGPSHRSLFQSTVIVNGVRYDSLPGFFNRKAAEQSAAEVALQELAKSS EQSQCVSLPVHEMGLCKNLLQEYAQKMNYAIPLYQCQKCETPGRGINFTCTVEIGGIKYTGATTKTKRDAEISAGRT ALIAIQLESENNLFSCNTQLTVLPCEKKTLGAGSPVKETIKSPKARRAQFKRKAPKGKRRVAKDPEEMILPAQPMEH CQNNQPEKEMNIPAQPMEHCPQNNQPEKEMILPAQPTEHWTQNNQPEKEMIIPAQPTEHWTQNNQPEKGMIIP AQPTEHCQNNKPEKEMILPQPTEHCQNNQPENIETALNLEPSSCINGFKEAAFASVETEA

>CsDRB1

MPTNEGFSGVSNCYVFKSRLQEYAQKAGIPTPVYETIKEGPSHEPWFRSTVIVDDVRYDSLPGFFNRKAAEQSAAEV ALVELAKLGKVNECISQPIHETGLCKNLLQEYAQKMNYAIPLYQCRKDEASGKVQFSCTVEIGDIRYIGGAAKTKKEA EIKAARTALLAIQSSASELSGNSAGNTQLTVLPSRKRGPEVANNPEETVNVPKAKKGRFKKKILKMKRPGGRMDRT QLQNTGNMENINASQEGSKVSQANTSGIQGVSTEVLAVEGTMDCQEGRSEIEPIEREMPAVNDALPHHIGGDSETI HSAATHCSDRSSNEASEMGTSSLAKEVNEVTPGVGTSSVSCHTTALAKEVNEGTPNEGTSTALTEEVNEPSGIMEA ASMTNNSTLGQIESSCVIPGINQPEERIQAGTSQA

>TcDRB1

MPTNENFSGVSNCYVFKSRLQEYAQKVGLPTPVYETIKEGPSHEPSFRSAVIVNDVRYDSLPGFFNRKAAEQSAAEV ALMELSKSGEVNQSISQPVHETGLCKNLLQEYAQKMNYAIPVYQCLKDEAPGRGPHFSCTVEIGGIRYIGAAARTKK EAEIKAARTALLAIQSSTLELSNKVVGNSQLTVIPCRKRAMETASNPEEAVNVPKAKKTRFKKKMLKAKLSGNSVD HSQDKSTGNSAVGMDDPVKSEWVQTNSLSSETLATEVVGNLQDTKLDSDLIEREVPSAEVALPPQGADNSKNGQL TALNCVHCNHEAPDVGNSSMVYADVTALVKVTDGVEVASMVNDSSFSQMEASKIMTGLNQAVERIHANAGQA

>AcDRB1

MSITTDFPSMSNCFVFKSRLQEYAQKAGFVTPVYETVKEGPSHEPCFSSSVIVDNVKYNSLPGFFNRKAAEQSAAEV ALLELAKSGKLNESISCPVHETGLCKNLLQEYAQKMNYALPSYVCRTHEAPGKKTSYFCTVDIGGIQYIGATAPTKK EAELKAARTALLAIQTNTSRAESNPNGSHELTVLPCKRKGTEPDAEKETPQPMKPKKTKFKKSKKQRSLQNRIDLA TGNMESSLVLQGEDTRMLEAIKDEHGGEHLRSQVNEYEQVPITDPNNNSQNEQTFPLNSNPSDQGYLNMHLDSGV QVKLENLVNVVGAEQVATFGAAEIPVVNGEKFDSDNSLVGLNQTEDVRSEVKVEHGVGGC

>MgDRB1

MAESESIFQMEAGEVEIGGVYDQIIGTYYEPATPLGQEEHFGTPRYEPIVESSAKKRKVNPSNQDSQVKDGPSVSNCF LFKSRLQEFSQKAGFTSPVYETIKEGRSHEPSFKSTVIVNNVRYDSLPGFFNRKTAEQSAAEVALMKLSNSADMEFG ISQPVHETGLCKNLLQEYAQKMNYAIPLYECLKEERQGKTPMYSCTVEVGGIKYIGASANTKKEAEIKAARTALISLS ENQTSSNSVYTVVPKKKKVSDHGIAAQEVPTPAVKKPKKRSLKKKMQQQQWKKKRRALKRGTSGEEGTTRLAVN KADSVSLTGVASGDVGAVTPHHHDDMSPQVYDRWRSFWCCGGSDPPS

>PvDRB1

MPTNDDFQGVSNCYVFKSRLQEYAQKAGLPTPVYETVKEGPSHEPSFRSTVIVNDVRYDSLPGFSNRKAAEQSAAE VALVELAKSNVVNQSITQPVHETGLCKNLLQEYAQKMNYAMPMYQCKKDETPGRASVFSCTVDIGGILYIGGAAKT KKEAEIKAARTALLAIQSSATHASQNQVGHPKLTVLPCRKRVAESVSIADENSNTPKPKKARFKRKSSKRKNPRDKI GPIHTENVVGIGTNINHEVETQASVNDESGVHEMKSEKFTSEVMKNLENGISFNYPEKEVFAVESSFVFENGKSAEL YSKENNLGSVVAELSSVSNGDILETSVEMNKQQYNGEMVSDHCVVGG

>RcDRB1

MCTLPAMCSSVSNCYVFKSRLQEYAQKKGLPTPVYETIKEGPSHEPSFRSTVIVNDIRYDSLPGFFNRKAAEQSAAE VALMELAKCDEVNDSISQPVHETGLCKNLLQEYAQKMNYAIPLYLCQKNESPGRGTLFKCTVEIGGIHYIGASAKTK KEAEIKAARTALLAIQLSASESSHNSIGNCQLTVIPFRKRGAETAAVLEEAMNVPKAKKARFRKKTLKKKHSGNKV DHNQGETIGNKKDGQAGSESDKNDASVVQGTGHQLLPMLSTSNSEDGRLVPESSERETTDVTGALVCHISGDFGNG FAATVNFDQSNHGVCAETNGDTAKFSGATLVQIGAATVMAGLNPAGERIEAGAGQ

>CusDRB1

MPAKDNFQGVSNCYVFKSRLQEYAQKVGLPTPVYETIKEGPSHEPTFHSTVIVNDVRYDSLPGFSNRKAAEQSAAE VALMELSKSSDLNPHVSQPVHETGLCKNLLQEYAQKMNFAIPLYQCQKDDGPGRGSLFSCTVEIGGIRYIGAVAKTK KEAEIKAARTALLAIQSCPNSLSEKSVNQVQLTVIPSCKRKEAADCSVKPKSTASPRAKKGRFKRFKRGVLRNRDFI NGLVNLDFDNTDRSTLEPFTTGVVQLPGYVGPVDLAKDTLLNSECRTTDLSSNNNDVLVSNVQSDMPLLLNGNSG NGCSGTFNSNQVNCATSNVMSSPLTDVQPTCSEVANVAAGVTGELQ

>ZmDRB1

MHGGGAASPDAAICISPEAGPIVGVAPAGIRVENCYVFKSRLQEYAQRVGIPTPEYHTLKEGPSHEPVFKSTVFVNNT KYESLPGFFSRKAAEQSAAEVALMEIAMSAPVTEIRNMPAVQETGLCKNLLQEYAQKMNYAIPSYICTKQASGVAPF VCSVEIGGILYIGAAARTKKEAEIKAARTALLAIQSQSEGGANGAKKYIVVPGQRPDKETNKNPTETPIPLRVKKRGS RKKWNKRKFRRMADRIVDAGKDAEGLGTLLHDDYEEARRIGYELPTDTAMVQFNKEVVMTQPGEGDRIVQLEPP RDPAEVQYNKEARSVEQDPPRDPAEVQHNKEARSVEQDPPRDPAEVQHNKEARTVEQDPPSNTEVWKPDNKAT TTEQESVSAFIALRSNGDSTDVEAAPGDTLMMQGQESEATMQEASHAGEQAQPN

>AtDRB2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFESPQYCSTLRQAEHSAAEVALNALSNRGPSHSL AARILDETGVYKNLLQEIAQRVGAPLPRYTTFRSGLGHQPVFTGTVELAGITFTGDPAKNKKQAEKNAAMAAWSSL KQLAKETSSSMPEPENIDELEQVIIARALINYRIKENIGTGSSSSAPVPFAKKFFMQNLRPTSPQPSPATTSRILPFICP KQPSRSSRSSLAATSGIDRIMAAALESRSYQRPQQRFANPPYVPMRQFRSQCHGMAPPVTIRTAVPVFSAPPMPPPP CTNNTQLPSSVYVPSLMRTAPPVRIAPPVTIRTAVPVFASAPPVRIRTAVKPTVEAGETRISSVQEKESIPVLPDSLEI GVEGSTITITDCEKTASKETERAEFKDSSKGEPETARERLENLKI

>AtDRB3

MYKNQLQELAQRSCFSLPSYTCTREGPDHAPRFKASVNFNGEIFESPTYCSTLRQAEHSAAEVALSALSSKGPSKSL TARVLDETGIYKNLLQETAHRAGLDLPVYTSVRSGPGHIPTFSCTVELAGMSFNGESAKTKKQAEKNAAIAAWFSL RKMPRLDPLRGEEKEQEIVARVLSRFRPKEVKRREPNQSRRRTVIRTIRQNTTTTTTTGDLLCEKLRSINLYTNEA SSSSPPPQRFWPSRTNLTQEQSKVKSLLEKCQEYAEKKQSLDDPKPEMRIKTSSPSPLSSSVERNCYSKLLPFPSFVL NHQKLAPAVHIRSVIPVCSAPPPKPNPNPNSSPFITRELGNGSQEKKSLPN

>AtDRB5

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKASVNFNGEIFESPTYCSTLRQAEHAAAEVSLNVLSSRVPSKSL TAKILDETGIYKNLLQETAHRAGLDLPMYTSVRSGSCHFPGFSCTVELAGMTFTGESAKTKKQAEKNAAIAAWSSL KKMSSLDSQDEEKEQEAVARVLSRFKPKEVRRRETTNQWRRRTSQQDSNKDLLIERLRWINLLTNQASSSSSTSTP NQHKNSSFISLIPPPPPPKSSKILPFIQQYKDRSSQEAKTETATEMINSKAKVNETSTRLSKQMPFSDMNRYNFVGG CSVNPYSLAPAVQMRSVIPVFAAPPPKPNPNLNPSSLSSSVNEFTSSNNSCSVLNTPGLGGQEKKNLTREMIKLGSES RILDQTHDS

>PpDRB2-3-5.3

MYKNQLQELAQRSCFNLPAYACIREGPDHAPRFKATVNFNGEVFESPNYCNTLRQAEHAAAEVALNTLSRRGPSQ SLAARILDETGVCKNLLQETAQRAGVSLPVYATTRSGPGHLPVFTCTVEVANMSFSGEAAKTKKQAEKNAAMAAW SAIQQLANQGRGVPLATEGEVSEEQEQNTIARALAQHYGKESQQLPHSTQNPSSSVMPIRLRTLTSRDGLQPGSPRL NQSHSGPWATDLSMEQQRHTRNQGHSSVGPVASPAYRPVGTSRIGSSVTIRDVTGHRDSAALRDASAMRDAALAK RAVERAMCGNFVGRHSPVNLRPVPQMRRDRHEVAVHYDNHQRDEDEWLRGESTKASRDVDCLNDSLEELGASA VHGSYNPMSWSGAGVSNWWNMHPAAMPRASSRAAMPVVLRPAVMVCAAPPLRPEPDDAENEGEAATHQVLSQ LSL

>PpDRB2-3-5.2

MYKNQLQELAQRSCINLPAYACIREGPDHAPRFKATVSFNGEIFESPNYCNTLRQAEHAAAEVALNTLSRRGPSQSL AARILDETGVCKNLLQETAQRAGVSLPVYSTTRSGPGHLPVFTCTVELAKMTFSGEAAKTKKQAEKNAAMAAWSA LKQFANQGRSVSLATDAEVSEEQEQNTIAKALAQHFGKEAQQLPQSVQNPSCSVMPIRLRSLSLRDNLQPGSPRLN QSHSGTWTPDLSTEQQQQRHMRNHGHPSVGSVPPPAYRTVGPSRVGSSVTIRDVSAMRDAMMAKKMVERAMGA NFVGRHSLVNLQSVPSMRRDRHEVAVPYDVHQRDEDEWLRGDTSKASRDVDNRSDSLEKEHGASAVHGSYNPMS WSGTGGPNWWNTMHRPAMSSASRKTAMPVVLRPAVMVCAAPPRRPEPDGAENEDEAASRQVLSQRSL

>PpDRB2-3-5.1

MYKNQLQELAQRSCFNLPAYACIREGPDHAPRFKATVNFNGEVFESPNYCNTLRQAEHAAAEVALNTLSRRGPSQ SLAARILDETGVCKNLLQETAQRAGVSLPVYATTRSGPGHLPVFTCTVEVASMTFSGEAAKTKKQAEKNAAMAAW SALKQCEWSSGECECECEFECEWSEMGGWAVGMLGRRVQGRELVRGMGRWRGKVVVAVGGSWWRRDAGMGG CVANPGRGVAAVATDTEVSEEQEQNTIARALAQHYGKEAQQMPQVCSGASGGVMPIRVRCLSSREGLQPGSPRLSQ GHSGAWVGELSMEQQQRHMRNQGHAGVGAVGGGGYRGVGPSRVGPSVIIRDVAGQRDSAGARDAAAMRDAAMA KRAVERAMGGGFVGRHSPVNVRPVAAMRRERHEVAVPYDDHRRDEDEWLCGDSSKASRDGELRGDSVEKEHGA CGVQGSYNPMSWSGTGASSWWSSMQAVTMARVGSRAAMPVVLRSAVMARAAPLRPVVAEDAENEGEAATRQVL SL

>SmDRB2-3-5.1

MFKNQLQELAQRSCFNLPAYSCIREGPDHAPRFKATVNFNGEVFESPTYFSTLRHAEHAAAEVALNTLSRRGPPQS LAARILDETGVYKNLLQETAQRAGVPLPIYTTVRSGPGHLPVFTCTVGVGGMIFTGEAAKTKKQAEKNAAMTAWS SLKQCKFFDVEN

>SmDRB2-3-5.2

MYKNQLQELAQRSCFNLPAYSCIREGPDHAPRFKAAVNFNGEVFESPNYCSTLRQAEHAAAELALNVLSRRGPSQS LAARILDETGVFKNLLQETAQRANVPLPTYTTTRSGPGHLPVFTCVVEVAGMNFTGDAGKTKKQAEKNAAMAAW ATLKQFAKKLAPPSLFYSDEMTEDQEQISIARVLYLAYEKVGGGQASRPRQYTVPSLFDKDCTVGYLGSQQQHLRSG AGFCSTNPRSSNPEALALPRDIRAYGMTHPRVRTRNVQLTHEVPPPIEEHRRDEEDWLRGESSSSSSTCASSSRPM PEEPKRSSRSPMFWPRTTDSHWWQSDSSLLSSGYHLRRPQVSLAPPVRVRSVVAVSAAPPQRSQPQEAADQDGLS DGLSRLNL

>OsDRB2

MYKNQLQELAQRSCFNLPAYTCLREGPDHAPRFKAAVNFNGEQFESPGFFTTLRQAEHAAAEVALAALARRGPSY SLAARILDETGVYKNLLQEVAQRVGAPLPSYTTERSGLGHLPVFTCTVELAGITFTGDPAKNKKQAEKNAASAAWS SLRQLVRQEASSSNEPESNDEQEQIRIARALLNYRLKEKMAMANNPHASPFPKKFPMQPERRTAFPQSSHSSYSKIL PLFRPKSNSRSRPESPAASDAASQTPFRPTESPNPRSRFPAAEAAPYVPVGHFRMPCHSMAPPVTVRTSIPVFSAPP LPPPGARTQQLPPLMSHPPPIRMASPVRIRPAPPLFTPSAVQGPKPMMPVQIKDVQHQQIKETRSPVMPVQVKDA QNQLLKGSLSPVIPVQIKDVQSQPPKEALSPAIPVQIKDVQLQPRNEPVSIGKGVVPLPAIRPPVKVEAPAEVKEASQ PVAGSSVVQCKADTSPDSLPKTQLKTANADNADAKDDHLPVDAEEVEDIIRHLELK

>0sDRB3-5.2

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKATVNFNGETFESPAFCSTLRLAEHAAAEVALNELSKRGPSSSL AAKVLDETGIYKNLLQETAHRAGLKLPVYTTIRSGPGHTPVFTCTVELAGMTFTGNPGKTKKQAQKNAAMAAWSE LKQLPRVGEPSSSSCPPDHDDDDQEQIIVARTLASLNQTNGGKTPQQKEKQQSSNRPSSRRPSYPKSNASFYGRLHL QKHAYPSVPPEQAMYHMWHQVQATQQKPHFPMVPTMGSTGFPPPPTVLHMYPPPRGQFTMPSSQDGLGLIPCY PEASPVLPRYFSPYPASFVPRRPLPVNVHKIHEKRLVGADMVELPDAAVFSRYTAPDFSGTSENAVQDNKKEEYTE SSPASEQESKSHTASSSATRSPSQQLESNQDIEIMGGLRLESKKPAEQPPESSPSRVNPVLLCETGQRHHYSSVRHGD PVHRNSPQISVATSPSPIRRGDPAHINIPQISVATPPECRSPRAQAPPRFGTRMPVNLPSSLYQQRPPWLAASVTIRT TIPVCSARPNVVNSSAGAAQPAVQILSASPRKEEPEARTNTSDTSNAATASSELNKLHI

>0sDRB3-5.1

MYKNQLQELAQRSCFSLPSYVCTREGPDHAPRFKATVTFNGETFDGPSNCTTLRQAEHAAAEVALARLSLRGPSSS LTARVLDETGVYKNLLQETAHRAGLKLPVYTTVRSGPGHSPVFSSTVELAGMSFAGDPAKTKKHAEKNAAMAAW SSLKQSNIRTTVSPLVFDLVWIVCHGGDVFVVVWCSAGGAQGARRRRRGAGACGRRQGARRAEAAGRLRRRRW RREGGGGVSTEEASRRRVLFVRHVAVQTSMGASVAAAAGGRTQDTASPAPAAAAASGGVRLPSRRRAGARAEEG RRAGAHAARRHAARQGGRRNAAADAVLLRAVLPPRRRRRPDEALRRRRVPRAAGGERPFSDPGLRRATVAAAA AAQGGRSSDLIQEGVVVVKTSIQSIAQPAPI

>SbDRB2

MYKNQLQELAQRSCFNLPAYTCLREGPDHAPRFKAAVNFNGEQFESPGFFTTLRQAEHAAAEVALAALARRGPSY SLAARILDETGVYKNLLQEVAQRVGAPLPLYTTERSGLGHLPVFTCTVELAGITFTGDPAKNKKQAEKNAASAAWS ALKQLVREEVNSSNEPENNDEQEQIRIARALLNYRLKEKMAMANYPHVSPFPKKFPMQPERKPSFGQSSQSSYSKI LPLFRPKSNSRSRPESPASTDGVSQIPSRAMDSLTPSPRSRFPAAEAAPYVPVGHYRMPCHSMAPSVTIRTAVPVFS APPLPSPSARPQQLPPLMSHPPPIRMASPVRMRPSSPMFASSAAVQGPKPVMPIQLKNVQDQSRKETAPSAIPVQV KDVQYQPRKSSMSPVIPVSVKDAQRQPLPVQMKDVQTQAPKESLSAPIPAIRPSLVKIDLPAQGKEASASATSEVPSS ATGNNAAVECTASSDALLARQSRAADGDKDKAEAKHEAEAQAVAEAAIRQLEIN

>SbDRB3-5

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGEMFESPAFCSTLRQAEHAAAEVALNELSKRGPSST LAAKVLDETGIYKNLLQETAHRAGLKLPIYTTIRSGPGHTPVFTCTVELAGKTFTGNPGKTKKQAQKNAAMAAWS DLKQLPRIGEPSSSSCPADQDDEEQEQVIVTRTLASLNQANIGKVPHQKEKQQTNNRPSSQRSYPKPNTSFYRPYM QNQAYPSVPPDQAMYHLWDRMQATQPTPRFPVVPTMGNTRFPPPAAMLPMYPPPRGQFSNPANQDALGLLPCF PEAAPAVPRYFSPYPVSYVPRSPLPVTVHKIHEKRQDHTETVELPDAAVFSPCTTFDSFRTSECGGPPRKVQEPTKN GKEGCTGSSTSPAEEHNTLTVPSSTTQSSLHKLEPNEDEQTLQAGLKQAHEQQLMPSSSCVSPLVTAQNSVQRKHY ASSIQHEPIHRRNPPHTNPPALPDLWSSHSQALPRFGSAPPVNSSSVFQQRPPWLAALVTVRTAVPVCSARPNVGT APARPASQNRSAPARAEPESRTHNGERDLNSAAISSSEFNKLHI

>SiDRB2

MYKNQLQELAQRSCFNLPAYTCLREGPDHAPRFKAAVNFNGEQFESPGFFTTLRQAEHAAAEVALAALARRGPSY SLAARILDETGVYKNLLQEVAQRVGAPLPSYTTERSGLGHLPVFTCTVELAGITFTGDPAKNKKQAEKNAASAAWS ALKQLVREEANSSNEPENNDEQEQIRIARALLNYRLKEKMAMANYPHASPFPKKFPMQPERKPSFGQSSQSSYSKI LPLFRPKSNSRCRPESPASTDGVSQTALRTLESLNPKSRFPAAEAAPYVPVGHYRMPCHSMAPSVTIRTAVPVFSAP PLPPPAARTQQQLPPLMSHPPPIRMASPVRIRPASPMFGPSAPVQGPKPVMSVQLKDVQQQSRREPVKPVIPVQVK DVQYQPMKGSVSPVVPVQVKDAQRRPLVGSLSGVIPIKVKDVQTQAPKESLAAPIPAIRPSVKIEAPAQAKEASAAV TSEVPCSAAGNTTAVECTTSSEVTPTRQSRAADGDDSKAEAVHEAEAQAVAEAAIRQLEIN

>SiDRB3-5

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKATVNFNGETFESPVFCSTLRQAEHAAAEVALNELSKRGPSST LAAKVLDETGIYKNLLQETAHRAGLKLPVYTTVRSGPGHTPVFTCTVELAGKTFTGNPGKTKKQAQKNAAMAAW SELKQLPRVGEPSSSSCPSDQDDEEHEQAIVTRTLASLNLANGGKTLHQKEKQQSNNRPSSRRSYAKPNPSSYRSHL PNQAYPSVPPEQAMYHMWHQVQATQPAPRFPMVPSLGNTRFPPAAALLSMYTSPRGQFATTACQDGVGLLPCFP EAAPGLPRYFSPYPVTFVPRSPLPATVPKIHERRQDHAETVEFPDAAVFSQYGDQHKFQGKEDCTGTSASPCPRSGS SSTAHPSLQKRDPNEEKETLGSKHAEPNKSQGQQPKSSPSWVNPSIPAHGSIQRKHYTSSVQHDDPPQTSRSSLPEL WSSRSPAAPRSGAAVPVNSPVSGYQQRHPWLAASVTVRTAVPVCSARPNAVNTPGEAARVRPIAQNCLDPETPRN TNNGERAPNSEL

>PtDRB3-5.3

MFKNQLQELAQRSCFNLPAYACIREGPDHAPRFKASVNFNGEIFESPSYCTTLRQAEHAAAEVALNVLSSRGPARSL TARVLDETGIYKNLLQETAHRAGLNLPAYTTVRSGPGHVPVFTCTVELAGMNFTGEPAKTKKQAEKNAAIAAWSA LKRMPNLDSLSSRETDTREEQDQAVVARVLSNFRSKDEVKHAKNRDHNQARRRMVRGHRDSICASSSSTSNNSLQ YPHWRLLDLILDSASDGSTQKQNSSFMSLLPPPPPRTTSKILPPTSHIDNPSHFILNRPIPLQVKGKSQVQAPEIPVAL EEHLKDEEEWLGTKSDVIKKPIEKEGTSNSNPSSLYASSSIYRPFPFSNTGKPVTSLLDNTSQHESTHISSRIFGSPNP SPMASTSIHTPSNTHIPRPMFTGGFNPHRIAPAVQIRSVIPVCAAPPSPIRPPQSPSATNAPPRPATTGVAEVSMFKK TESNQTQLSSTEFKNKLQLSSSKK

>PtDRB3-5.4

MFKNQLQELAQRSCFNLPSYACIREGPDHAPRFKASVNFNGEIFESPSYCTTLRQAEHAAAEVALNVLSLRGPARSL TARVLDETGIYKNLLQETAHRAGLNLPVYTTVRSGPGHVPVFTCTVELAGMNFTGEPAKTKKQAEKNAAIAAWSA LKRFPNLDSLSSKEVDTREEQDQAVVARVLSNFRSKDEGRYARKRDHNQARRRMVRGHKDSSGASSSSTSNNFLL WFNTNAEVLLYVSPSSTPTQNKFKDFATALTYRQSISILIEQAYSNTITSLPDNTSQHESTHISSRIFGSTNPSPMASIS IKTPSSTHVPRPMFTGGFNPHRIAPAVQIRSVIPVCAAPPSPSRPPQSSSATGAPSHSTFKGVAEVSMLNKTESNPQP SSTEFKNKLQLL

>PtDRB3-5.1

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKSTVNFNGETFESPTFYSTLRLAEHAAAEVALNTLASRGPSKAL IAGVLDETGVYKNLLQETAHRAGLKLPVYTTIRSGPGHVPVFSCNVELAGMSFTGESARTKKQAQKNAAMAAWSA LKRLVQHSTSSSNSSTSPPVEAKRISEEQEQVVIARVLASLQPAELKNSKQNDSQRGQERFFPVCNDLTPPIPTLYPV QCHSWAYPSFSPEMAIYQMWQQEELFQLQNRLLALQIPSVSPGPQILPYMQSILPSDSVLFGPLREQEPVPVGPRITI ATSRPLYLADHVVPDPIKGESTVTISEIHEEKPEESLQCSTSVIPDPPVGGNFNAEPRSKDPVDMDDKQMKVELERK VENVQPGDNQTRKFEWASSSNTDSGYRPADFQAQNKHSFHSSQATLQYPPRASTFRSCRPAPSAAPPVMIRSVRPL PSSTAPSALNNNMGPPSVPKLQDLAAQNPAPPRMRTGGSHSYQARPLPQRMNLGGVHPRFMAPAVRIRSVVPVCS APPARRMPTSGQVVPDRESKATAVPEDVKTASSELGKLQK

>PtDRB3-5.2

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGETFESPTFCSTLRLAEHAAAEVALNTLASRGPSRAL IAGVLDETGVYKNLLQETAHRAGLKLPVYTTIRSGPGHVPVFSCTVELAGMSFTGEPARTKKQAQKNAAMAAWSS LKRLVQHSTLPSNSSTSSPVEAKRSSEEQEQVVIARILASLQPAEIKNSKQSDSQRGQERFIPVCKDLTPPIPTLYPVQ CQGWAYPSFTPEMAIYQMWQQEELFQLQNRLLAFQVPPVSPGPQILPYMQSILHSDSVLFGPLREQEPVPASPRITI ATSRPFYLADHHVSDPIKGESKVTIREIHEEKPEEPVQCSTSVIPDPPVVGNFNAEPRLKDPVDMDDKQMKVELDR KDENVQPGDNQTRQFEWASCSYKDSGYRPADFQAQNMQNFHSSRVTLQYPQRASSLRSFRPAPSAAPPVMIRSVR PVPSSTVPPALNSNTGPPPVPKLQDLAAQIPAPPRMRTGGHSYPASPLPQRMNLGGVRPRFMAPAVRIRSVVPVCS APPARKMPTSSQGAVVPERGSKDTAAPEDMTAASSELSKLRI

>BrDRB2.1

MYKNQLQELAQRSCFGLPSYTCLREGPDHAPRFKATVNFNGEIFESPQYCSTLRQAEHSAAEVALGALSNRGPSHS LAARILDETGVYKNLLQEIAQRVGAPLPRYTTFRSGLGHQPVFTGTVELAGITFTGDPAKNKKQAEKNAAMAAWSS LKQLAKETSNSMPESENSDELEQVIIARALINYRIKENIGSGSSSSAPVPFAKKFFMQSLRPTSPQPSHATTSRILPFIC PKPSSRTSRSVSAASVERAIAAALENRNYRPPQQRFAAATPGAAAAPPYVPMRHMRSPCNGMAPPVTIRNSVPVFS APPPTCANTQQQQRPSVYVPSMMRTAAPVRIAPPVTIRTAVPVFASAPPQIRKEEALPVRKVNVQTSVKPVVQERE ERALSLPDNLEIELEASAKPVSETDRAALKDSKGEHETVKERLENLKIW

>BrDRB2.2

MYKNQLQELAQRSCFNLPSYTCLREGPDHAPRFKATVNFNGEIFESPHYCSTLRQAEHSAAEVALGALSNRGPSHS LAARILDETGVYKNLLQEIAQRVGAPLPRYTTFRSGLGHQPVFTGTVELAGITFTGDQAKNKKQAEKNAAMAAWS SLKQLAKEASSAMPEGENIDELEQVIIARALINYRIKENIGTGSSSSAPVPFAKRFFMQSPRPTSPQPCRAATSRILPFI CPQPSSRSRSVSAASVERAIASALENRNYRPQQRFATPGTAAAPPYVPVRHLRSTCHRGMAPPVTMRTSVPVFSAP PPRPPPPSANTQQQIPSVYVPSMMRAAPVRIAPPVTIRTAAPVFASLPVRKVNIQNPPKSMTKVDETKVQEKEERT TLVLPDSLETEEEGSAKPVSKSAKETERGGVKGEQETARERLENLKI

>BrDRB3-5.3

MYKNQLQELAQRSCFSLPSYTCTREGPDHAPRFKACVNFNGEIFESPTYCSTLRQAEHSAAEVALSALSSKGPSKSL TARVLDETGIYKNLLQETAHRAGLDLPVYTSVRSGPGHVPTFSCTVELAGMRFNGESAKTKKQAEKNAAIAAWFSL RKMPTSLDSQRGEEKEREVVARVLSRFRPKEGRRREQHHSRRRAIRHDTRDMLCEKLRMINPYTNEASPSSLKHH QTLLPPRLWPSTTNLQQQSKVKSLLEKSQEQAGLKQRSPDDAKPEMIIKSFPLSSMERRNCYSKLLPFPEMFAGGF GLNHQKLAPSVHMRSVIPVCSAPPPKPLSPFNGSNTSSCSAPSSLGTEGQEKKSLMELELESKSDRTHD

>BrDRB3-5.1

MYKNQLQELAQRSCFSLPSYTCIREGPDHAPRFKASVNFNGEIFKSPTYCSTLRQAEHAAAEVSLNVLSSRVPSKSLT AKILDETGIYKNLLQETAHRAGLDLPMYTSVRSGSYHFPAFSCTVELAGMSFTGESAKTKKQAEKNAAIAAWSSLK KMASLDSMGGKENGEEKEQEVVARVLSRFKPKEVRRRETTNQWRRRTSQQDTNKDLSERLRWINLLTYEPSKSQ ASRTNLQQFKGISLQEAKEETEMMITTKSFPLPVAAHHKARLNESSSGGCSNQIPFSDRGRFSFVGGCNRLAPAVQI RSVIPVFAAPASKPNPTPSTSSSSSSSSSINSCSVPKTPGLGGQEKNLTQTKNVDQTHD

>BrDRB3-5.2

MYKNQLQELAQRSCFNLPSYTCTREGPDHAPRFKACVNFNSEMFESPTYCSTLRQAEHSAAEVALIALSSKGPSKSL TARVLDETGIYKNLLQETAHRAGLDLPVYTSVRSGPGHIPTFSCTVELAGMSFIGESAKTKKQAEKNAAIAAWFSLR RMPSLDSLVEKRGEGEKEREVVARVLSRFRPKEVRRREQHHSRRRAIRQETTTTREFLSEKLRLINPYTNVPSSSSL KHHQTLPSRLNLQQQQSKVKSLLEKSQGHAGIISSSSMERTNCYSKLLPFPEMFAGGRGFQKLAPAVHIRSVIPVCSA PPPKLSPSSAPSSLGSGDQEKKPLRLESNPCIKIVSLDQPML

>EgDRB2

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKAVVNFNGESFESPSYCSTLRQAEHSAAEVALHSLATRGPSHSL ASRILDETGVYKNLLQEIAQRVGAPLPHYSTFRSGLGHLPVFTGTVELAGIIFTGVPAKTKKQAEKNAAMAAWSSLK QLSKETASTSSEPENNDELEQITIARALQNYRLKEKVALANSPSGTIPFAKKFQIQI

>EgDRB3-5.2

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKACVNFNGEIFESPSYCNTLRQAEHAAAEVALNVLSTRGPSRSL TARILDETGIYKNLLQETAHRAGLNLPVYTTVRSGPGHVPTFTCTVGIAGMSFTGESAKTKKQAEKNAAIAAWSTL KTVPDLSSLRPRDEAKQGIRRRDQNQPRRGSIRGTAMNHSASPSTSLQLHRLVEKLLMNYIPQGQGGASPFSSSPLS SSSQKQNNFLSLLPPPPPRSASKILPPPRENRWDMEQDSGKRPIGSSIYPSPKIVDKRSDHPNLARPNSSLPFLQGIST SRDGHHGHNRNVSGSSPRPVYTGGFRPHQIAPAVQIRSVIPVCAAPPVPLMRTQLPNPAGDPLCPQTGPRPEIPPTS SNPKLDKLEPDPARLGSELNKKLQLERKSI

>EgDRB3-5.1

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGETFESPTFCSTLRQAEHSAAEAALTTLATKGPSRA LAAKILDKPAVYKNLLQETAHRAGLNRPAYSTIRSGPGQLPGFSCTVELAGKSFTGEPARTKKQAQKNAAMAAWS ALRKMSQESMSFCSSSSPLDSKASEEQEKVIVARFLSSLLPSESESKEVQKRQIRSVKSNVGSSCPLQYQNWAYSSFP HEMVMYPMWEQEKLLQQQLHLARLPIPSTIPSPQILPVTQSVVSPDSCQYFTARQLCSPVLGPKIAIATSVPFSSFPN QVIPDSMSSRPRVTFQEIQEEQVEESSGFPTTVTSDSLVPRSSGSELRISGQDPWNVKEKAQLQTTDRFNSSPLLHR PQYPPRASLIRCLSQPSAVESGMGRSSCSVPIVQHRPQNMVPHMHASPRMRTGANSYSARPKPKGRNVEGLCPHFL APTVQIRSVVPVCSAPSSGRTPISQPDDRSNVSGNRTAEPEEVVSLELGKLQL

>ThDRB2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFESPQYCSTLRQAEHSAAEVALNALSNRGPSHSL AARILDETGVYKNLLQEIAQRVGAPLPRYTTFRSGLGHQPVFTGTVELAGITFTGDPAKNKKQAEKNAAMAAWSSL KQLAKETSSSMPEPENIDELEQVIIARALINYRIKENIGMGSSSSGPVPFAKKFFMQNPRPTSPQPSPATTSRILPFICT KPSSRTRSLAATSVERAMENRSYRPQQRFATPGGTGTGTGTGTAVPPPYVPMMRHLRSQCHGMAPPVTIRTSVPVFS APPMPPPPTQASNTTQIPSVYVPSMMRAAPVRIAPPVTIRTAVPVFASAPPVRKVNIQTPVTQVEETRKKEESALVL PDTLEIGEEKSVKTTSESEKETERGAALKDTKGGEPETAKERLENLKIC

>ThDRB3-5.2

MYKNQLQELAQRSCFNLPSYTCTREGPDHAPRFKASVNFNGEIFESPTYCSTLRQAEHSAAEVALNALSSKGPSKSL TARVLDETGVYKNLLQETAHRAGLDLPVYTSVRSGPGHIPTFSCTVELAGMIFHGESAKTKKQAEKNAAIAAWFSL RKMPSLDFLGEKRGEEKEQEIVARVLSRFRPKEMRRREPNQSRRRTIRQDTTTTRDLLCEKLRLINLYTNEASSPSS SLKHHQTLPPRFWPSRTNLQQQQSKVKSLLEKTQEYAGKKQSSDVIKPEIMIKSFSLSTNPSSSSSSSSVERNCYSK LWPISGMSAGGLNHQKLAPAVHIRSVIPVCSAPPPKPNPTRETPSAPSPFNESTTSLNHCSASRSLGIGGQEKKH

>ThDRB3-5.1

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKASVNFNGEIFESPTYCSTLRQAEHAAAEVSLNVLSSRVPSKSL TAKILDETGIYKNLLQETAHRAGLDLPMYTSVRSGSCHFPAFSCTVELAGMSFTGESAKTKKQAEKNAAIAAWSSL KKMSSLDSKGEKENGEEKEQEVVARVLSRFKPKELRRRETNQWRRRTIQQDTNKDLLIERLRWINLSINDASSSTT QRQHKPSFISLLPPTQNQPLRPNLQQYKGKSTQEARPETEMIITKALPLPMADYKARFNESSNRISNRIPFSDKGRFNLVGGCNRLAPAVQVRTVIPVFAAPPPSKQNPKPNPSTSSSSDSESRSINSCSVPNTTGF

>CsDRB2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFESPHYCSTLRQAEHSAAEVALSSLSHRGPSPSL AARILDETGVYKNLLQEIAQRVGAPLPQYTTIRSGLGHLPVFTGIVELAGIAFTGEPAKNKKQAEKNAAMAAWTSL KQLAKETASSSSEPETNDELEQITIARALLNYRLKEKMAMASTLDSPIPFARKFPVQNTRPTSPQPPLATTSKILPLF CPKTASRHRPASSGANEKPAQPQPYGSEGRVVRPQKFPAAGAAPYVPIRQYRTSCRGIAPPVTVRTTVPCFSAPPHP PPSALPPQMMRAPAVRIAPSVTVRQAVPVYAAPPVHRDDSLTVRKEDPPTTPAPAQKVDSWTVFPPAILKDLPTV TAAAIQKEDTPTVTPAIQKQDCLTVASPVVQKENPPIVVASAVQKGYPPNSTAPSPQEILSQVEKRENTILNIEETEA ACSLGQLKI

>CsDRB3-5.2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKASVNFNGEIFESPSYCTTLRQAEHAAAEVALNVLSTRGPSRSL TARVLDETGIYKNLLQETAHRAGLNLPVYTTVRSGPGHVPIFTCTVELAGMNFTGEPAKTKKQAEKNAAIAAWSAL KRMPNLDSLTNKETDKPEEQDQAIVARVLSNFRAKDDNRNNNARRRDQSQARRRVVCRSHRDNCSAASSTSGNS SQYQQHWRLLDMLMDSALAVPTQKQSSYVSLVPPPPPRSTSKILPPITSLCPANIPIPALAKLDEHHHQGDHEEDW LFGKQDAIIKKPFEKEDSSSIIVHGTKSSIQKPFPQLDTSMLKTSLFDSTSQVGSSRFLGSLNPNPITPTSIRAKSMYTG GFNPQRIAPAVQIRSVIPVCAAPPSPPITTPSSSSSSSNPPSTKEAAEVSAASGSKLLNNPSSTQQLNPEFNKKLQL

>CsDRB3-5.1

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKAAVNFNGETFESPTFCSTLRQAEHAAAEVALDVLSKKGPSKV LAARVLDETGVYKNLLQETSHRAGLKLPVYTTVRSGPGHGPVFSCTVELAGVSFTGEPAKTKKQAQKNAALAAWS ALKKQAKSAFSSSSFSPPSSESGTNDEQDQAIIARYLATLKGPETNNSQREHRTIGVSASIRREVIPYGDARSLNSLQH QNWHCIPFYPELSLYQTCPQERVFRQQENLLALSSLPSSSPRPQIFPFIRSMFQPDHGYYFPSLVEEPVSLVPEIGPFL YFSNRVMPVPVRNVSQVSIQEIEENPRMEEDWRKGDGGSDCWQNNCPSNVPRLSQSEIPNSLVSFNSQSEQRMQE GLQGKGEEKSVSSAPNAEISNQLRNQTEQYNWFSPGFIDARFRPTTISKDGDKFRLQNTVSLDYLQSDSRPRNSTM VSSSGSVGGSVPPSFAAPMTIRASATASTASLRPQSSNPLVRAPPPRRTAASFCSSRPWPEGMRNQGGMPSRHYMA PAVHIRSVVPVCSAPPSKKYPDPSREKRTEEQRGDISAT

>TcDRB2 (42059)

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGETFESPHYCSTLRQAEHSAAEVALQSLSNRGPSHS LAARILDETGVYKNLLQEIAQRVGAPLPQYTTFRSGLGHLPVFTGTVELAGITFTGEPAKNKKQAEKNAAMAAWTS LKQLAKETASSSSEPENNDELEQITIARALLNYRIKEKMAMANSSSAPIPFTKRFPIQNPRPTSPQPPATTSKILPLIC PKVVPRNRSMSATANDKHILPQSQASIPESRGTRPQKFPAAGAAPYVPIRQFRTPCHGIAPPVTIRTAVPVFSAPPRP APSAVSSQPPASAVPTQPAQSVLPAQPPQSAVPRLQSPSTLPTQVLRAPPVRIAPPVTIRQVVPVFAAPPVRKEDIPS VRNEDVPTVIASALPNKSPAQVEEAASTIAKNLREIETVQSIEQLKI

>TcDRB3-5.3

MFKNQLQELAQRSCFNLPSYACIREGPDHAPRFKASVNFNGEIFESPSYCPTLRQAEHAAAEVALNILSARGPSRSL TARVLDETGIYKNLLQETAHRAGLNLPVYTTVRSGPGHVPIFTCTVELAGMNFTGEPAKTKKQAEKNAAIAAWSAL KRMPSLDSLTNKEADNREDQDQAVVSRVLSSFKPKDESKQFRRRDYNQAKRRMVRGNRDIGSPSSSSSVNSQLHQ QWRLMDLLMDSALDGSTQKQNSFVSLLPPPPPRTASKILPPTSSRDSPSSYFSNRPIPIHIRGKSEMKLPPPVLEEHL KDEEEWLGIKQDVINKSIEKERSSSSNLVSSSNVYGASRTSSIYRAIPLSSDGKLNPCMLDSAIGTEASQIISRLFGTPN PSQIAPTSVMAPTMAQNMYTGGFNPHRIAPAVKIRSVIPVCAAPPAPSRPQETTPSQLKEPSSTSRNAAAPPSSMSM QIGSAEVSSASSVLFNKSQPNSDQLSSELMNLQL

>TcDRB3-5.2

MYKNQLQELAQRSCFNLPAYACIREGPDHAPRFKATVNFNGEIFESPTFCSTLRQAEHAAAEVALNVLSKKGPSKA LAARVLDETGVYKNLLQETAHRAGLKLPVYTTVRSGPGHVPVFSCTVELAGMSFTGETAKTKKQAQKNAAMTAW STLKKLSKLGASPPSPPSESGSNDEQEQLTVACYLASLKPPETNKSSRRFQHHGQGSAPIQRDVSQYGGNRSLFSLQ HRNCARSQISPEVSMYQAWLEERAYHNQNHLLALSSLPTSPHRPQIVPYIHSVFQPDHRQYFLSQEPDPISLVPGISP VLYFSMHPVPVPVKSISQVTIQEIEEKPQVEEEWFSGDRDSNHWEKNYLSVASTPSPNTAINILGSLNSYSEQRLLER LEGKDEERSGRTMPNAGCSNQLESNQIEQYWVSSAFTDFGLRPQATSTDKPNLPLRNPHALDYLQSNARPQDFPV VSSATSTRGCLPGSFAAPVMVRTAGTSCPVTLRPENLNPRMPTPPPRRITASTCSRRPWLEGMKNAGVMPSASFIA PAVHIRSVVPVCSAPSAKKTPGPIQERLFPGV

>TcDRB3-5.1

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGETFESPTFCSTLRQAEHAAAEVALSTLANRGPSKA LAARVLDETGVYKNLLQETAHRAGLNLPLYTTVRSGPGHVPVFSCTVELGGMSFTGEPARTKKQAQKNAAMAAW SALRKLSQHGSSSSSSPSLEFKGKEEQEQVVIARFLSSLRPSKSRHSVLNDCQHEKQRSIPVCRDLTPPTPSLFGMQG QSWPYLSFSPEMAIYQIWQQEQLLQLQNHLFTFPVSPVPPGPQILPYVQSILHPDHCLSFRARDQEPIVTAPRLAIA TSGPSLSFSNQSASQPMMGKSTVTIQEIHEEIKEEPSKYSAPLVMDPPVPGQTNVETGIKESNQEDHKKKNVELESK GENVHRKLDAGSQPVDYQLQNPHAFESSHLRPQYRPKAEYYRNSRPPSSATAPMMIRTVNPVSSVRPNTQRPATQ VPVPPRMRTGAPPFSTRPRFERMNLGDMHPSSMAPPVRIRSVVPVCSAPPPREKPSFDQEGMLPNKEKKDTVSED VSTATSELSKLNM

>AcDRB2

MYKNQLQELAQRSCFNLPWYTCIREGPDHAPRFKATVNFNGEVFESPHFCTTLRQAEHSAAEVALNSLSNTNRGP SHSLASRIIDETGVYKNLLQEVSQRVGAALPQYTTLRSGLGHFPVFTCTVDLAGITFTGHPAKNKKQAEKNAAMAA WASLKQLVKQDPSSSSEAEHSDEQEQVTIARALLNYRLKEKMAMAESPNALSPFPKKFPIQHQRPSGTQPPSITTSK ILPLIRPKSDARIRPIVMVQNDKRQPPQFPVPENSGKRPQKFPALDAIPYVPIRHFRAPYHGVAPPVTIRTTVPVFSA PQLRPPTNRASLVMASPTVQISPPVHTRETLPVFSAPLPKLEEPMVVTISPTTNPSIPIEVIGKIEVSAVPQVCIKEPPI FPVPPPKPLTHRDEIGNKTAKDLQKSVIPGSVVSSLPTSSLPTSSLGTFSLAAKSPLHSQDVENKTGDDLEEYAMVQ GVKQLRI

>AcDRB3-5.2

MYKNQLQELAQRSCFNLPCYTCIREGPDHAPKFRASVNFNGEIFEGPSYCTTLRQAEHAAAEVALSTLSTRGPSRFL AARVLDEIGVYKNLLQESAHRAGLNLPVYTTERSGPGHLPVYISIVELAGMNFTGESARTKKQAEKNAAMAAWSAL KQLSNESCTSQTNKETETSEQQEQEHVVIARMLSHFSPKGENRTLRQREQNQVRKNMSSYYRDKNFGCSSTLLQH QQWKPTATGLLSDFSSIIRSNQQQNPQRGSFISSSKILLPTSSSTDKSNQSLCSFNKGTEVKVRSNYQVRIQDIPPPLE EHQKAEDEWLSKKEPVSEKTVQMDSNNADSKSVFRPKLVYHRPDQSSPSTQSSLIRMLPYGPPPSSNGIHSNTGIA PTSTILPSRMLNSGAYHGYSMAPAVHIRSVIPVCAAPPMRPSSSSSPIAPQKQQDLLSSVPKSSVIKETEQEVPTTSLK LNNLQL

>AcDRB3-5.1

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKATVNFNGENFESPGFCTTLRQAEHSAAEVALSELSKRGPSRT LAAKVLDETGVYKNLLQETAHRAGLNLPVYTTVRSGPGHVPVFHSTVELAGLSFTGEPAKTKKQAQKNAAIAAWS VLKQLPHMQASSSSSAKLENERKDEQEQIIVARALAKLCPPDMKKSTVQNDRYHGRQRSAPIHQDMRPTSSRMPL YPMQYPSWPYHHYSPEMTMYSMWQPQQPYQQQNCLLTLPVAPSPPGPQILPLVHSLFQPDHAQYVLARDKEPISV VASIPASASAPSHVLSNRAMPIHVRSRSQVTIQEIQEERTQEGEDWPQSDAKSDGNNVKIESNSPVFPRFEVQSPASS KTIVEPLLQEKPLEDQRHCRTESNTGHSAQQERISSEQFKWSSQSPKETAPGCGEFLLSSSDSFDSSTSKLALHSPRP SSGGVPKYCTKPSNAAPVRIKTVGASVPSVNPRPESLKAWVPTPSTFRTEAPACSARPRLMRTGGMFSTNFMAPAV QIRSVVPVCSAPPSKMPEPGQEGLRPISEKNKESEDVTAASSELDKLRI

>MgDRB2.2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKAIVCFNGENFECPHYCSNLRQAEHSAAEAALASISSRGPSQYS LAARILDETGVYKNLLQEIAQRVGSPLPRYTTFRSGLGHLPVFTGTVELAGIVFKGEPAKNKKQAEKNAALASWLSL KQLAQQDASSSTEQENNEEQEQIRIARALQNYRQKEKSETGNLNGVPIPFQQKFSVPTARPSISTSKILPLFCQKNAS SRNSRPSSIINDGHTTQMFTAFGAAPYLPHTSHCGLPYQGIAPPVTMRTSIPVFSAPPSGPPSVSIRPQRPMGIAPPVS IRPQRPTCIAPPVCIRQAVPVFAAPAGRQDPPPSKLLYKTDEAEKNESNCEVDESTAIRCLEQLEM

>MgDRB2.1

MYKNQLQELAQRSCFNLPSYMCIREGPDHAPRFKAAVNFNGESFESPSFCSTLRQAEHSAAEVALNALANRGPSNS LAARILDETGVYKNLLQEVSQRVGASLPAYTTFRTGLGHLPVFTGTVELAGVIFTGEPAKNKKQAEKNAAMAAWLS LKSLMQQTETPYEKTHKDEQEHVSVARALQKYIIKARLARLSFPINFPTLNPRPPSISHQSPATSSKILPLICPKTAYR NRPVTPLNSNGPTFQRPVITTQSQQHSSLMDSSFNLRPHKFPGAGAAAPPYIPVRHCNPHSRIAAPVTVRNMIPVFS APPLPPPPQAALVMMPLVPPAPAIAPPVCVRHSVPAFAAPVRMKERTTGNVVVKIEDPRISKSPTVEVEKPPVSLP SSEVVPTVQAEATVSEVSTPPASSQASAEETSAEIEGLKDLKI

>MgDRB3-5

MYKNQLQELAQRSCFNLPSYACIREGPDHAPRFKASVNFNGEIFESPTYSTTLRQAEHSAAEAALNSLSSRGPSRSL TARVLDETGVYKNLLQETSHRAGLKLPLYTTVRSGPGHVPVFTSTVDLAGMTFTGESAKTKKQAEKNAAITAWSA LKAMPNLGPLCEAKREEEEEEELSIRRRDQQPIRGRMQRRHCRDNNNNQRHESKLVDPFSETSVSHKNKISFISLLP PPPPPPRIISKILPPNLESPPPPLHQSNTSQIMAHQVEEAGQRGDDDQEWVNMISEAIKKKPIIQLVNSSSSSQITGR

>PvDRB2.1

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFESPQYCSTLRQAEHSAAEVALNSLSNRAPSHSL AARILDETGVYKNLLQEIAQRVGAPLPQYFTFRSGLGHLPVFTGTVELAGIMFTGEPAKNKKQAEKNAAMAAWSSL KQLAKETARSSTEPENNDELEQITIARALRTYRLKEKISMSNPNAPIPFPKKFQIQNPRPTSPQPPPAATSKILPLICQ KAASRSRHPVAASPAAAVSDNSAMPQLFATSDSRRIRRPKFPAAGAAPYVPIRQMRSPCHGMAPPVTIRTAIPVFSP PPPTAATLSLPVLRAPPVRVAPPVTIRQAVPVFAAPPVQIDEPVPSLTSLEPVTTPKDDAPTISSPSQEEKLPVKIPEI EIKTEKIPAESETVQRLMQLKI

>PvDRB2.2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFESPHYCSTLRQAEHSAAEVALNSLSHRGPSHSL AAKILDETGVYKNLLQEIAQRVGAPLPHYTTYRSGLGHLPVFTGIVELAGISFTGEPAKNKKQAEKNAAMAAWSAL KQLAKETASSSTEPENNDELEQITIARALLNYRLKEKMTMSNPSTPIPFHKRFQIQNPRPISSQPPPATSSKILPLICQ RTAPRCKPSMAKANESVRSRHPQAAITSDNSTLPPQSCALESRGIRPLRFPAVGAVPYVPIRQIRSSCQGIAPAVTIRT VVPAFAAPPCPPPASVPPHPVIRASPVRVAPAVNIRQAVPVYAAPPPRRDEPAPIPKDLPTASVSCQQDKQPIKFQE MDKPENIPPESETMPILEQLKI

>PvDRB3-5

MYKNRLQELAQRSCFNLPAYSCIREGPDHAPRFKATVNFNGETFESPTFCSTLRQAEHAAAEVALNTLAKRGPSRA LAARVLDETGVYKNLLQETAHRAGLNLPVYTTIRSGPGHGPNFSCTVEIAGKHFTGDPARTKKQAQKNAAMAAW AALKKLSEHSLSSSFSPEARGNGEQDQVIIARILANGSKNFSQSDNQLGWQKSTTTSLVSTHPTADMYPTQCQHCVI SSFSPEVALYQIWQQEQILQQQNRLLALTFQPIIPSSPHIYPLMQSMFQPDHCLYFPSELSSVPVGPKLSMATSSPSFC FSNQIGPELNAGRSTLTIREIQEEKTEDPPVCTFSNETRVLPPGSDDESKKHDSSGSRSRTTEQGEQCEKSEWDSHW SMGSVHRPINSELQNPSRIGSSVLRSHSQANYNRSFRPRAPSSSSIVRTICPTQSVVSRPQHVASRLRTGIPQSPGTSA PERFGMMRSPTPLFMAPAVRIRSVVPVCSAPPRRSMAEEVSKSKEKEDLKPEDKDVSRTSSELGHLRI

>RcDRB2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFECPHYCSTLRQAEHSAAEVALTSLSNRGPSHSL AARILDETGVYKNLLQEIAQRVGAPLPQYTTFRSGLGHQPVFTGTVELAGITFTGEPAKNKKQAEKNAAMAAWSSL KQLAKEDASSSSEPENSDELEQITIARALLNYRLKEKMAIANSPNSPIPFSKKFPMQGPRPTSPQPVPATTSKILPLFC PKTTRNRPTSTTITDRSVPTRTATSTTSCDRTVPPRQSPTLDFGSSSSEIPAAEQLLCPYPTIGRMPWHGSPVRVRSV VPVFAAPQCQPPSLPPQVLRGLPQQPPPVTIRQTSLVYAASPPVQKEDPLNVQKGNVVVPKEDSPASQKEHPDIGIE DSPTVKKEHSAVQKADSQAGQTDNPAVEVEDPLCNTKEDQAAENPNKSPAQLEEASTSTNKSLQESAMLQSLEHL KI

>RcDRB3-5.2

MFKNQLQELAQRSCFNLPSYACVREGPDHAPRFKASVNFNGEIFESPSYCTTLRQAEHAAAEVALNVLSSRGPSRSL TARVLDETGIYKNLLQETAHRAGLNLPVYTTIRSGPGHVPTFTCTVELAGMNFTGEPAKTKKQAEKNAAIAAWSAL KRMPSLDYLTNKEVVESREEQDQAVVARVLSNFRSKDEYNKQARKKDCSQARRRLVKGYRDYSSASSSSSTSSNS LHYQHRKLLDLLLDSALDSSTQKQSSFVSLLPPPPPRTTSKILPPTSPIDNPYSYPSSRCNPHQIQVKGKQQTKEIEEH QKDEEEWPGAIKKSIEKESSSSSVYGSSSLYRQFPHQESTSHIGNRIFGPSSTSIKSTPSSIHMCSNSPFYSGMLYPHRI APAVQIRSVIPVCAAPPAAVRPAPAPAPASSSTTTITAKSTQAGAGAGAAAEVSMSSSMVNKTTTTTEPSSHPTQLSSS EFNKKLQL

>RcDRB3-5.1

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGETFESPAFCSTLRQAEHAAAEVALNTLASRGPSRA LAARVLDETGVYKNLLQETAHRAGLKLPVYTTVRSGPGHVPVFSCTVELAGMSFTGEPARTKKQAQKNAAMAAW SALKRLVQHGSSSSSSLVENRKGSEEQEQVVIARFLASVQPSELKINKQNDCQTGHERFIPVCKDLTPPTPSLYP MQSQNWAYPSFSPEIAIYQMWQQEQLLQLHNRLLTLQVPPAPPPAPPMLPYMQSVLPPNSHLFFPLRKQETVPVG PRITIASSGPLLCLSDNVDSDSVRGKSAVTIQEINEEKPEDLSDCSPSIISDPPVLGNLSAEARFKESHDDDKNNAVES KVENVRLAENPSGQSSHRNTDSGYSQVDFRVQSPGVFVSCHASSQFSPRQSSTSCRPPPTVMIRNVGPRPLPAAPPV RIRTMGPVSSVPRPHDLAAQIPGPPRMRTGAPSYSARPQPQRMDFVGVHPRFMAPAVRIRSVVPVCSAPPPARKM PTAGQEGALLNKQKNGSVPEDISTTSEFSKLRI

>CusDRB2

MYKNQLQELAQRSCFNLPSYTCIREGPDHAPRFKATVNFNGEIFECPQYCSTLRQAEHSAAEVALNALSNRGPPHS LAARILDETGVYKNLLQEIAQRVGAPLPQYTTFRSGLGHLPVFTGIVELAGITFTGEPAKNKKQAEKNAAMAAWSA LKQLAKESASSSSEPENNDELEQITIARALLNYRQKEKLAMSNPNATIPFHKKLQIQTPRPTSPQRPPAPTSKILPLIC QKAAPRSRAPFSANKIPIPQSQTPALEGSGPRPQKFSAGTALSYIPVQQFRTSCHGIAPPVTIRTAMPVFSAPPLPQPS KLPPQQVIRVPPIRIAPPVSIRQAIPVFAAPPVRKENPPV

>ZmDRB2

MYKNQLQELAQRSCFNLPSYTCLREGPDHAPRFKAAVNFNGEQFESPGFFSTLRQAEHAAAEVALAALARRGPSYS LAARILDETGVYKNLLQEVAQRVGAPLPLYTTERSGVGHLPVFTCTVELAGITFTGDHAKNKKQAEKNAASAAWSA LKQLVREEVNSSNETENSDEQEQIRIARALLNYRLKEKMAMANYPHVSPFPKKFPMQPERKPSFGQSSQSSYSKILP LFRPKSNSRSRPESPASTDGASQMPGRAMDIHTPSPRSRFPAAEAAPYVPVGHFRMPCHSMAPSVTIRTAVPVFSA PPLPPPSARPQQLPPLMSHPPPIRMASPVRMRPASPMFASSAPAQGPKLVRPVQLKDVQDQPRKETAPSVIPVQVK DVQYQSRKSSMSPVIPVVVKDAQRQPLPVQTKDVQTQTQAPKESLADPIPAIRPAVKIDLPAQGKKEASAGATSEAP SSATGNNGAMERGTSSDVLLARRSRAAVDGDGDKVEAKHEAEAQAVAEAAIRQLEIN

>ZmDRB3-5.2

MYKNQLQELAQRSCFNLPSYSCIREGPDHAPRFKATVNFNGEMFESPVFCSTLRQAEHAAAEVALNELSKRGPSST LAAKVLDETGIYKNLLQETAHRAGLKLPIYTTIRSGPGHTPVFACTVELAGKAFTGNPGKTKKQAQKNAAMAAWS ELKKLPRVGEPSSSSCPPDQDDEVQEQVVVTRTLASLNQANSGKVPHQKEKQQSNNRPSSRRCYPKPNTPFYRPF MQNQAYPSVPPDQAMYHLWHRMQVTANASLSSGTSYGQYKFLPTSSYAPHVPSFTSRAILQSG

>ZmDRB3-5.1

MYKNQLQELAQRSCFSLPSYVCTREGPDHAPRFRAAVTFNGETFEGPSGCTTLRQAEHAAAEVALARLSLRGPSTT LAARVLDETGVYKNLLQETAHRAGLKLPAYTTVRSGPGHSPVFSSTVELAGLSFAGDPARTKKQAEKNAAMAAWS SLKQMPEARKEPGAGDEQEHVAVARALAALKPRDGGDGKAAPPLQKHSSNGSSSSALPNPSLYRHQWRPRTSTPA QAQPLPPRTGALPLQPPAGPRILPPLHLLQRPACGSRDAAAAELVRMLERAMVRDREATPPSPCYYAAPAASAYRH GSAPRTFAAGGFHAPAVSVRSVIPVCAAPPPQTPVKEERNGPATPSGACKRA

>AtDRB4B

MDHVYKGQLQAYALQHNLELPVYANEREGPPHAPRFRCNVTFCGQTFQSSEFFPTLKSAEHAAAKIAVASLTPQSP EGIDVAYKNLLQEIAQKESSLLPFYATATSGPSHAPTFTSTVEFAGKVFSGEEAKTKKLAEMSAAKVAFMSIKNGNS NQTGSPTLPSERQEDVNSNVKSSPQEIHSQPSSKVVMTPDTPSKGIKVNEDEFPDLHDAPASNAKEINVALNEPEN PTNDGTLSALTTDGMKMNIASSSLPIPHNPTNVITLNAPAANGIKRNIAACSSWMPQNPTNDGSETSSCVVDESEK KKLIMGTGHLSIPTGQHVVCRPWNPEITLPQDAEMLFRDDKFIAYRLVKP

>OsDRB4A

MYKSRLQELCQQRRWAPPEYTHRCAGPAHAPLFGATVSVNGVEFRTPEDAARSAKEAHNIAAKAAFDHLSSLPLP PPPPSENQSSYKSQLQIYAQKKGKLLPSYQTIREGPGHASRFKSVVTVDGKAFESPEYFHTVKEAESAAAKLALMS LPQEASSSEQVPVQPLSYKNLLQELAQKHGFSLPVYSTTSDGSVQVPMFKSTVVFQDGSFQGEPANTKKQAEMNAA RVAFQHFEDRRKNALSSTVLRGPHLGQGTVHISAGQVKIAEPVFSVPLASTATSHSATGATDRDYHSLGSTNPLPIA KSTNCADVHIQPCEFKDEKPAFPEPKTVLEVMDSSPELTPLEDAYSAPVASTSTVSSSGCGSDPLASASTVNSTGCGS VPLASASTVSSTGCGCSLLTNRVQVYPRRPDLVLPEGATVLPFSDDVWVAVSLPTLNH

>SbDRB4A.2

MYKSRLQELCQKRRWAPPVYEPTREGPAHTPLFRATVVVNGESFSSPDEGERSVKEACNLAAMAAFENLSALPAE APAPAPAPAPPPPETQLRYKNQLQEYAQKRGKLLPSYRPIHGGSLRAPLFKSEVTIDGQTFESPEYCRTMKEAETAA AKVALMFLPQEAGPTQQLPLPSVSYKNLLQEFVQKEGFPLPTYDTTLDVSNYSAAFISTVEIQGATFRGEPGNTKKQ AEMNAAKIAFQHFKDINHDAGSAGSANRLPVAATTQSLDGNTLSAKLEVNKPLLAEPSTEVDKLPLLGPSMDIEVM DSTLEVDKLSLPEQSIDIEVLKVDKLHSPEASTEAEVIHSSLQVDEPLIPEPSTEVEGMDSSLEHTSVVNGQAALIAPT ITSTLSMSTATMPVSNDSCGCYLGTNRIQVYPRHTDMVIPEGATMLPISDNQWVAVSLPYSNNN

>SbDRB4A.1

MYKSELHALCSKKHCPKPEFVHTCEGPVHSPVFTATVTLNEKKFCAGEGTPSKKEVDNLAARAALLSLADSSKPFE SKTDFKTQLSVYAQKLGKVPPLYKLIQEGPAHAPRFNAEVTIDGQTFGRPELLYYKLKDAEAAAAEVALDLLPPIPP QESTIPSLSYKNFIQEIAQKEGILLPVYNTVPTNKEYSTAYKSSVQIKCEIFEGEPRTSKKQAEMNAAKIAYHHLALLE LDGDDNERPDH

>SiDRB4A

MFKSRLQELCQRRRWAPPVYEHTREGPDHVPLFRATVVVHDEKFSSPDEGARSAKEAYNLAAMAAFEHLTALPA EAPVPVPAAPAPPQPETQIPYKSRLQIYAQKRGKQLPSYRTIYGGSLHAALFKSEVTIDGQTFESPEYCRTLKEAETA AAEVALMSLPKEASPPLQSLVPSVSYKNLLQELAQKEGFPLPVYATTSDVSNHSAAFISTVEIQGTTFQGEPGNTKK QAEMNAARVAFQHFKDRDKGSACSAVPGGSCMQQGTKNLFSGQNIKILSSKQQGTENLFSGQKIKILEPEVPVVST ATHGKDNDFDAINHDARSAGSANRLPVAATTQSIDENAQSVKLEIDKLSLPEPSTEVEAMNSSPEVNKLPLSEPSM GIEVMDSSSEVDKLSLPEQIMDVKVTDSSLKVDKLPLPEPSTELELMYSSLQEYEPPIPEPSTEVEVMDSSLKVSEPPI PKASSEVEATDSSLEHTPTVNGHSPLVAPTSTSSLTVPTATMPVSSDGCGCYMLTNRIQVYPRNTDMAIPEGATML PFSDDMWVAVSLPYRNNNEDGEAAA

>PtDRB4A.1

MYKSKLQELCQQRAWELPTYESSRQGQAHNPRFLATVTVNNISFHSPSPSNTSKKAQNDAAKLAYEHFSISRPSPS PSPPVSGSLSERAGAITCLSPGGTSQFNTQDANRTSHINEALAVAKNDESFGGSLSVSTRANSHLSLRGSLQLNTQN ANQTPQVNEATTVARNDESSGDMQRLFKSQLQTYAQKRNFALPVYSCERVGPPHSSRFKCKVTVNGQTFESLEYF STLNKAEHAAAKAALMSLLPNGVEEDESGYKNLLQELAQREGCGLPTYSTNKSGEAHVPTFISTVEIEGEIFTGQGA KTKKQAEMSAAKTAYTALKQRNSSPSPAVLSPACQFQEAPQSSTLLTPACQVQEAVQSTTCHSLAHQGHEALQFST PSLLADLTAYLQQNIQPKLPVPSEQDEEDRACSEVRSRHPFIASSGQDSVSAVTSITSLSGVAISSLPKHDLSSSSLPSD SSTSSAANSSIEHLVGRSTTCQSRIIVHPRGATVTYPSGTTVLPISDGNWVAVKIPPQPSQ

>PtDRB4A.3

MYKSKLQAVCQQRGWELPTYQVTKQGKDHNPLFSATVTVNATSFSSPSPSSSSKTAQSDAAKLAFNHFSLISSPSPS RSGCWSGSAGGNARLSPRGKLQLNLQAANPTPLSNEAVAVGKNDESFEGCSSGSTGGNARLSPRGKLQLNLQAAN PTPLSNEAVAVGKNDESFEGCSSGSAGGNARLSPRGKLQLNLQAANPTPLSNEAMAVGKNDESFEGCSSGGAGGNT CLFPGGKLQLNLQDANPTPLSNEAVAVGKNDESFGVSAGFSSGNAGGNTRLSPGGKLQLNLQVANPTPLSNEAVAV GKNDESFGGCSSGSAGENTHLSPGGKLQLNLQDANPTPLSNEAVANAKNDEIFGGMQHLFKNQLQTYAQKRNFTL PVYSCERVGPPHASRFKCKVTVNGQTYESQEYFPTLNKAELAAAKAALMSLLSNGVEEDGFGYKSLLQELAQREGC GLPTYWTDKSGEAHVPTFVSKVEIEGEIFTGQGAKTKKQAEMSAAKIAYTALQQRYSSQSPGFLSTSSQFQEAPRSS PLSPARQSQEAVQSETPQFSVSNLRAGLTAYLQQNIQPKLPVSNEQAEEYRANSVVSNHNPSIASPGQDSCSAMASI TPSPAAAISSSPKHDLTSSSLPSDSPTNLATSSSIEFMVRGIRVLMHPSGTKMTYPAGSTVLPISDDKWAAVELPPQR SR

>PtDRB4A.2

MYKSKLQQLSQQRGWEIPKYEVTKEGQEHSPHFYATVTVDATLFSTPFPSSSTKKAQNDAAKLAYKYFSDHPRPSS SSPLNDCSGGSAGENTRPSPGGKLELDIQDANPTPLSNEAGAVAKTDESFGGILHLFKNQLQTYAQKRNFTRPVYSC ERVGPPHAIRFKCKVTVNGQTYESREYFPTLSKAENAAAKAALMSLLPNGVEEDESGYKNLLQDMAQREGCGLPT YFTEKSGEAHAPTFISTVEIDGVNFTGKEARNKKQAEMSAAKIAYTARRR

>BrDRB4B

MDHMYKSQLQSYALKQNMELPVYAAERQGPAHAPRFRCKVTVCGQTFQSQEFCPTLKAAEHAAAKVALASLTPL NPEASSHSFWTGVVVDVAYKNLLQEIAQKENSLLPVYGTSTSGPSHAPTFTSTVEFAGNVYRGEEAKTKKLAEMNA AKVAFMSIKYGHPNQSPSSPSMTSEKQEAANSNVKSSEQVSPSQPSKMVTPDVPSKWIEVYEDELPDVLNAPAINT AASPVATHPNEDATLTAAPAATNSTEMMNVAAADSSAMPTNNVNEPPPRVEESEKKLVMGSGYQSIPSGQHVVC RPWNPGMTLPEDAEMLFRDDRFIAYRVVKQ

>EgDRB4A

MYKSKLQELCHHRSWSLPEYAAVKEGPDHMPSFTGTVSLNGSSFRTPHACRSSKEAQNEAARLAFDHFSAPRTPP REPPRAAPAPAPAPAPAPPPSDHGSDDAAGACASSENTKLNSIFASLEKVQPRLPDRNETSKVYESHTLANLEKEWP ELPDRGEISKAAESSSIGNNNTTVKDMRHLYKNQLQTFAQKRNLALPIYCSEHEGPPHSRRFRCQVSIDGRTYETKE FYNTLKEAEHAAAKIALMSMSSDTTQEVDCGLYKSLLQEFTQKQGHCLPVYDTIRQGESHTPIFVSTVEIEGENFKG QEAKTKKMAETSAAKVAYTILKERISGNKSVSLTSQSPVLQREKVALSSYCSPADDGIGYQQRVTTRPTPDVISNHSG LDEKQIDDNENVEDSNHNLPGLSSGLDRFERGSTDQFMPNMSNAHLTDPYLAVPSSSEDASSSSSLTNSADVVMD STVQPPAELNGSSCKVVRVYSPASNMAFPGDRIFLRDDKWVAASADPSYRGHAA

>ThDRB4B

MDHVYKSQLQSYALKQNIELPVYAAERQGPAHAPRFRCKVTVCGQTFQGEEFLMTLKAAEHAAAKIALASLTPLSP EGTGTDVAYKNLLQEIAQKESSLLPVYATATSGPSHAPSFISTVEFAGKFFRGEEAKTKKLAEMSAAKVAFMSIRHG HPNQTSSPSLPCERQEAANLNVKRSVQEIPSQPSKMVTPDVPSKWIQVYEDEFPDVLNASANTVKEKNIAVLPVDS HPRNDGNLSAPATNAMEVNIAADSSAMPQNPTDHGNESESSCVEDCEKRLIMGTGHRNIPTGQRVVCLPWNPEM TLPQDAEMLFRDDRFIAYRLVNP

>CsDRB4A

MYKTKLQELCHQRVWNLPVYTTAKQGLDHNPRFQATVTVNDQSFTTPDLYKSSKEAQNDAARIAFQHFSSPPPPS STPAASSSNGSSSESAVQVNARETDRTTQVNATISTVNDVHKSRDMQHLYKNQLQSYTQKKNLPLPMYSCEREGP PHASRFKCKVTIDGQTYESHQFFPTLKEAEHEAAKVALMSLSLDKFQQDDSVLYKNVLQELAQKEAYALPVYNTK QSGESHAPTFVSTVEVGGEVFSGQGAKSKKQAEMSAAKVAYMRLKEPNPSQGPALVSPDIQAQADYSSSSLQSNVT ADLHHNIQTAGRLVFNPNSMPKVQAEEIRELTTVNTEVAGYDLSQFPQPEFSSSSDLSASSGVEKGMPSSSLPLECT VDPRVDPIAQSVRADGRTCKIIRVRPNRPNMKFPEGSSVLHRDNQWVAWTDGSQSN

>TcDRB4A

MYKSKLQELCQKKAWDLPEYDTTKQGQDHNPRFEAAVVVNGMSFQSQNPVKSAKEAQNDAARVAFLHFTSPPLP NPGSSNVTANFDSNIENRRTVQPGRQETNRLSQVNETGSVCKDNHRVKDIQHLYKNQLQVFARKRNVDLPVYSCE CEGPPHASRFRCKVTFNEQTYESLEFFPTIKEAEHAAAKIALSSLSPDAFQEEDFSFYKNLLQELTQKEGCPLPVYTT TRSGEAHASTFVSIVEVKGNVFTGQEAKTKKHAEVLAAKVAYMKLKERKSNRGSMVINPAYQERQVPVLSLSHSRS NVNADTQQNFGPKACTLFNPSSTTREDQHEDIVYGTFRNHLLSIPFPQPEMTTDWQSSSSTSSLYDPLLPEDDLSM SNLPSNHSATTNSVTNSITMEPVAMSTVPCNKVIVHPRVPNLNFPAGSTLLPMSDENWVAFKLESQPNQ

>AcDRB4A.1

MFKSKLQELCQQRQWELPNYSLNKDGPPHQPRFKASVLINSDSFDSPDFCKSSKEAQSEAARIAFQHFSLPKPVVSS SVSTPLSSSSSTSFSNASTVLRNIPIGEGNMLGKNEEVSNTSPSHGTAVVVKDDKDFGGQEMQSFSNVLYLYKGQLQI FAQKRNLSLPVYSCTREGSSHAPRFKAIVTVDGQCFESPEFFRTLREAEHAAAKVAFSSLSKDGIQEDDCPLYKNYL QELTRKEGFSIPNYMTTLSGASHVPTFTSTVEVEGGVYHGVAARTKKQAELNAAKVAYFSLKERQSKRIPAPLSNN GDAQGSLENVFSSLHSGITVVPAPLSHSDDAKVSLEDVFSSCRSRNTAVSAPLSHSGDAQVSLENVFSSSHSSITVVP VPLSHSGDDKVSLENVFSSSHSGITAVPAPLSHSGDAEGSLENAFSSSHSSITVAPAPLSPSGDAKVSLENVFSSSHSA VTAVPAPLSHSGAAQVTLENAISSSDSGITVIPAPLSHSGVAQVPHENGVSISHSSITVVPAPLSHSGNAQGSLENVSS SLSGVTVDFQRKLTWKDEDQEAPSDAIFSRRVKASADHSTTPLLDPGTNSKSRIKNTASLDVIYEHLQVPVPSIPSPE FGTLSPTTVLEGSNFSATDLNSNLLAKEGALLCNRVMVYPRKPKLEFPKGTTLLPITDDHWVAVNLEYPNE

>AcDRB4A.2

MCSHFIIWTNPNCTYSKDGSDHKPQFKASVIINGVSFHSPHFCKSSKEAQNEAARIAFHHFITSPTITNSPVSTDSSSA SNVLRNGSSGEGTLLQNNEEISNKSLIHGNASVVKDGQDFQDVHYLYKSQLQNYAQKRSLISPVYSCVSEGSPHALR FKAMVTVDGQTFESLDFFRTLKEAEHAAAKAAFSSLSKDGILEDDCDLHKNLLQELTAKEGFSIPVFTTIKSGASHV PLFTSSVEVEGDVFHGVAAKTKKQAEINAAKVAFLSLKERLLSRTSAPLSQSINVQKALDSINCSTLSSTTTDLQQKL NLEADGDKEAYASEVIANRVKVGADHLKPENGSEPGNRGSSSSDISCEREHVQVPWVLSSQDGSSSPTTVLKHSDP AVTKQDTDLPPAAFTLLCNRIQVYPCKPNLKFPKGVTVLPLCDDKWVAVSLEYPN

>MgDRB4A

MNKSKLQEFCQRRNWELPEYTTVKVGPDHMARFTAVVNVNGHRFETPEPCKSAKDAQNTAARIAFNHFNAPPPP PPAHALPTASSAIYPQISAVPPAALLPAVPPSEVHRPVTATIPNSPAPSSLPVPPPGFLATKNDPQQSSGDATQAST VYRIAIGSNHKDAVSMYKNQLQQYGQKQNIGFPVYSSESEGPPHSRRFRSRVSLNGKSYETVEFFPTLKEAEQAAAK VACQELSLNVIQEDVGLHKNLLQEFAQRKGLLCPSYETTSSGMSHRPSFVSTVEVGSNTYTGAEAKTKKLAEMNAA KVAYCALTHSGPPTQSSRMPSIDGIAVADGTIKKHPDTTDEETRAQAKRAKSSPEKTNANIHLQDPSQHSNLPSSSG ANMVHSQMENAIAAEPVTEQRVAENQPPVHGTTVVFSTNYTLPIPERASVMPYSDNQWIGYKVNVDQEPNS

>PvDRB4A

MYKTKVQELCQRRSWTLPDYNTTREGPDHDPRFISTVTVNGVSFETPSATRNAKSAQNDAAMLAFLHFSPPSSSSS PSPSPSPSLSPSPSPSPSPSPSPSPASFPQHVLSVSALSSFPQPSLCNSSSGALDPRSVVDDVLHTNGLFQQLKLEEVCQ TSQISSPLAAVRDTITVKDQKNMLHLYKNQLQSFAQKKNLGLPVYSSEWEGPPHAMCFKCKVTIDGHTYESDKLYS TLKDAEHAAAEAALMSLSPGGDQEAHAGLYKNLLQELAQKEGFQLPIYSTNKKGEAHMPIFVSHVKVEGGLFTGQE AKSKKQAEMSAAKVAYMALKEHGGKSDKSSSFPFSNYEGQILEFSPDHSESNGVSGLKRNANPNSSVGLGLVTWKE RSKDTLKNVSTSSGNSNGCTEDSTLSNGRSSPSLSGSTKMVSDTSDKSSTAVNTTSSCTKKIIVYSRKTNVKIEDGGT LLPISDDKWVAYSYSDFR

>CusDRB4A

MFKTKLQELCHRKSYKLPEYSVVKQGQDHDPRFEATVTVDGKQFCSPTPSKSSKQAQNDAAKLAFDFFSLPSLPQP PEQLCPQPLLPQSSSPPKLIPSIPPFPPSLNLSSFPQPSLTSQLGNFGAITNLDNKVTSPPRPEVKHEVSYKSSELKESS KDSPIMSNMDVKFTAQSVEPRIQNTNKSPVVEDFDKECLKLTGMQHLYKNKLQNFSQKRGLTLPMYTCERDGPPH ASRFRCKVEIDGKTYESLEFHGTLKDAENAVAKVALMSLCQDGAQEDSDSGLYKNLLQEMAQKGGLGLPAYSTSQS GEVHVPVFVSTVKVGEENFEGKPSRTKKQAEMSAAKVAYFTIKEGSQSISTRKRAPSCDLALEVPRDIATSSHNVAQ PGQSKDYVSRIVSRLEAGKSSSSKRIFVCPRQPNMTIPKESSVLPISDDQWVAFSFETGPSQ

>ZmDRB4A

MYKSRLQELCQKRRWAPPLYEPTREGPAHAPLFRATVVVNGERFSSRDEGEKSLKEAYNLAAMAAFDNLIALPAA ALAPAPAAPAPPSSETQLPYKSQLQIYAQKRGKLLPSYRPIHGGSLHAPLFKSEVTIDGQTFESPEYCHTMKEAETVA AKVALMSLPQEANPTQQLLLPSVNYKNLLQELVQKEGFPLPIYNTASDVSNYSAAFVSTVEIHGVTFHGKPGNTKK

>TcDRB6 MENPILAFLESKLFNQPSAPNPSRAPEPLMHKNRLQEYTQRSSIPLPVYQTTNEGSLHAPRFRSTVLVDGTSYTSLD TFSHRKAAEQDAAKVALDCITKKIKDEGCPIIREDTVFCKSILNEFAVKMNMEMPSYNTIQSEGLIPLFVSSLVFNDV TYSGKTGRNKKEAEQLAARAALLSLLDDSRYGTFLSEIIKSKAKLYVALNKVKDSSISHIGTTPAGANTSIHKNEEIET AVVTNSVPNTVILPSSSGAKRPHHVFKIEKLEEGSEHIDLPIVFVPTAVAESLPVGESSSRKRRRKKKRAKLDTETQ

>CsDRB6.2 LPEKHLYKNRLQEYTQKAGLPLPTYRSKNEGFPHVPKFWAQVEVNGKTYASTGRFTHVKEAEQDAARTALEHITQ IVKNAGIPTIQDPNYCKSILNEYCAKINLKKPEYTTTFGNEKHPVFISSMVFNGETYKGEVAGSKKMAEQLAARAAIQ SLLESGSEVIRQIISSKFNIHKPALGFKDLGTDRSNLQIVVKSGNTVVFLYDQRH

NRLQEHAQRSGIPLPVYQSHNEGFQHAPKFRASVSVDGVTYTSPNTFSHRKAAEQDVAKIALECISKKIKDEGCPLI NQDTVFCKSILNEFAVKMNLELPAYSTRQSEALLPVFVSSLVFNGVTYTGEPGRSKKEAEQLAARAVIRTLLVTSGS ATILSEIIKSKGKLYAALNKVKESNYSTQKIATSYVPTTAIPKSSSGIHPIPTTPEASVGMHSIPTIPEATAGIHPTPAIT EASTGMHPTSAAIEVSTGMHSTAADSETSTGMNLPCHPFKKPKLEPPSEPVVLPIPFVPPVLGQHSEGGSSSTNKRR KNKRKANKKLRTDAQPCVSAQPLTQVPPCSVAQ

QALAPPSTQASERAQVSCPPSCVPEHVRYKNRLQEYTQKIMVHFPIYNTINEGSQHAPRYRSTVFVDGKSFTSPNTF PQKKEAEQNVAQIALELLSQKMEDEACPLIHEDTIFCKSILNEYAAKMNLEMPNYRTIQPQGAVPVFASSLVFNGVT YTGDVGKSKKEAEQLAARAAIQSLYDDSKSKIVLLKTIKSKWKLYAAHRETKYSCPVGVNMGGNSEISDTKNREGSS SGPPNYILGSAIPEACSELPKPHHLFQIPRAVAVASSAVENPLISFVPSSTEQQPIAATNPGKKRRKN >CsDRB6.1 MAESQRTDIEAVLSSLPQPQLSDPCPTEAQAQAQAPAPAPVQARVQAPATASASKSVTAPVVLTPNRVPEHLMHK

>EgDRB6 MRERRLSASSPVPVRIDDLTQFRQPELPNVEPEQASAPAPPSSWAPVKAQTFDPSLSVPIGRKNLSQLHQPELPVAE PSQVPAPPSSGAPTQAQAFDPYLPVPVRTDNGGQFRQPELPLAEPARAPASPSSQAPMQAQAFEPSLSVPVRTDNG GQFRQPELPLAEPARAPASPSSQAPMQAQAFEPSLSVPIERNNLSQLHQPELPVAEPAQAPAPPSSGAPMQAQAFD PYLPVPVRTDNLSQFRQTELLPLAIPTQALALPSSLAPASSQAPVQAQVFNPSLLVPARMDDLSDFSQPEPPTVVPA QALAPPSTQASERAQVSCPPSCVPEHVRYKNRLQEYTQKIMVHFPIYNTINEGSQHAPRYRSTVFVDGKSFTSPNTF PQKKEAEQNVAQIALELLSQKMEDEACPLIHEDTIFCKSILNEYAAKMNLEMPNYRTIQPQGAVPVFASSLVFNGVT YTGDVGKSKKEAEQLAARAAIQSLYDDSKSKIVLLKTIKSKWKLYAAHRETKYSCPVGVNMGGNSEISDTKNREGSS

>PtDRB6 FQNPLLNMDNPTESELSNPASPSPAPLALAPPPCTTPDLAPHPVTSPDPTPSQAPVPDPTPSPAPVHEPTPSPAPVP DPTPSPAPVHEPTPSPAPVPDPTPNPAPENISFSKKLVKKGLPDNLMYKNRLQEYTQKSSLQLPVYQTLNEGPAHM PRFRSTVWVDGARYRSQKTFLHRKAAEQDVANLALESILKRVKDEGCPLLLGDTVFCKSILNEFAVKVNREKPTYN TVQSPGLLPVFISTLVFDGVSYTGDAGRNKKEAEQLAARAVILSLIGNSGSSKILYEIIKSKSKLYAALDRVKDPSHSQ PNIVPVAVKVGHCSETTVDQEQEVSTAVVRDAAPVSANIVPVAVKVGHCSETTVDQEQEVSTAVVRDAVPVSAIPP

AASGMHPSHHDSKRPRPDLHPVSEQPLVVDFGSSSAKKRRKNKKKDNKETDTQFPTDAIPLNQASPCSVAQ

>SiDRB6 MAATATATTTAMEGIEATAAATTTEAAAGQSAAIPEKYMHKNRLQEFAVRTQKKLPIYNVEREGEYHHPKFRCTV EVGGQKFSSTGSFSRKKEAEQDAARVAYEILAPIEEGDVNKEVFGLIDQDVVFCKSILYEFAVKTKTARPSYSEDCLK EPFTMFVGSVVFDGNTYTGESASNKKDAQQNAARAVIKSILATGNSCMSGIIRSKKHLITAIKSSESTPTAFTPIKFTR AVTYAAYGGPDHVAPASQDESSSLGVQEHSIVPAVGTSANPSAKAVSGSKKRKGRVGGADVNGTMVAKEH

>SbDRB6 MAAAATAATAEIGTAVTATSSEMEATATAITTAAAAGPPPAIPDKYMHKNRLQSFAERTYKKPPVYKVESEGASH QPKFRCTVEVGGQQFSSAGSFDRKKEAEQDAARIAYEILSAVGEDDIKEAFGLIDQDAVFCKSILNEFAVKTKTTWP SYSLVYIEKPLTLFAAIVVFDGNSYTGESARNKKDAEQNAARAVIKSILAKHNTCMVGIVRSKKQLITAVKSSGSSPA TFTPIQFTRPVSHAAFGGPDHVAPMLQNASSSLAVQGGTNAVPAVGTSANPSSANVGHSKSKKRKGRV

>OsDRB6 MAAATAEPLAVAVAVAHTATAGTDHSPAPLPPPPHCNYKSKLQEYLQQANKQLPIYCTKCKGEHHQLKFKSTVM VDGEEFSSTFCHRRVKDAEQDAAKVAYDTLLERKETETDDTDVFELIDQDVVFSKSILHEYTTKTKTDQPEYSVTK TEGSVTPYVSSVSFAGHTYTGGAARNKKDAEQKAARAAVKSLLATNYTSMAKIVRSKEKLIRAISPSGYNKGIDSNP TNKKLPFAPIKFTPPSIFKLYDGEIDMLSVPQALFAPLVAAEEPKVRPAAEPASNPSEQAVHVSKKHKDNKVRGPEV KEERVAQ

QAEMNAAKSAFEHFKNINHDAGSSGSANPLPVAATKQSVDGNTLRAKLEVNKSHLAEPSTEVEAIYSSTEVDKLPL PGPSMDIEVMDSTLEVDKLPLPERSMDVKVVNSSLKVDKLHFAEPITEAEVIHSSLQVDEPLIPKPGMSSSLENTPA VNGHSAPISPTITPTLISVPTATMPVSNDRCGCYMSTNRIQVYPRHTDMVIPEGAAVLPISDNQWVAVSLPYSMEQR

>AcDRB6

MDLLQEPKPQPQPPQPKPRQPSHEKTHKSLLSEHIQKSTLPPPSYLTTREGVSGKYTSTVYVDGVVYKSSEGFLRSK DAEQDAAKVALENILMKHKDEGCTLITENNAFCKSILNEFAVKMSLQMPTYTTTLSQGILPIFISTCEFHGNTYTGK PGRNKKEAERLAARSAIESILGSESGHHLSQIINTKRKLYATVQNVLIPSSENSAELENGSEPPLAFQPFKKPKVEPIC EASSDPIESETPMLDQQPCADQGRTASSSGTKRGMKNEKNTQVELPVDGCSRVQAL

>MgDRB6

MSPPASPPPLPGVPKESWYKNRLQQYTHRASMPLPIYETFNEGAQHASKFRSRVWVDGVCFTSPNTFSNRKASEQ DAAKHALIGLREKVKNEGSSRILANATFCKSIINEYAVKMNIDLPSYLTNESKELSVPVFGSSLNLGGVTYVGAAGRN RKEAEQFAARSAILSILESESDTTMSEIVRSKFRFYDAKTVNNSAVVQLDTTPNEVQAKDPSSDNAPPPEVNSLENI DATSLINKRKACNDDSSSVNEGNMPAGGIPLDEDVGLNKRQKVNSGTIPNVVNPNPLEHVNHSSEGNGETLLIAET GNVPAGEIPLEHVIHSSESNDETLLIVETGNVPAGGIPLEHVDHSSENKDETLLIAETGNVPAGGIPLEHVDHSSENN DKTLLIVETGNVPAGGIQLEHVNHSSEGNGETLVNVETGNLPAGGIPLEHVNHSSENNGETLMIVETGNVPAGGIPL EHVNHSSEDNGETVLVVETGNVPAGGIPLEHVNHSSENNGDTLLIAETGNVPAGGIPSEHVNHSSENNGENLPIIKT EVNANANLQHSILAPFASHEVMHPESSTEPSGTLASSPVIAPSPSEQPISAKQCRDSSDQSTGFIFSG

>PvDRB6.2

MASAPSDSAPPDSAPPSDSAPPSLPAVPVPVVSQSPGPLMYKNRLHEFATRSGIAIPVYQTVSEGEPHNPKFRST VWVAGISYTSQSTFPQKKAAEQEASRLALEITLQKTRDEGPSLVSQISPFCKSIINEYASKLHIEGPSYNTVQQQQGG VLPVFTTSLVFNGTSYTGDPARTKKEAEQSAAHTAILSIMGDSSSGSKLCEIIKSKSLYYDAIKGKDISLLQANAVLST PNSEHSSLTLDRKDAVVSGSVADNSEVKVDYPESSEIQSTCQTFQIPKQESSLQATLPLQPGSAHSIDDGVSSKRRRK SKKRANKKSRLESPLPITTVPMNQAPPCADPINQAPPCTADPMNQAPPCSVAQ

>PvDRB6.1

QQTNIMRIFVRTTVFTLLSFAFLDQLDAGIVRETSSTISHSSMASSSSKPLPPRPSPFPLPVQLFAQQLMHKNRLQEF AQKCNIALPVYQTNNEGQQHAPRFRSKVWVDGMSYISQSTFSHRKTAEQDAARLAMECLPKRTRDEAPSLDCEIS AFCKSILNEYATKLKLEGPTYKTVQQEGLLPSFISSLVFNGTSYTGDAARNKKDAEQLAASAAILSILNNSGSGSMLA EMIKSKSKLNHAIKRKKGVQGWFPQVKNLRYQSKNYSLRPPRDQMCTYPDLQLLLFMVVQV

>RcDRB6

MQFLLVAAPEHLMYKNRLQEYTQRQSLQLPIYQTVNEGYPHDPKFRSTVLVDGEEYTSHNTFSHRKEAEQDVAKL ALTSITEKIKDEIKDEKFTHEDTVACKSILNEYAVKMQLEMPTYNTVKQGGLFPIFVSSSVFNGVTYNGDIGRTKKE AEQLAARAAVLSLLRNVESGEIISKFFKSKRKLYVGFHKSDSQDAQNSNMPVVGKDIKTEALMVSNVVPIPEAASAL HPPHHEFTKTKPEKICEGIDLPIAFVHPVSGQSVDVALESGKKRRKNKKKPNKKLRSESQ

>CusDRB6

MEESGTVEAGAPQQSPFPSDSVPTVVTPPIPVENSNTFQPQPDIHPPSVLPDLVPIPSAAPAPIPSPNLSDHTQIFVYK NHLHEYTQKAKIAVPVYQTIDEGSPSLPKYRSTVMVDEVHYVSPNTFRNRRAAEQDAARVAFEYISKKTKDDAFLL LREDLMLCKSILSEYTDKMGLERPIYTTKHNQGSVAFFQSTLVFDGVVYTSDLGRTKKEAEQLAARAAILSLHEDAT NPKSQKALGDIIASKVRFHAMLQKVKDSNFSQFQPKSMPENTVERVAMTVNEGKELKDAVLDGGVVCGAISEACP TSQFQPEFSATKPDGSSPLMRLPIEFVRSTLEEPVGYHATIGSKRKSKNKRKARKKLCMENRVATETSQTAAPCSVA R

>ZmDRB6

MAGTVTATATTATTEVGTTVTAATSEMEATATAATSELEATATAAAIGPPSAIPDKYMHKNRLQSFAERTYKKTPI YKVESEGQSHQPKFTCTVEVGDQQFSSTGSFSRKKEAEQDAARVAYEILTTVSESDVKEAFELIDQDAVFCKSILIEF AVKTKTTLPSYSVVCVCLKKPLTLFAAIVVFDGNAYHGESAPNKKDAEQNAARVVIKSILAKHDTCMVRIVRSKKQL ITAVRSSGNTPATFTPIQFTRPVSYAAYGRPDDTTPVLPNESSSLAVQRGINVVPAVGTSVNPSSANVSRSKKRKGRV EGAGGNDTWVAKGH

>AtDRB7.1 (At1g80650)

MEDQETKRITKKPSRSIIISLKDIPPLDPSSIPSMKPMAQDHHNVGMQRFQEKTDFKFEEEDNAISSFSNIQIDPNST RSISLEKKLAPKPDEEHTTTTKPISKDDESKTRRGSAKSVLHEMCASKRWRPPVYECCNVDGPCHLRLFTYKVMVE IRDSSGKTVLECFGDPRRKKKAAAEHAAEGALWYLEHVKTKPHQ

>AtDRB7.2 (At4g00420)

MDLPPPESSSNPISSFSVAQKRMLLQRCESKFKIRKLNDTVEEDNVTQMEPNFTLENTLVSEPEADLRPHTTEPTT EEETQRSSAKSQLYNLCSVRHWKAPLYEYIAEGPCHMKIFTGKVTVEMKEDSRITVLECFGNPQYKKKIAAEQAAE AALWYLKNVGYTLQTEKASGRKGRSKPISKMMVTGEPV

>OsDRB7

MALFRVALLFGFSLLFSFTSLLGSNQCLNSSCFCKGLLCKRKRAKFSDSTVRQQQGIEAAAMDMVMEEAAALSLGVS ASKEPVHVATGRVEQSNCGAKHANGTTDNEPARLRLHKICSATHWKEPSYDFEEQGPSHLKLFTCKVTIHVDTFT TTIVECISEPNRSKKAAQEHAAQGALWYLKIFGHAN

>SbDRB7

MEPPRKHKSSGVPVKEEVESEDGNDLVAKRRRTEVSGSIIQLQQQIEVFGMENKAPAGLKVEDSTGKDPMDVLNSC AVQNSGQANGRSNEPASLRLLKICKVIGWKEPQFDFEEQGPQHNKTFKCKVTVHLDGLLNTIMECFSKPNPRKKA ARENAAQGALWCLQCSGYVRK

>SiDRB7.1

MEPPMKHKPSAVPINTSLEKLELEDKSAVLVKRRRIEFLGSIVQPQQDIEVDMEHKVADDLPVEISTGDDPMDVLT GCAMQSSGDANGCGNEPARLRLPKICAAIGWKEPSFDFEEQGPPHNKLFICKVTVHLEGLVNTVMECFSDPKPKKK AAQDHAAQAALWCLERFGHAK

>SiDRB7.2

MSLPVPCWECRSIVRMSIGFFFCRTSPLSLLVMEPPMKHKPSAVPINTSVEELELEDKSAVLVKRRRIEFLGSIVQPQ QGIEVDMEHKVADDLPVEISTGDDPMDVLIDCAMQSSGDANGCGNQPARLRLPKICAAIGWKEPSFDFEEQGPPH NKLFICKVTVHLEGLVNTVMECFGDPKPKKKAAQDHAAQAALWCLERFGHAK

>PtDRB7

MKYVVEGARAGPKEGLKPAKQFDDEANTTADLLADINPSQIIKTGDDSSTIKNTTKVGEISKDDKNSHNDSGGPKIS AKSQLLETLAANKWKPPLFECFKEEGPCHKKLFTYKVAIRIEGEASTVLECFGYPKPTKKAAAEHAAEGALWYLKH LGYFPIKKLRGKNNYL

>BrDRB7.1

MEEDQKTTSRRRSIIISLKDIPPLDPSSIPPTHSSLKPRTMMVPGTVPKQRYQEMRLEEDNVKSSFSNIQIDPNSTRS VSTTQENHPVLKPVEDAKSISKDESKKGSAKSLLHEMCISKRWKPPVYDCCNVDGPCHMRLFTYKVVVEIRDSSGT TVLECFGDPKHKKKAAAEHAAEGALWYLDHAKPNQTKAASVTHHHLLR

>BrDRB7.2

MYLPPEEPSSPVPNASSMTPKPRMMIQRCENGCKMRKLNDDVEEDNDSSKMESNITLVEAENKLPVVSEPEAAAA LVPHATKPETTEEEAQKVCAREQLYKLCGVRHWKAPLYTFFNQDGPDNTKLFKVEVSVEIKEASGITVLECFGDPH NKKKIAAEQAAEVALWFLKNHLYETDVNERAFEMFKAQRSNKVMRRSAAASSKKKSDSITSSTTDLFRSVPHTDI RILMLAWKMKSEKQGYFTQEEWRRGLKALRADTLNKLKKALPELEKEVRRQSNFADFYAYAFRYCLTEEKQKSID IETICQLLEIVMGSTFRPQVDYFVEYLKIQDDYKVINMDQWMGFYRFCNEISFPEMTEYNPELAWPLVLDNFVEWI REKQA

>PrpDRB7

MVLLPINGYKIYRPSLLPARSQLYEICVGKKWKLPLYECCKEEGPPHMRKFTYKVIVEIEETEKTVLECFGAPHSKKK SAAEHAAEAALWYLKNIGYDSKDR

>RcDRB7

MEKKCLEPYPQQKQSHINLKNLPPINPPTTSIPYYQVKRNKTITRYVPKVAKPRPEEEGGVKAVKFDHEANTKADIL AEQEEIDDLSSVCAIKHIDSNNFVKKTHSKLNYEGSDNRVLVDKSSELKRVSAKSQLHEICVANNWKPPLYECCKEE GPCHQRLFTFKVIVEMIGAEYIVLECYGIPKIKKKTAAEHAAEGALWYLKHLGYFPINKWDKKKK

>CusDRB7

MRHYSDIVGPERKNRGIQMENNPSCPPPRLNINLKNLPPINNPRNVSGSHSSIPAKFEKSRYIRRVPQFMPSDHRPE IRSNDYAGLPMKLAYSDSARALNTKTFPVAPSADSFVRKKDTCKDLASRCSCCRHDSTKEGTPEKRAAKSLLFEICT ANHWQPPLFECCEEEGPSHAKKYRFKVRIEMKGDCEAVVECYGNLQTRKKVAAEHAAEGALWYLNHLGYRFKR

>ZmDRB7

MESPRKHKASAVPVKEKVKLEDGNDLLVKRRKTEFSGSIVQPEREIEVFDPENKVPDGLPVEYSTDKDPMDALTSC AVQNFGQAKGNTSASSRLPKICKAAGWKEPSFDFEEQGPPHNRIFTCKVTVHLDGLVNTIMECFSDPKPKKKAARE NAAQGALWCLERSGYVKSSSDVPDLCGHQPFC

>BdDRB7 30297

MAPLIVKYMLMCCFSVSDTVSLKVTPAHPVLMVPPVHQESSVMPNNTLEEKEVELEEEKELSCTRKRPKCAGSVV QSQQEIEVLAIENVNKGPGFLSLEESAYVVQSNVEANVCSQGDIRGSTTQEVTARAKLNDFCSAIGWKYPKYDFAEQ GPNKNLFTCKATVHVDAITDTIVECFSESKPQKKAAREQAAQGILWCLRCLGHV

>AtDCL4

MRDEVDLSLTIPSKLLGKRDREQKNCEEEKNKNKKAKKQQKDPILLHTSAATHKFLPPPLTMPYSEIGDDLRSLDFDHADVSSDLHLTSSSSVSSFSSSSSLFSAAGTDDPSPKMEKDPRKIARRYQVELCKKATEENVIVYLGTGCGKTHIA VMLIYELGHLVLSPKKSVCIFLAPTVALVEQQAKVIADSVNFKVAIHCGGKRIVKSHSEWEREIAANEVLVMTPQILL HNLOHCFIKMECISLLIFDECHHAOOOSNHPYAEIMKVFYKSESLORPRIFGMTASPVVGKGSFOSENLSKSINSLEN LLNAKVYSVESNVQLDGFVSSPLVKVYYYRSALSDASQSTIRYENMLEDIKQRCLASLKLLIDTHQTQTLLSMKRLLK RSHDNLIYTLLNLGLWGAIQAAKIQLNSDHNVQDEPVGKNPKSKICDTYLSMAAEALSSGVAKDENASDLLSLAALKEPLFSRKLVQLIKILSVFRLEPHMKCIIFVNRIVTARTLSCILNNLELLRSWKSDFLVGLSSGLKSMSRRSMETILKR FQSKELNLLVATKVGEEGLDIQTCCLVIRYDLPETVTSFIQSRGRARMPQSEYAFLVDSGNEKEMDLIENFKVNEDR MNLEITYRSSEETCPRLDEELYKVHETGACISGGSSISLLYKYCSRLPHDEFFQPKPEFQFKPVDEFGGTICRITLPAN APISEIESSLLPSTEAAKKDACLKAVHELHNLGVLNDFLLPDSKDEIEDELSDDEFDFDNIKGEGCSRGDLYEMRVPV LFKQKWDPSTSCVNLHSYYIMFVPHPADRIYKKFGFFMKSPLPVEAETMDIDLHLAHQRSVSVKIFPSGVTEFDND EIRLAELFQEIALKVLFERGELIPDFVPLELQDSSRTSKSTFYLLLPLCLHDGESVISVDWVTIRNCLSSPIFKTPSVLV EDIFPPSGSHLKLANGCWNIDDVKNSLVFTTYSKQFYFVADICHGRNGFSPVKESSTKSHVESIYKLYGVELKHPAQPLLRVKPLCHVRNLLHNRMQTNLEPQELDEYFIEIPPELSHLKIKGLSKDIGSSLSLLPSIMHRMENLLVAIELKHVL SASIPEIAEVSGHRVLEALTTEKCHERLSLERLEVLGDAFLKFAVSRHLFLHHDSLDEGELTRRRSNVVNNSNLCRL AIKKNLQVYIRDQALDPTQFFAFGHPCRVTCDEVASKEVHSLNRDLGILESNTGEIRCSKGHHWLYKKTIADVVEAL VGAFLVDSGFKGAVKFLKWIGVNVDFESLQVQDACIASRRYLPLTTRNNLETLENQLDYKFLHKGLLVQAFIHPSY NRHGGGCYQRLEFLGDAVLDYLMTSYFFTVFPKLKPGQLTDLRSLSVNNEALANVAVSFSLKRFLFCESIYLHEVIE DYTNFLASSPLASGQSEGPRCPKVLGDLVESCLGALFLDCGFNLNHVWTMMLSFLDPVKNLSNLQISPIKELIELCQ SYKWDREISATKKDGAFTVELKVTKNGCCLTVSATGRNKREGTKKAAQLMITNLKAHENITTSHPLEDVLKNGIRN EAKLIGYNEDPIDVVDLVGLDVENLNILETFGGNSERSSSYVIRRGLPQAPSKTEDRLPQKAIIKAGGPSSKTAKSLLH ETCVANCWKPPHFECCEEEGPGHLKSFVYKVILEVEDAPNMTLECYGEARATKKGAAEHAAQAAIWCLKHSGFLC

>BdDCL4

MGETSAAAASTEEPKDPRTIARKYQLDLCKRAVEENIVVYLGTGCGKTHIAVLLIYELGHLIRKPSSDVCIFLAPTIPL VROOAAVISNSTNFKVOSYYGNGKSSRDHODWEKEMRESEEFYDSNAVKPPRVFGMTASPVMGKGGSNKLNYTK CINSLEELLHAKVCSVDNVELESVIAFPDMEVYPYGPVSHSNLTVTYIKELDDLKLOSECIVRESLYDFKDSOKKLKS LWRLHGNLIFCLOELGSFGALOAARNLLSFDVDAFDKKEVDINGNSTRFMHHYLNKAVSVLSCNILDGTHDDSFDL EMLEEPLFSNKFAVLINVLSRYRLEENMKCIIFVKRIAVARAISHIIRNLKCLDFWKCEFLVGCHSGLKNMSRNKMD DIVEKFSSGEVNLLVATSVGEEGLDIQTCCLVVRFDLPETVASFIQSRGRARMTISKYVVLLERGNQSQEKLLNNYIA GESIMNEEIDSRTSNDMFDYLEENTYRVNHTGASISTACSVSLLHRYCYNLPSDMFFNPSPAFFYIDDTEGIICRVILP ${\sf PNAAFROMDGOPCOSKDEAKRDACLKACMKFHELGALTDFLLPGPGSRKNKASSPNGSASNKEEDDSLREELHE}$ MLIPSVLKPSRCKQDCLLDLHFYYFKFFPIPADRHYQMFGLFVINPLPEEAEKLEVDLHLARGRIVKTGIKHLGTMV FDKEQMILARNFQEMFLKILLDRSEFTSSDVILCNDDTLEISSTFYLLLPIKQKCCGDIFVIDWPTVVRCLSSPVFRDP VDVSVHGSYIPNESLRLLDEVYSRTDVVGSLIFVPHNNTFFIIDVILDKLNGRSEFNGATYEEHYRERFGIELSHPEQP $\label{eq:linear} LLKAKQLFNLHNLLHDRLRETTASESYLEYALLCFLNGPDPGGSELVEHFVELPPELCSLKITGFSKDMSSSLSLLPS$ ${\tt LMCRLENFLVAIELKDLMLSSFPEASQISASAILEAITTERCLERISLERFEVLGDAFLKYVVGRHNFMSYEGLDEGQL}$ TRRRSDIVNNSNLHELSVKRNLQVYIRDQQFEPTQFFALGRPCKVVCHADMEVSIHQKNIDPDRPENCNVRCTKSH HWLHKKTIADVVESLLGAFLVEGGFKAAFAFLHWVGIDVDFEDSALYRVLNASSINLSLMNLINVAELEELIGYKFK HKGLIIEAFVHPSFNKHSGGCYQKLEFLGDAVLEYLMTSYLYSAYPDLKPGEITDLKSLAVCNDSFAYVAIQKCIHKYI IKDSNHLTKAVSKFENYIKLPNSEKDLVEEPACPKVLGDIVESCVAAVLLDSGFNLNYVWKLVLMLLKPVLSFSGMH MNPMREIRELCQCNELELGLPKPMKADGEYHVKVEVNINSTMISCTAANRNSKVARKLAARETLSKLKNYGYKHK NKSLEEILHDARKKEPELLGYNEEPIKVEADISVOMKSLOISEERDANFSFKNMEVPIGGSSKTSNORTAGDTKIFKD DVNNERNNOLMVAMQNGCLLRGTTQKNNKKEYKGDMVHKTAKSFLFELCAASYWKPPEFQLCIEEGPSHLRRFTYKVIVQIRGPSETLLECYSDAKLQKKAAQEHAAQGALWYLKQLEYLPKDVHSKC

>SiDCL4

 $\label{eq:measurement} MGEGEDEASSSAAAASAAAGGPKDPRNIARKYQLDLCKRAVEENIIVYLGTGCGKTHIAVLLMNELGHLIRKPSREV\\ CVFLAPTIPLVRQQATVIADSTNFKVQCYHGSGKNLRDHQAWEKEMAEYEEFYNNVDKPPRVFGMTASPIIGKGGS$

NKLTYTKCINSLEELLNAKVCSIDNVELESVVASPDIEVYFYGPVGHSNLTATYSKGLDGYKLQSECMLRESLCNFKESQKKLKTLWRLHENLIFCLQEVGLFGALQAARTFLSSGGGSLDRKGFDINDNHASFVQHYLHKAISLLSCDILDGAD ADSVDLETLEEPLFSKKFAVLIDVLSRYRLEENMKCIVFVKRIIVARVISHILQNLKCLDFWKCECLVGCHSGLKNMS RNKMGSIIEKFSSGEVNLLVATSVGEEGLDIQTCCLVVRFDLPETVSSFIQSRGRARMSKSKYIFLLERGNQSQEKLLG DYITGESIMDKEVNLRTSNDMFDSLEENIYRVNNTGASISTACSVSLLHCYCDNLPRDRFFFPSPSFFYVDDVEGIVCRLILPPNAAFRQVNSQPCPSKDEAKRDACLKACIRLHELGALTDFLLPGQGSRKTKVSTTDILESNKAEDESFREEL HEMLVPAVLRSSRYKLDCLLNLHFYYIEFIPKPADRRYQMFGLFVIDALPKEAEKLDMMLAHNFQEMFLKVLLDRSFURATION CONTRACTOR CEFTSSYVMLGNDTAFOMDSTFYLLLPIKOKFYGDKFIIDWPAVKRCLSSPVF0DPTSLSLHDSYLPNESLKLLDGTYS KADVIGSLVFTPHNNLFFFVDDILDEINGKSEFNGATYAAHFEERFDIELSHPEOPFLRAKOLFNLRNLLHNROOES ${\tt TESEGRELMEHFVELPPELCSLKITGFSKDMGSSLSLLPSLMCHLENLLVALELKDVMLSYFPEASQISASGILEALTT}$ ERCLERISLERFEVLGDAFLKYVVGRHNFISYEGLDEDQLTRRRSDIVNNSNLYELSIRRNLQVYIRDQQFEPTQFYA LGRPCKVVCNPETEASLHPKNIDPDKRDNCNLRCTKSHHWLHRKTIADVVESLLGAFIVESGFKAAFAFLNWMGI NVDFKDDALYRVLDASSANLSLMDYINISELEELIGYKFKHKGLLLQAFVHPSFNKHSGGCYQRMEFLGDAVLEYL MVSYLYSAYPDLKPG0ITDLKSLAVNNTSFAYVAIKKSMHKYLIKDSKYLMAAVNKFENYFNLSNSEKDLSEEPACP KVLGDIVESCVGAVLLDSGFNLNHAWKLMLLKPILSFCDMHINPLRELRELCQCNGFDLGLPKPIKADGEFHVK VEVNVNGKMISCTAANQNSKHARKLAAQDTLSKLKNYGYKHKSKSLEEILRTATKKEPELIGYDEEPIKVDGVPLE MKNLQMNGEMEENIFFGNNEAFFIGRSATSIQRTGEDNKVDRNDANNGRINKSNVVTQNGCLPRGEAAKINKKEY HGDMVHKTARSFLYELCAANYWKPPEFELCKDEGPSHLRKFTCKVLVQIMGPSATLLECYSDPKLQKKAAQEHAA QGALWCLKQLGYLPKDETHV

>ZmDCL4 (incomplete)

MQVLGDIVESCVGAVLLDSGFNLNHVWKLMLMLLKPILSFCGMHIDPMRELRETCQYNGFDLGLPEPTKYNGEFH VKVEVNINGKMISCTAANRNSKDARKVAAQETLSKLKNYGYKHKRKSLEEILRSTTKKESELIGYDEEPINVEDDID MQMNNLLINGERTSIQSTAGDNKVDKNDANSGRNNKSNVVMQNGCLPRGATDKINQKEYHGDMVRKTARSFLYE LCAANYWKPPEFELCNDEGPSHLRKFTCKVLIEITGTSVSLLECYSDPKLQKRAAQEHAAEGALWYLKHLGYLPRD ENRF

>SbDCL4 (incomplete)

MEHFVELPPELCSLKITGFSKDMGSSLSLLPSLMCRLENLLVAIELKNVMSSYFPEASQISASGILEALTTERCLERISL ERLEVLGDAFLKYVVGRHNFISYEGLDEGQLTRRRSDIVSNSNLYELSIRRNLQVYIRDQHFEPTQFFALGRPCKVVC NPDREATLHPKNIDPDRRENCNLRCTKSHHWLHRKTIADVVESLLGAFLVECGFKAAFAFLRWIGIKVDFENSALY RVLDASSTNLSLMNYMNISELEELIGYTFKHKGLLLQAFVHPSFNKHSGGCYQRMEFLGDAVLDYLMASYLYSAYP DLKPGQLTDLKSLALNNNSFAYVAVKKSIHKYLIKDSKSLTAAINKFQNYVNLSSSEKDLLEEPTCPKVLGDIVESCV GAVLLDSGFNLNHVWKLMLMLLKPILSFCGMHIDPMRELREICQYNGFELGLPKPTEDNGEFHVKVEVNIDGKMIS CTAANRNSKDARKVAAQEALLKLKNNGYKHKRKSLEEILRATTKKESELIGYDEEPINVEDDIQMKNLLINGEMEG NIFFQNKEVSLNGRSETSIQSTTGDNKVDKNDANNGRNNKSNVVVQNGCLPRGATDKTNQREYHGDMVRKTARS FLYELCAANYWKPPDFELCKGEGPSHLRKFTCKVLIQITGTSATLLECYSDPKLQKKAAHEHAAEGALWYLKQLGY LPKDDYRV

>PrpDCL4

MDDAGSTSSPSDQGASSGADDVLVESGAGALKSDKDPRKVARKYQLELCKRALEENIIVYLGTGCGKTHIAVLLIYE LGHLIRKPEKNKCIFLAPTVALVOOOARVIEDSLDFKVGIYCGSSNOFKNHODWEKEMEOYEVLVMTPEILLRNLY HCFIKMESIALLIFDECHHAQVQSNHPYAEIMKLFYKTDDTKLPRIFGMTASPVVGKGASSQANLSKSINSLESLLDA KVYSVEDKEELYHFVSSPVITVYNYGPVIRNTSSHYTSYCTKLEQIKRQCIEELSKKTNDYQSVRSAKKLLNRMHDSI $\label{eq:linear} LFCLESLGLWGALKASHILLNGDHFERNELMEEEGNNGDDTACVNYLTRADDILATDCLRDAIAADLSCVEILKEPF$ FSRKLLRLIGILSSFRLQQNMKCIIFVNRVVTASSLSYILQRLKFLASWKCDFLVGVHSRLMSMSRKKMNIILDKFRS GELNLLIATKVGEEGLDIQTCCLVIRFDLPETVASFIQSRGRARMPQSEYAFLVNSGNQKELDLIEKFRKDEDKMNM EIAFRTSSDTFIGSEDRIYKVDSSGASISSGYSISLLHQYCSKLPHDEYFDPNPKFFFLDDLGGTICHIILPSNAPIHQIVS TQQSSMEDAKKDACLKAIEELHKLGALSDYLLPQQSNPNVEELMLDSSDSDSTEDEDSRAELHEMLVPAALKEPW SNSEDHVSLSSYYLKFNPVPEDRIYKSFGLFVKAPLPVEAESMELDLHLAHSRSVMTELVPSGFAEFGKDEILLAQNF OEMFLKLVLDRTEFVSEFVPLGKHDFSRSSSSTFYLLLPVTLGNNYKIASIDWRTIKKCLSSPVFRAPGDALGRKSHPSDIRLASGYKSISDVKNSLVYAPYKSTFYFITDVVQERNAYSPYKDSGTLSYVDHLIKKFHIHLKYPEQQLLHAKPLFC LHNLLHNRKOEDSGPOOLDEYFIDLPPELCELKVLAFSKDIGSSISLLPSIMHRLENLLVAIELKHVLSVSFPEGAEVT AERVLEALTTEKCQERFSLERLEILGDAFLKFAVGRHFFLLHDSLDEGGLTRKRSNVVNNSNLFKLATRSNLQVYIR DQSFEPSQFFALGRPCPRICGKETIGAIDSQGLCSVVNHTNSSEVRCSKGHHWLYKKTIADVVESLIGAFVVDSGFKA ATAFLRWIGIQVDFEPSQVTEVCIASTRYIPLSACMDIAALENSLGYQFVHKGLLLQAFVHPSYNKHGGGCYQRLEFL GDAVLDYLITSYLYSVYPKLKPGQLTDLRSVSVNNKAFANVAVDRSFHKFLICDSGSLSEAIKVYVDFIDTPASERGL LDGPKCPKSLGDLVESCLGAILLDTGFNLNRVWEIMLSFLKPIMSFSSLQLSPIRELRELCQAHTWDLRFLPSKKGKT YSIQATVEGNNVRATASSTSLNKKDAIRICAKLIFAELKAQGNIPKTKSLEEVLKSSSEMEAKLIGYDETPIDVVLPDV

IGFDKLNVQEPCRRNFNSKMHIKEERNGDSSCIKPVLQPPPSFEAVKIQPRYQVWSISQIFLLSENLPGGSHKATARA RLYEICAANYWEPPLFECCNEEGPSHLKLFTFKVVVKIEEAPDMILECFGSPHGNKKAAAEHAAEGALWYLRNGGY ISSSD

>CusDCL4

MHENILFCLESLGVWGALQACKILLSGDNSERSELIEAAERNPKNDSLSDRYLNQAAEIFASGCKKDGGISDMLNVDILEDPFFSKKLLRLIGILSSFRQQLNMKCIIFVNRIVIARSLSYILQNLNFLAYWKCDFLVGVHSKLRSMSRKTMNHIL TKFRSGELNLLIATKVGEEGLDIOTCCLVIRFDLPETVSSFIOSRGRARMPOSEYAFLVDSGNEKELGLINEFRKDEN RMDREIYSRSSNETFDSHEESIYRVASTGASITSGRSISLLHEYCSKLPHDDYFDPKP0FSYYDDLGGTVCHVNLPSN APIPQIVSRSQSSKDAAKKDACLKAVEELHKLGALSDYLLPMRGRGSANEQESGLNSSDSDSSEGSLNMDADETSRR ELHEMIFPAALKESWTGSGYLVLYCYHIKCTPDPRDRNYKEFGLFVKAPLPQEAERMGLELHLARGRSVMVNLIPS GVVELLEEEITQAESFQEMFLKVILDRLEFVQEYIPLRNNASRSVSSSYLLLPMIFHDNEGSLFIDWNVIRRCLSSKIF **ONDACLIVKGTASSDTHLMLYDGHRRSSDIENSLVYVPYKGEFFFVTNIERGKNGHSOYKNSGFSSHFEHLKTKFGI** HLNYPEOPLLRAKPLFLLHNWLHNRKREDSEARHLEEYFIELPPEVCOLKIIGFSKDIGSSISLLPSIMHRLENLLVAI ELKCRLAAAFPAGAEVTANRILEALTTEKCQERISLERLEILGDSFLKFAVARYLFLTHDKFDEGELTRRRSYLVKNF NLLKLATRKNLQVYIRDQPFEPSQFYLLGRPCPRICNEETSKDIHSHDDATNNAKANETKCSKGHHWLQKKTISDV VEALVGAFLVDSGFKAAIAFLKWIGIQVEFEASLVTDALMASNAYVLLADSIDISALQNSLGHRFLHKGLLLQALVHP SYHKHGGGCYQRLEFLGDAVLDYLITSYLYSAYPKLKPGQLTDLRSVFVRNEAFANVAVDRFFYKFLLCDSTSLLSDI KSYVHFIKAPPFERDSLEQPRCPKALGDLVESSVGAVLVDTGFDMNCVWKIMLSFIDPIMSFSGFQLSPIRDITEFCQ NCGWKLKFNSSKMEGYYSVKAEVKGGNFHATASAANRRKKDAAKIAANLILTKLKAKGFIPEVNSLEKILKSSKKM **EPKLIGYDETPSITIDQVDNGHRTLNVLEFSSEHSDPRMHCVVDNSEPVRITRISKMLVSSSRTAGEQLKPAFEGHDS** PTDLQSSSVGRSGKTTARSRLYEVCAANHWNRPSFDCMNEEGPSHLKMFTYKVVLEIEEAPDTIFEFFGAPHLKKK AAAEHAAEAALWYLEKGGYWLGOTDTISDD

>PtDCL4

MSGGHVTGEHSSLSVGGTNARVVSSSIVGDGEESGSGLORTEKDPRKMARKYOLELCKKALEENIIVYLGTGCGKTH IAVLLIYEMGHLIROPOKSACVFLAPTVALVHQQAKVIEDSTDFKVGIYCGKSNRLKTHSSWEKEIEONEVLVMTPQ ILLYNLSHSFIKMDLIALLIFDECHHAQVKSGHPYAQIMKVFYKNNDGKLPRIFGMTASPVVGKGASSRENLPRSINS LENLLDAKVYSVEDKEELECFVASPVIRVYLYGPVANGTSSSYEAYYNILEGVKRQCIVEIGKKTDGNQSLESLRSTK RMLIRMHENIIFCLENLGLWGALQACRILLSGDHSEWNALIEAEGNTSDVSMCDRYLNQATNVFAADCTRDGVTS NVSQVEVLKEPFFSRKLLRLIEILSNFRLQPDMKCIVFVNRIVTARSLSHILQNLKFLTSWKCDFLVGVHSGLKSMSR KTMNVILERFRTGKLNLLLATKVGEEGLDIQTCCLVIRFDLPETVASFIQSRGRARMPQSEYVFLVDSGNQKERDLIE KFKIDEARMNIEICDRTSRETFDSIEEKIYKVHATGASITSGLSISLLQQYCSKLPHDEYFDPKPKFFYFDDSEGTVCHI ILPSNAPTHKIVGTPQSSIEVAKKDACLKAIEQLHKLGALSEFLLPQQEDTNELELVSSDSDNCEDKDSRGELREMLV PAVLKESWTELEKPIHLNSYYIEFCPVPEDRIYKOFGLFLKAPLPLEADKMSLELHLARGRSVMTKLVPSGLSKFST DEITHATNFOELFLKAILDRSEFVHEYVPLGKDALSKSCPTFYLLLPVIFHVSERRVTVDWEIIRRCLSSPVFKNPAN AVDKGILPSNDCLOLANGCSSIRDVENSLVYTPHOKKFYFITNIVPEKNGDSPCKGSNTRSHKDHLTTTFGIHLRYPE **QPLLRAKQLFCLRNLLCNRKKEDSELQELDEHFVDLAPELCELKIIGFSKDIGSSISLLPSVMHRLENLLVAIELKCILS** $\label{eq:second} ASFSEGDKVTAHRVLEALTTEKCQERLSLERLETLGDAFLKFAVGRHFFLLHDTLDEGELTRKRSNAVNNSNLFKL$ ASRNNLQVFIRDQPFDPYQFFALGHPCPRICTKESEGTIHSQCGSHVTGQAKGSEVRCSKGHHWLHNKTVSDVVEA LIGAFLVDSGFKAAIAFLRWIGIKVDFDDSQVINICQASRTYAMLNPSMDLATLENLLGHQFLYKGLLLQAFVHPSHKNGGGCYORLEFLGDAVLDYLITSYLFSVYPKMKPGHLTDLRSVLVNNRAFASVAVDRSFHEYLICDSDALSAATKK FVDFVRTPKSERRLLEGPKCPKVLGDLVESSVGAILLDTGFDLNHIWKIMLSFLNPISSFSNLQINPVRELKELCQSH NWDFEVPASKKGRTFSVDVTLSGKDMNISASASNSNKKEAIRMASEKIYARLKDQGLIPMTNSLEEVLRNSQKMEA KLIGYDETPIDVALDAHGFENSKIQEPFGINCSYEVRDSCPPRFEAVDAWSLSPLDFTGGQPSEATGDLRCDRDVLIT GKVDLGTARSRLREICAANSWKPPSFECCTEEGPSHLKSFTYKVVVEIEEAPEMSFECVGSPOMKKKAAAEDAAEG ALWYLKHQRHLS

>BrDCL4

MPDREIGDDASDTNLSSSFSSFASSSSFSSSYSAAGAWTDDHSAKMEKDPRKIARRYQLELCEKAVEENVIVYLGT GCGKTHIAVMVIYELGPLILSPRKSVCIFLAPTVALVEQQALVIAKSINFKVATHCGGNRTVTTHSDWEREVSENEVL VMTPQILLHNLQHCFIRMEWISLLILDECHHAQEQSNHPYAQILKVFYKTEGVKGPRIFGMTASPVVGKGSFQSENL SKSINSLENLLNAKVYSVESNVQLDGFVSSPIVKVYYYQTAGTEASQSTNIYENMLEDIKQRCLTSLKQQIDNHQTQV LLNMKKLLKRTHDNLIYSLVNLGLWGAIQAARIQLNTDRNVHQEPLEENNKSKICITYLSLAAEVLSSKVAKDENAS ELISLPALKEPFFSRKLLQLIKILSAFRIEPHMKCIIFVNRIVTARTLSCILNSLKLLESWKSDFLVGLSSGVKSMSRKS MKTILERFQSKELNLLVATKVGEEGLDIQTCCLVIRFDLPETVTSFIQSRGRARMPKSEYAFLVDRGSEKEMDLIENF KVNEDRMNLEITSRTSEETCPRLDDEVYRVHETGACISGGSSISLLYKYCSRLPHDEFFQPKPEFQFKPVDEFGGTIC RITLPANAPISEIVSSLLPSIEAAKKNACLKAVYKLHSLGVLNNFLLPDSNEETEDELSDEEFDFDKVEGEACSRGELY EMIVPDLFKQKWDPSKSCVNLQSYYIRFVPHPADRIYKKFGLFMKSPLPIEAETMDFDLHLAHQRSVSVKIFPKGDA NFDNDEIRLAERFQEVALKIIFERRELITEFVPLGLQDSFRTSKSTFYLLLPINLDASESVLFVDWATIRSCLSSPIFKA PSGLVEDMDPPVGSHLKLANGCWSIDDVKNSVVFATHKKQFYFVSDICHGRNGFSAIRKSITETHLESIYNSYGVKL KHPLQPLLRLKPLCYVRNLLHNRKRENLEPNELEEYFIEIPPELSQLKIKGLSKDIGSSLSLLPSVMHRMENLLVAIEL KHMLSASIPEIAEVSGHRVLEALTTEKCQERFSLERHAVLGDAFLKFAVSRHLFLHHDRLDEGELTRRRSNAVNNS NLFRLATRRNLQVYIRDQAFDPTQFFALGHPCRVTCDEVAMKEVHSLDKVPGLLESSTGEIRCSKGHHWLHKKTIA DVVEALVGAFLVDSGFKGAIEFLKWIGINVDFESLQVRDACVASKRYMPLTTCFDLAALESLLGYKFLHKGLLLQAFI HPSYNRHGGGCYQRLEFLGDAVLDYLMTSYFFSVFPKLKPGQLTDLRSLSVNNKALANVAVSFSLQRFLFCDSTYL HDAIKDYTNFVTASPLASGPSEGPKCPKVLGDLIESFLGALFLDCGFDLNHVWRIMLSFLDPVKNLSNLQLSPVKEL LEYCQSYKWDQEISATKKDGAFSVELKVTKKSSCLTASATGRNKKESTKKAAQLMLTNLKAHGHIKTSNPLEDVLK NSIRNEAKLIGYDEEPIDVVDRDGLDVENLNIQDSFEEDPVTESKTSETSSSYIIRRVLTNAPPSEKEESLPQKTIKDA GGSIIKTAKSLLRETCVANCWKTPEFVCCEEGPAHLKTFSYKVILEVVDAPNMTLECYGEAKPTKKSASEQAAQAAL WCLEHTGFLRR

>RcDCL4

MPDGEADISPDDSSSICTVNRIAGDDDGDECNSMPQQPEKDPRKIARKYQLELCKKALEENIIVYLGTGCGKTHIAV LLIYELGHLIRKPLKNVCVFLAPTVALVQQVRVIEQSIDFKVGVYCGNSNHLKSHRDWEKEIEQNEVLVMTPQILLH TLGHSFIKMELISLLIFDECHHAQVQSSHPYAEIMKVFYKTGDGKFPRIFGMTASPVVGKGASNQANLPKSINSLENL LDAKVYSVEDNEELELFVASPVVRIYLYAPVANEKSSSYMTYFSKLEEIKRKCLLELHKKADSCQSLHGLQNAKKVFI RMHDNVVFCLENLGFWGALQACKILLSDDHFEWNALIEAEGNIDASVCDKYLAQAANMFASVCTKDCIAFDLSSVEVLTEPFFSRKLLRLIGILSTFRLOPNMKGIVFVNRIVTARSLSYVLONLKFLISWKCDFLVGVHSGLKSMSRKTMNS EDRMNMEISSRTSNETFVSIEEKVYKVDESGACISSAYSISLLHHYCSKLPHDEYFDPKPQFFFFDDLGGTICHIILPA NAPVHOIVGTPOSSREAAKKDACLKAIEOLHKLGSLSNFLLPHEKDVNEESMLASSEPENNEGEGVRGELHEMLVP AVFKESLTSSENWINLHSYFIKFCPVPEDRIYKKFGLFIRAPLPLEAEQMELNLHLACGRYVATKLVPLGCLAFHRDE ITOAIYFOEMFLKVILDRSDFVPEFVTLGKNSFFESSPSFYLLLPVLLCDHGNRVTVDWETVGRCLSSPVFRCVEKEC LPSDDCLQLANGCRSIRDIENSLVYIPHKKHFYFITNIDRGKNARSPHKCSSTSSYMEFLIQRFGIQLKYPEQPLLQAK PLFSLHNLLHNRRKEDSVTQELDEYLIDFPPELCELKIIGFSKDIGSSISLLPSIMHRLENLLVAIELKSLLSASFSEGAEVTAYRILEALTTERCQERLSLERLEILGDAFLKFAVGRHLFLLHDTLDEGELTRKRSNAVNNSNLLKLASRRNLQVY IRDQPFDPRQFFALGHPCPVICTKESEGSIHSSNRSNAKGQENTIEVRCSRGHHWLYKKTIADVVEALVGAFIVDSGF RAATAFLKWLGIRVNIEASDVTKVCLASRTFMPLAPSIDVSSLEDSLDHQFVNRGLVLQAFVHPSYNKHGGGCYQR LEFLGDAVLDYLITSYLFSVYPKLKPGLLTDLRSALVNNRAFAIVAVDRSFNEFLICDSGNLSEAIETYVNFVKRPAVE KDSLEGPKCPKVLGDLVESCIGAIFLDTGFDLNCIWKLMLSFLDPILNSSNVLLNPFRELHEFCESHKWKLQFPTLK RDMNFLVEAKVTGKDICLDASANNSNKKEAIRIASEQIIVKLKDQGYIRKSNYLEEVLRSGQKTDAKLIGYDETPIDI TAHDPIGLQNLKIQDPSCSDFNPKIRSMSKLTNTCSPCFIAANIQPPSPSVMVGGQPSATVAYPTSDMDKPTSAKSR LHDICAANCWKPPLFECCYEEGPSHLKSFSYKVIVEIEAAPDMILECFGAPREKKKAAAEHAAEGALWYLQHVGYL TVK

Supplemental Table S2

qRT-PCR primers:

Target	Forward primer	Reverse primer
FCA readthrough 3'end	CTAGCAGCCATGGCAAGAAT	ACGAGGGTTCGAAGTGATTG
act2	GGCTTAAAAAGCTGGGGTTT	TTGTCACACACAAGTGCATCA
TSI	GATGGGCAAAAGCCCTCGGTTTTAAAATG	CTCTACCCTTTGCATTCATGAATCCTT
AMS	AGCGGAGAATGGAACAGAAGAG	CCGGAATCAAGAGGTATGGAAG
LacS7	CAAGTGCCGTAAAATCATCTGG	TCAGGTGACAAAGGAGAAGCAC

small RNA hybridization primers:

Target	Primer
miR822	CATGTGCAAATGCTTCCCGCA
miR839	GGGAACGATGAAAGGTTGGTA
miR171	GATATTGGCGCGGGCTCAATCA
ta1 siR255	TACGCTATGTTGGACTTAGAA
tas2 siR1511	AAGTATCATCATTCGCTTGGA
tas3 5'D7+	TGGGGTCTTACAAGGTCAAGA
U6	AGGGGCCATGCTAATCTTCTC
TSI 3'part probe1	TCTAATAAGGAGAGTCAGCTACTTGGATTAACA
TSI 3'part probe2	TGGGACTTACCTTTAGCATTCTACTAAAGCT
TSI 5'part probe AMS	AATCCATCATCCTCGGATCAAA
TSI 5'part probe2	GACCTTGCAGAGTTGAGCGCCAA

Primers for the BiFC analyses:

DRB4-FusionCter Fwd	GGGGACAAGTTTGTACAAAAAGCAGGCTTAATGGATCATGTATACAAAGGTCAACTG	for cloning of 35S-DRB4-YFPN/
DRB4-FusionCter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTATGGCTTCACAAGACGATAGGC	for cloning of 35S-DRB4-YFP ^{N/C}
DRB4-FusionNter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAGATCATGTATACAAAGGTCAACTGCA	for cloning of 35S-YFP ^{N/C} -DRB4
DRB4-FusionNter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTATTATGGCTTCACAAGACGATAGGC	for cloning of 35S-YFP ^{N/C} -DRB4
DRB7.2-FusionCter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGATCTTCCTCCTCCAGAG	for cloning of 35S-DRB7.2-YFP ^{N/C}
DRB7.2-FusionCter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTTTCCCACGGGTTCACCTGTTACC	for cloning of 35S-DRB7.2-YFP ^{N/C}
DRB7.2-FusionNter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGATCTTCCTCCTCCAGAGTCT	for cloning of 35S-YFP ^{N/C} -DRB7.2
DRB7.2-FusionNter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACACGGGTTCACCTGTTA	for cloning of 35S-YFP ^{N/C} -DRB7.2
DCL4-FusionCter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCGTGACGAAGTTGACTTG	for cloning of pDCL4-DCL4-YFP ^{N/C}
DCL4-FusionCter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTAGCAAAGGAATCCAGAATGCTTG	for cloning of pDCL4-DCL4-YFP ^{N/C}
DCL4-FusionNter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTTACGTGACGAAGTTGACTTGAGC	for cloning of pDCL4-YFP ^{N/C} -DCL4
DCL4-FusionNter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTATCAGCAAAGGAATCCAGAATGC	for cloning of pDCL4-YFP ^{NC} -DCL4
EYFP ^N -FusionNter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTGAGCAAGGGCGA	for cloning of pDCL4-YFP ^N -DCL4
EYFP ^N -FusionNter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTAGGCCATGATATAGACGTTGTGG	for cloning of pDCL4-YFP ^N -DCL4
EYFP ^N -FusionCter Fwd	GGGGACAGCTTTCTTGTACAAAGTGGGAATGGTGAGCAAGGGCGA	for cloning of pDCL4-DCL4-YFP ^N
EYFP ^N -FusionCter Rev	GGGGACAACTTTGTATAATAAAGTTGTTTAGGCCATGATATAGACGTTGTG	for cloning of pDCL4-DCL4-YFP ^N
EYFP ^C -FusionNter Fwd	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGACAAGCAGAAGAACGG	for cloning of pDCL4-YFP ^C -DCL4
EYFP ^C -FusionNter Rev	GGGGACCACTTTGTACAAGAAAGCTGGGTACTTGTACAGCTCGTCCATGC	for cloning of pDCL4-YFP ^C -DCL4
EYFP ^C -FusionCter Fwd	GGGGACAGCTTTCTTGTACAAAGTGGGAGACAAGCAGAAGAACGGCAT	for cloning of pDCL4-DCL4-YFP ^C
EYFP ^C -FusionCter Rev	GGGGACAACTTTGTATAATAAAGTTGTTTACTTGTACAGCTCGTCCATGC	for cloning of pDCL4-DCL4-YFP ^C
promoterDCL4 Fwd	GGGGACAACTTTGTATAGAAAAGTTGGTCGAACCGAGTGACGATCA	for cloning of pDCL4-DCL4-YFP ^{N/C} and pDCL4-YFP ^{N/C} -DCL4
promoterDCL4 Rev	GGGGACTGCTTTTTTGTACAAACTTGAATTCACGATCTCACGTCTCCCTCT	for cloning of pDCL4-DCL4-YFP ^{N/C} and pDCL4-YFP ^{N/C} -DCL4