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In this paper a techno-economic comparison of an energy storage system (ESS) sizing for three intermittent renewables, wind, wave and PV power, with regard to two electricity grid services is presented. These services are defined by the utility operator in order to meet different load needs and have to be provided by the producer. The first service consists of output hourly smoothing, based on day-ahead power forecasts (S1). The second service supplies year-round guaranteed power (S2). This leads to an annual default time rate (DT R) for which the actual power supplied does not match the day-ahead power bid within a given tolerance. A heuristic optimization strategy based on the ESS state of charge denoted as adaptive charge is developed in this study. This approach enables the minimal 5%-DT R ESS capacity, power, energy and feed-in tariffs to be inferred from the operating conditions, depending on tolerance. Ocean wave and PV power measurements and forecasts are used in French overseas department Reunion and wind power in Guadeloupe. The simulations assess and compare the techno-economic viability and efficiency of every renewable sources coupled with ESS. Annual results show that PV power is more efficient with daylight hours restricted services and higher power levels can be guaranteed for S1. In the other hand, wind and wave power are more suitable than PV for services dedicated to full-day power delivery, as in the case of S2. For hourly smoothing the forecast accuracy influence is studied and yields a high impact on the techno-economic sizing.
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Introduction

With the depletion of fossil fuel energy sources and the 3 certainty of peak oil, the integration of renewable energy has 4 become necessary, if not essential. In non-interconnected 5 systems, particularly island grids, the challenge is to increase 6 the energy independance and to cut the energy bills. However,

7
when the integration rate of the renewables exceeds 15 or 20%,

8
the grid operator has to cope with new problems. Since the

9
renewable source is by nature highly intermittent, it is difficult 10 to increase the input of renewable energy sources into the 11 grid. In order to mitigate this variability and supply a smooth 12 guaranteed power to the grid, renewable energy storage is a 13 feasible solution and has, for several years, been studied and 14 installed around the world [START_REF]International energy storage database[END_REF].

15

Various papers have been written about the coupling 16 of energy ESS with renewable sources [START_REF] Bernal-Agustín | Simulation and optimization of stand-380 alone hybrid renewable energy systems[END_REF]. PV, wind or hybrid PV/wind systems with batteries or pumped hydro energy storage (PHES) systems have been well studied [START_REF] Ma | Feasibility study and economic analysis 383 of pumped hydro storage and battery storage for a renewable energy 384 powered island[END_REF] [4]. The optimal ESS sizing is usually based either on analytical methods [5] [6] or iterative methods such as Genetic Algorithms [START_REF] Koutroulis | Methodology 395 for optimal sizing of stand-alone photovoltaic/wind-generator systems 396 using genetic algorithms[END_REF] to minimize costs [START_REF] Luna-Rubioa | Optimal sizing of renewable hybrids energy systems: A review of 399 methodologies[END_REF]. Another increasingly widespread approach is to take into account the uncertainty of renewable power through stochastic programming [START_REF] Kaplani | A stochastic simulation model for reliable pv 401 system sizing providing for solar radiation fluctuations[END_REF] [START_REF] Yuan | Optimal operation strategy of energy storage applied in wind power integration based on stochastic programming[END_REF]. In these studies, the time step is usually one hour, during 24 hours or a few days.

In this paper, a storage system with a 10-minute or less response time for power management applications is evaluated.

The goal is to size the storage in an optimal viable way so that the supplier can provide to the grid utility two specific yearly services: hourly smoothing and annual leveling. These services may boost the integration of renewables into vulnerable grids [START_REF] Lefevre | Hybrid energy storage for renewable energy insertion into island grids[END_REF]. A scheduled storage operation strategy that can be applied by the supplier to meet the considered service under operating conditions is initially presented. Secondly, the resulting ESS sizings are compared and discussed.

Modeling

Grid services

Two kinds of grid services defined by the utility operator, S1 and S2, are analyzed in this study and presented in figure 1.

The first service S1 is an "hourly smoothing". It yields an hourly smoothed output of the day-ahead forecast power P f , that is

S1 ≡ P bid (hour) = f actor • P f (hour) (1) 
for every exact hour and linear interpolation in between. α is the multiplying factor on forecast error in order to compute the impact of forecast accuracy.

Service S2 provides a year round constant power bid. This guaranteed power commitment P gtd may be based directly (or not) on the forecast. For this study P gtd is a part f actor of the annual mean forecast power. Variying f actor changes how much ESS capacity is needed by the producer to supply the corresponding power bid all year.

S2 ≡ P bid (year) = P gtd = f actor • P f (year) (2) 0h 24h 24h 48h 0h

S1 S2

Hourly forecast The tolerance level tol may be used by the grid operator as a decision parameter in a bidding process to have more surely a service met. The actual power supplied to the grid can be 46 slightly different than the day-ahead bid due to this tolerance 47 on power supply and also to the defaults.

P bid P bid P f P gtd

Annual guaranteed power

Power supply Tolerance

48

The default time rate DT R is defined as the part of the total period during which the power supplied to the grid P grid does not meet the day-ahead power bid P bid , announced by the supplier to the grid operator, within the tolerance. The definition is considered as developed in [START_REF] Yang | Optimal sizing method for stand-alone hybrid solarwind system with lpsp technology by using genetic algorithm[END_REF] for a hybrid solarwind system, where the DTR represents the Loss of Power Supply Probability (LPSP), with the power bid given by the load. This is shown in figure 2 and can be described as:

DT R = 1 N N t=1 (P grid (t) < P bid (t) -tol) (3)
where the inequalty is 0 if false (service met), 1 if true (default). There is no overshoot default. The output energy that cannot be neither supplied to the grid nor charged into the ESS is considered lost. This loss occurs when first the output is above the allowed power supply upper bound P bid (t) + tol and second the storage is full. The supplier meets the service when the DT R is less than DT R max , 5% in this work. The aim is first to infer the minimal ESS capacity S * meeting each service and to determinate corresponding energies and tariffs. For a given tolerance and ESS capacity, P * gtd is the maximal guaranteed power that meets the service with 5%-DT R. Secondly, for a fixed tolerance, an optimization process achieves the maximal power that can be supplied to the grid depending on the ESS capacity. E grid S 1,S 2 is the energy supplied to the grid only while the service S1 or S2 respectively is met: 

E grid S
                        
P sto (t) = min(P th , P max sto , P max (t), P bid (t) + tol) P grid (t) = P out (t) + P sto (t)

P lost (t) = 0 S OC(t + 1) = S OC(t) -1 η d P sto (t)∆t dod(t + 1) = dod(t) + (S OC(t) -S OC(t + 1))/S (5)
• CHARGE(P th ) with P th ≤ 0: 

                         P sto (t) =
Ideally, without any strategy, the ESS should compensate for the exact power deviation between bid and output i.e.:

P th = P dev (t) = P bid (t) -P out (t) (8) 
This will be modified when applying the adaptive charge 81 strategy developped in section 3. The power supplied to the 82 grid P grid and the corresponding annual energy E grid have to 83 be as high as possible under the paramount constraint that the 84 service is met.

85

For given storage parameters, the initial problem is to find the storage operation that maximizes the energy injected into the grid meeting the service while compliying with storage power, capacity and discharging constraints. This can be expressed as:

max E grid S 1,S 2 s.t.                    DT R < DT R max P min sto ≤ P sto (t) ≤ P max sto S OC min ≤ S OC(t) ≤ S OC max dod(t) ≤ dod max t = 1, ..., N (9) 
This is a large-scale non-linear optimization problem 86 which can be approximated as a quadratic programming [START_REF] Bridier | Optimal design of a storage system coupled with intermittent renewables[END_REF] 87 minimizing the quadratic difference between the ESS power A similar approach was used in [START_REF] O'connor | Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe[END_REF] to assess the economic 110 performance of a renewable energy farm with ESS facilities.

111

Cumulated NPV is computed via following equation:

NPV(Y) = Y n=0 C n (1 + i) n (10)
where C n is the total annualized cash flow for a given period n, i the discount rate and Y the study period.

Annual revenues from energy supplied to the grid are given by:

Revenues Renewables =c 0 • E grid (11) Revenues Renewables+ES S =c i • E grid S i i = 1, 2 (12) 
where the feed-in tariff without storage c 0 is the tariff when output is supplied directly to the grid and no specific service is provided. c 1 and c 2 are the annual feed-in tariffs (FIT ) for S1 and S2 services, with the price condition

c 0 < c 1 < c 2 .
As the revenues vary directly with the energy supplied while the service is met, the economic criterion is not the revenues but the value-added of the ESS. The economic performance of the ESS is therefore evaluated by its contribution to operational profit for each service. This study aims to compute the minimal FIT c * 1 or/and c * 2 for each service that results in a storage payback time of 20 years. The facility lifespan is supposed to be greater than this duration. The contribution of the storage device to operational profit for year y is computed by:

Profit ES S (y) = NPV Renewables+ES S (y) -NPV Renewables (y) (13)
The storage payback time is the earliest year y for which the ESS profit is positive. In order to compare renewables and services as function of storage payback, the feed-in tariff c 0 is chosen equally for all renewables. As the tariff decreases when more energy is supplied to the grid with a fixed ESS capacity, the 20-year storage payback limitation is also a constraint on grid energy and thus on energy lost. In terms of electricity purchase, service S2 may be of more interest than S1 because annual guaranteed power may have a higher feed-in tariff than the non-guaranteed service.

Inputs

For wind, wave and PV power facilities, the rated powers are normalized to a capacity of 1MWp i.e. P inst = 1000kW. The The base values of ESS and economic fixed parameters used 155 for the simulations are given in tables 2. 

Storage operation optimization

Tolerance Layer Strategy

As the producer can supply any power in the tolerance layer [P bid -tol; P bid + tol] without default nor penalties, it is pertinent to choose the optimal power supply level in this range. Three levels are defined in figure 5 for charge and discharge which gives nine strategies. The strategies +/-, 0/0 and -/+ correspond to power bids P bid -tol, P bid and P bid + tol respectively. Strategies +/0, +/+ and 0/+ are inconsistent inside the tolerance layer and no charge/discharge order is performed. 

Adaptive charge

The maximum charging / minimum discharging strategy is adopted to further decrease the required ESS capacity. In this strategy the default energy provided by the renewables farm and the ESS in case of failure is supplied to the grid. This energy is little or not valued, if not accepted, by the utility operator.

It is therefore better to use it directly for charging the storage device. This is called the "Default = Charge" strategy.

However when operating with this single strategy some oscillations occur in the grid power supply. These oscillations are shown in the first graph of figure 6 for a low wind power output day, 21/04/10, with a 25% tolerance and an ESS capacity of 1000kWh/MWp. They are due to alternating charge and discharge phases corresponding to empty and almost empty storage. This behavior is unacceptable for the grid operator as it infers instability in grid management.

In order to reduce these oscillations, an "adaptive charge parameter" acp is introduced. acp represents the energy (in ESS capacity unit) which must be charged into storage before supplying power to the grid. Ideally acp might be half the energy produced during a default series. It is thus very dependant on the default mean time from when the output drops until it rises again. The longer the default series is the higher the adaptive parameter may be. This parameter can be updated every day or even at every time step if short-horizon forecasts (e.g. one to six hours) were available at a default series start. Other strategies lead to unworkable capacities greater than 5 and 10MWh/MWp for 0/0 and -/+ strategies respectively. Maximum charging/minimum discharging is therefore chosen as a core strategy for ESS sizing. This strategy has been used for wave power storage sizing in [START_REF] Hernandez-Torres | Technico-economical analysis of a hybrid wave powerair compression storage system[END_REF].

Decrease in oscillations through adaptive charge shown in figure 6 takes place all year round for all renewables evaluating the default mean time DMT in figure 8. Lower oscillations are achieved with greater adaptive parameter. As a counterpart, higher DTR and therefore higher ESS capacity are obtained. In conclusion, the choice acp = 20% for adaptive charge offers for all renewables a good compromise between oscillations curtailment and an increase in DT R and thus required minimal ESS capacity. This optimization strategy is chosen as reference strategy for comparing renewables ESS sizing and corresponding energies or tariffs. This storage operation strategy can be applied by the supplier in operational conditions so as to comply with the service more efficiently.

Optimal Sizing

The optimized storage operation model presented in this paper, denoted as adaptive charge, aims at obtaining a lower DT R for a fixed ESS size and storage parameter base values while meeting the allowed maximal depth of discharge. This model gives also the corresponding supplied or lost energies and thus the feed-in-tariff for a 20-year storage payback. A feasible ESS sizing is first performed on the basis of tolerance.

For a fixed power level f actor and for each tolerance tol from 0 

Results and discussion

249

The results for S1 and S2 are summarized in Table 3. The optimal capacity is the minimal capacity that meets the 254 service with less than 5%-DT R. For service S1 with a PV 255 power a DT R max of 5% is measured during daylight hours as 256 no service is provided overnight. Figure 9 shows a comparison 257 of renewables storage sizing, corresponding energies and tariffs 258 for hourly smoothing (S1) with 100% forecast i.e. f actor = 1.

259

The mean power supplied to the grid P grid is around 85%- As the annual guaranteed power with service S2 can be not based on the mean forecast but for instance on mean past outputs the influence of forecast accuracy is assessed with the service S1. In order to compute the impact of forecast accuracy on sizing and feed-in-tariffs the hourly forecast error is multiplied by a factor α ≥ 0. Hence, the mean absolute error is also multiplied by α. The new forecast vector P f α is given by: P f α = (1 -α)P out + αP f [START_REF] Bridier | Optimal design of a storage system coupled with intermittent renewables[END_REF] with P f α restricted to [0;P inst ], so that 1-α represents the forecast accuracy variation: positive for improvement and 336 negative for reduction. The impact of the forecast accuracy on 337 the techno-economic results for service S1 is shown in figure 338 12 for α in the range between 0.7 and 1.3. 

Figure 1 :

 1 Figure 1: Grid services; The dashed lines represent the given tolerance layer.
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  For PV power N corresponds to the number of daylight time

Figure 2 :

 2 Figure 2: Tolerance and default of power supply.
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  and the power bid deviation under linear capacity constraints. 89 However this annual optimization cannot be performed in 90 operational conditions as the whole year data are needed. The 91 heuristic approach considered in this study consists of raising 92 |P sto | as high as possible while respecting the constraints at each 93 time step t. Operation strategies are added and developed in 94 section 3 for DTR and sizing improvement. The interest with 95 the proposed methodology is that a more flexible control and an 96 optimal operation management of the ESS is possible at each 97 time step, with decisions made based on the current forecast, 98 output and state of charge. On the other hand, this model is 99 helpful for testing and choosing storage operation strategies 100 in order to compare viable results with regard to any kind of 101 services. These services could either be related to the grid or to 102 the load, for instance in stand-alone systems or zero net energy the economic analysis methodology of the 106 different services described above is presented. The study is 107 based on the guidelines described in [15]. The classical cash 108 flow and net present value (NPV) methodology is considered.

  109

  considered simulation time step is 10 minutes i.e. ∆t = 1/6 hour and thus the number of time points is N = 52560. Wind power output was measured every 10 minutes from September 2010 to August 2011 in a Guadeloupe wind farm, a French overseas department. Wind power hourly forecasts are based on meteorological forecasts of the french national forecasting centre Meteo France and provided by a subsidiary specializing in regional climate services. The PV power output was measured from January to December 2009 in Saint-Pierre, Reunion (France). PV forecasts are given by the persistence model where the forecast power is equal to the 141 measured output at the same time the previous day. Wave 142 data measurements where made from a site near Saint-Pierre 143 (Pierrefonds) in Reunion. The data collected includes wave 144 height and period measured from 2000-2007 and 2009. Wave 145 state forecasts from W3 models are published by the US-NAVY 146 at http://www.usgodae.org/. 147 Forecasts errors are shown in figure 4. Associated statistical 148 indicators are presented in table 1. As during a failure of power 149 supply, the default time is unchanged whether the deviation 150 to compensate by the ESS is much higher or not, the chosen 151 forecast accuracy metrics is the relative Mean Absolute Error 152 rMAE. This metrics is less sensitive than root mean square 153 error (RMSE) to extreme values [17]. 154 Sept10 Oct10 Nov10 Dec10 Jan11 Feb11 Mar11 Apr11 May11 Jun11 Jul11 Aug11 -

Figure 4 :

 4 Figure 4: Wind, wave and PV power forecast errors

Figure 5 :

 5 Figure 5: Tolerance layer strategies.

Figure 6 :

 6 Figure 6: Grid supply oscillations curtailment with adaptive charge

Figure 7 :

 7 Figure 7: Tolerance layer strategies comparison
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  %storage size) Default Mean Time DM T (h) (d) DMT -S2.P gtd =100kW

Figure 8 :

 8 Figure 8: Comparison of adaptive charge strategies

  237 to 60%P out , the ESS size S is varying from 0 to 2000kWh/MWp 238 to find the minimal feasible size that meets the service (DT R ≤ 239 5%). 240 Then the viable ESS sizing involves varying the power 241 level f actor from 0.1 to 1.5 in order to find a viable solution 242 (S * ,FIT * ). S * is a feasible ESS size i.e. meeting the service 243 with less than 2MWh/MWp and FIT * is lower than 300 and 244 400e/MWh for S1 and S2 respectively. The associated f actor * 245 is the maximal multiplying factor on forecast for which at least 246 one viable couple (S * , FIT * ) is found. It corresponds to the 247 maximal power that can be viably supplied to the grid.

  248

250 4 .

 4 1. Service S1 251 In this section, simulation results for hourly smoothing (S1) 252 are presented.

  output) Mean Power supplied to the grid (kW (b) tol vs P grid output) Energy Loss Elost(%Eout) (d) tol vs E lost

Figure 9 :

 9 Figure 9: Storage sizing for hourly smoothing (S1. f actor = 1).
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  90% of the mean output. Tolerances lower than 20% of the 261 mean output are unviable for wind or wave power. Within the 262 5 to 35% tolerance range, PV results are better in terms of 263 capacity, energy lost and tariff required for a 20-year storage 264 profitability. This comes from the fact that for PV power this 265 service operates as if it is restricted to output hours since no The bell curve of energy lost is due to the concurrence of 270 two phenomenas. On the one hand, increasing the tolerance 271 allows for more power output to be supplied. On the other 272 hand, adaptive charge tends to supply the lower bound P bid -tol 273 to the grid. With high tolerance values the first phenomenon 274 prevails. As the storage cost is significant compared to the 275 potential revenues, the FIT for 20-year storage payback time is 276 very dependant on its capacity. At over 40% tolerance, required 277 capacities, 20-year storage payback FIT and energy parts tend 278 to be very similar. This comes from the first aforementioned 279 phenomenon where an increasing part of the output is directly

  -Storage Payback FIT Decrease (%FITα=1 ) Forecast Accuracy Improvement (%M AEα=1) WIND WAVE PV Initial forecast (α=1) (b) Impact on feed-in tariff

Figure 12 :

 12 Figure 12: Impact of forecast accuracy for service S1

Table 1 :

 1 Forecast and output statistical indicators

	Renewable	annual output	Pout	P f	max(Pout) MAE rMAE Output-forecast	Day-ahead
	Source	[MWh/MWp] [kW] [kW]	[kW]	[kW]	[%]	correlation [%] correlation [%]
	Wind power	1692.2	193.2 189.4	1000	90.9	47.1	77.3	52.0
	Wave power	964.3	110.1 107.1	888.8	47.9	43.5	72.6	69.7
	PV power	1356.6	154.9 154.9	923.1	48.7	31.4	87.1	87.1

Table 2 :

 2 ESS and economic parameters values

	Parameter Value	Parameter	Value
	P max sto -P min sto η d	500kW Investment a 500kW Investment b,c 90% Op.&Maintenance c	2Me/MWp 4Me/MWp 5%
	η c	90%	Op.&Maintenance a,b 10%
	S OC max	90%	Storage lifespan	20 years
	S OC min	10%	ESS cost	700e/kWh
	S OC 0	50%	c 0	100e/MWh
	dod max	60%	Discount rate	10%
	a=Wind, b=Wave, c=PV		

  The energies or mean powers supplied to the grid with storage 290 are still ranked and bounded by the initial outputs.

																	298	wave and wind power at 25% tolerance. However, the
																	299	guaranteed power supplied is still low: less than 70kW. For
																	300	service S2, viable capacities and FITs can be obtained with PV
																	301	power only at higher tolerances greater than 30%.
																	302	The annual mean forecast ( f actor = 1) cannot feasibly be
																	303	provided at a tolerance below 60% by any renewable source. In
																	304	a general manner, energy losses are higher with annual leveling
																	305	than with hourly smoothing. This can be easily explained since
																	306	the guaranteed power P gtd is well below the mean output P out .
																	307	PV power is not well suited for all-day constant power supply
																	308	services like S2. With these services too large ESS capacities
																	309	are needed and too much energy is lost.
																	310	With PV power, annual leveling service (S2) is more
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	288	respectively. However, PV power is well suited for this service,
		particularly with tolerances lower than 25%, that is 3.9%P inst .	Figure 11: PV energy storage sizing with restricted service S2
	291															
																	During this time range, with 25% tolerance and 1000kWh
	292	4.2. Service S2										
	293		Optimization results for annual leveling service (S2) are
	294	presented in figure 10. It is clearly more difficult for all
	295	renewables to comply with this service as an important amount
	296	of energy is lost (35-70%).								
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		Figure 10: Viable storage sizing for annual leveling at 25 and 40%-tolerance
	297		When decreasing f actor, viable results can be found for

289 312 ESS capacity, 314kW for S2. f actor = 1, can be guaranteed all 313 year long at 5%-DT R. Lower energy losses are also obtained 314 with 22% of lost output energy. 315 The folowing conclusions on service S2 can be drawn : 316 • Feed-in tariffs FIT for a 20-year storage payback are very 317 dependant on ESS capacities as initial costs are high. 318 • With low ESS capacities viable solutions can be found but 319 only with low f actor and power supplied to the grid. It may 320 be sometimes worthless to consider larger ESS capacities as 321 only an improvement of a few kW of power supplied to the 322 grid is obtained, see figure 10(a) and (c) for an example.

323

• 100% annual mean forecast is viable at 25% tolerance for 324 wind or wave power but not for PV power. With wave power 325 the power supplied to the grid is much lower (70 vs 180kW) 326 but with less energy loss and smaller ESS capacities.

327

• PV power is more suited to daylight hours services e.g.

Table 3 :

 3 339A high impact of forecast accuracy is noted for all 340 renewables since 5% forecast accuracy improvement gives an 341 optimal ESS capacity decrease of 22.3%, 28.3%, 13.2% and 342 12.5%, 17.9%, 4.4%-FIT reduction for wind, wave, PV power 343 respectively. Forecast accuracy reduction yields more impact 344 than its improvement with for example a required ESS capacity 345 tripled or more for 30%-MAE increase. It is thus important to 346 realise that if the forecast quality is not taken into account, then 347 the proposed sizing solution may not be worthwhile from an Viable results for services S1 and S2In order to improve the penetration of renewables into the 351 electricity grid with respect to two specific services, an optimal 352 viable storage sizing is performed in this study. The viable 353 domain is defined so as to ensure a bounded ESS capacity and 354 a not too high feed-in-tariff for a 20-year storage profitability.355PV power is more efficient if restricted to daylight hours, 356 particularly at tolerances lower than 25%P out . This is the case 357 for S1 with 112% of the hourly forecast where 146kW on 358 average can be annual guaranteed during evening peak. For not 359 restricted S2 wind and wave power are more suitable than PV.Guaranteed power above 100kW can be feasibly supplied only 361 with wind power but at higher tolerance (60%) and huge output 362 energy loss (35%E out ). Besides, energy losses below 20% can 363 be attained only with wave power but with a lower supply of 364 89kW. With hourly restricted S2, 314kW can be guaranteed 365 with PV power all year long during 9am-5pm time range. For 366 S1 forecast accuracy is a key factor of storage sizing. Tolerance 367 on power supply and power level f actor have also a huge 368 impact on optimal size, energies and FIT. So as to increase the 369 energy injected into the grid meeting the service, particularly 370 during peak hours, and reduce energy losses, combination of 371 the two services can be an interesting way.

	348						
	operational viewpoint.					
	Service /	tol	P	* grid	f actor *	S *	E * lost
	Renewables (%P out ) (kW) (%forecast) (kWh) (%E out )
	Service S1 (FIT * ≤ 300e/MWh)			
	Wind	25	167.2	104	1800	11.7
	Wind	40	175.9	118	1900	6.3
	Wave	25	93.1	99	900	13.9
	Wave	40	98.2	111	1000	9.2
	PV	25	146	112	1600	2.7
	PV	40	146.3	118	1600	2.4
	Service S2 (FIT * ≤ 400e/MWh)			
	Wind	25	65.5	29	400	65.9
	Wind	40	95.6	49	1100	50.1
	Wind	60	124.8	71	1700	34.8
	Wave	25	68.9	61	900	37.1
	Wave	40	80.1	78	1200	26.8
	Wave	60	88.6	100	1400	19.1
	PV	25	No	viable	solution	-
	PV	40	65.9	58	600	55.4
	PV	60	99.5	100	1400	31.0
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energy is forecasted nor supplied overnight. Secondly, PV 267 power is by nature more day-ahead predictable [START_REF] Zhang | Investigating the correlation between wind and solar power forecast errors in the western interconnection[END_REF] with the 268 higher output correlation (83%) from day to day (Table 1).