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Techno-economic storage sizing for wind, wave and PV power

Laurent Bridiera,∗, David Hernández-Torresa, Mathieu Davida, Phillipe Laureta

aUniversité de La Réunion, 40 Avenue de Soweto, 97410 Saint-Pierre, Réunion, France

Abstract

In this paper a techno-economic comparison of an energy storage system (ESS) sizing for three intermittent renewables,wind, wave
and PV power, with regard to two electricity grid services ispresented. These services are defined by the utility operator in order
to meet different load needs and have to be provided by the producer. The first service consists of output hourly smoothing, based
on day-ahead power forecasts (S1). The second service supplies year-round guaranteed power (S2). This leads to an annual default
time rate (DTR) for which the actual power supplied does not match the day-ahead power bid within a given tolerance. A heuristic
optimization strategy based on the ESS state of charge denoted asadaptive chargeis developed in this study. This approach enables
the minimal 5%-DTR ESS capacity, power, energy and feed-in tariffs to be inferred from the operating conditions, depending
on tolerance. Ocean wave and PV power measurements and forecasts are used in French overseas department Reunion and wind
power in Guadeloupe. The simulations assess and compare thetechno-economic viability and efficiency of every renewable sources
coupled with ESS. Annual results show that PV power is more efficient with daylight hours restricted services and higher power
levels can be guaranteed for S1. In the other hand, wind and wave power are more suitable than PV for services dedicated to full-day
power delivery, as in the case of S2. For hourly smoothing theforecast accuracy influence is studied and yields a high impact on
the techno-economic sizing.

Keywords: renewable energy storage, grid utility services, optimization

Nomenclature1

Pbid Guaranteed power bid [kW]
Pf Power forecast [kW]
Pout, Eout Output power, energy (from converter) [kW,kWh]
Psto Storage power (Psto > 0 discharge,

Psto < 0 charge) [kW]
Pgrid Power supplied to the grid [kW]
EgridS1,S2 Annual energy supplied while service is met [kWh]
Pdev Deviation between power bid and output [kW]
Pgtd Annual guaranteed power bid [kW]
Pinst Installed capacity [kW]
Plost,Elost Lost output power, energy [kW,kWh]
S Useful storage capacity [kWh]
S OC Storage state of charge [kWh]
dod Depth of discharge [%S]
ηd, ηc Storage block efficiency (discharge, charge) [%]
acp Adaptive charge parameter [%S]
DTR Default time rate [%]
tol Allowed tolerance on power bid [kW,%Pout]
∆t Time step, 10 min. in this study [h]
f actor Part of forecast taken as power bid [%]
α forecast accuracy factor [u]

∗corresponding author
Email addresses:laurent.bridier@univ-reunion.fr (Laurent

Bridier), david.hernandez-torres@univ-reunion.fr (David
Hernández-Torres),mathieu.david@univ-reunion.fr (Mathieu David),
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N Number of time points
rMAE Relative Mean Absolute Error [%Pout]
NPV Net present value [e/MWh]
FIT 20-year storage payback feed-in tariff [e/MWh]
c0 Feed-in tariff without storage [e/MWh]
c1, c2 Feed-in tariffs for services S1, S2 [e/MWh]
x mean value of parameterx
x∗ Optimal viable solution for parameter

1. Introduction2

With the depletion of fossil fuel energy sources and the3

certainty of peak oil, the integration of renewable energy has4

become necessary, if not essential. In non-interconnected5

systems, particularly island grids, the challenge is to increase6

the energy independance and to cut the energy bills. However,7

when the integration rate of the renewables exceeds 15 or 20%,8

the grid operator has to cope with new problems. Since the9

renewable source is by nature highly intermittent, it is difficult10

to increase the input of renewable energy sources into the11

grid. In order to mitigate this variability and supply a smooth12

guaranteed power to the grid, renewable energy storage is a13

feasible solution and has, for several years, been studied and14

installed around the world [1].15

Various papers have been written about the coupling16

of energy ESS with renewable sources [2]. PV, wind or17
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hybrid PV/wind systems with batteries or pumped hydro18

energy storage (PHES) systems have been well studied [3]19

[4]. The optimal ESS sizing is usually based either on20

analytical methods [5] [6] or iterative methods such as Genetic21

Algorithms [7] to minimize costs [8]. Another increasingly22

widespread approach is to take into account the uncertaintyof23

renewable power through stochastic programming [9] [10]. In24

these studies, the time step is usually one hour, during 24 hours25

or a few days.26

In this paper, a storage system with a 10-minute or less27

response time for power management applications is evaluated.28

The goal is to size the storage in an optimal viable way so that29

the supplier can provide to the grid utility two specific yearly30

services: hourly smoothing and annual leveling. These services31

may boost the integration of renewables into vulnerable grids32

[11]. A scheduled storage operation strategy that can be applied33

by the supplier to meet the considered service under operating34

conditions is initially presented. Secondly, the resulting ESS35

sizings are compared and discussed.36

2. Modeling37

2.1. Grid services38

Two kinds of grid services defined by the utility operator,39

S1 and S2, are analyzed in this study and presented in figure 1.40

The first service S1 is an “hourly smoothing”. It yields an
hourly smoothed output of the day-ahead forecast powerPf ,
that is

S1 ≡ Pbid(hour)= f actor · Pf (hour) (1)

for every exact hour and linear interpolation in between.α is41

the multiplying factor on forecast error in order to computethe42

impact of forecast accuracy.43

Service S2 provides a year round constant power bid. This
guaranteed power commitmentPgtd may be based directly (or
not) on the forecast. For this studyPgtd is a part f actor of
the annual mean forecast power. Variyingf actor changes how
much ESS capacity is needed by the producer to supply the
corresponding power bid all year.

S2 ≡ Pbid(year)= Pgtd = f actor · Pf (year) (2)

0h 24h 24h 48h0h

S1 S2

Hourly forecast 

Pbid Pbid

Pf
Pgtd

Annual guaranteed power 

Power supply

Tolerance

Figure 1: Grid services; The dashed lines represent the given tolerance layer.

The tolerance leveltol may be used by the grid operator as44

a decision parameter in a bidding process to have more surely45

a service met. The actual power supplied to the grid can be46

slightly different than the day-ahead bid due to this tolerance47

on power supply and also to the defaults.48

The default time rateDTR is defined as the part of the
total period during which the power supplied to the gridPgrid

does not meet the day-ahead power bidPbid, announced by
the supplier to the grid operator, within the tolerance. The
definition is considered as developed in [12] for a hybrid solar-
wind system, where the DTR represents the Loss of Power
Supply Probability (LPSP), with the power bid given by the
load. This is shown in figure 2 and can be described as:

DTR=
1
N

N
∑

t=1

(Pgrid(t) < Pbid(t) − tol) (3)

where the inequalty is 0 if false (service met), 1 if true (default).49

For PV powerN corresponds to the number of daylight time50

steps.51

Failure
(DTR)

0h 24h

Pgrid
Pbid

+tol

-tol

Figure 2: Tolerance and default of power supply.

There is no overshoot default. The output energy that cannot
be neither supplied to the grid nor charged into the ESS is
considered lost. This loss occurs when first the output is above
the allowed power supply upper boundPbid(t) + tol and second
the storage is full. The supplier meets the service when the
DTR is less thanDTRmax, 5% in this work. The aim is first
to infer the minimal ESS capacityS∗ meeting each service and
to determinate corresponding energies and tariffs. For a given
tolerance and ESS capacity,P∗gtd is the maximal guaranteed
power that meets the service with 5%-DTR. Secondly, for a
fixed tolerance, an optimization process achieves the maximal
power that can be supplied to the grid depending on the ESS
capacity.EgridS1,S2 is the energy supplied to the grid only while
the service S1 or S2 respectively is met:

EgridS1,S2 =
∑

1≤t≤N
Pgrid(t)≥Pbid(t)−tol

Pgrid(t) · ∆t (4)

2.2. Storage model52

The figure 3 represents the flowchart of the output and53

storage block model where electrical devices may be converter,54

inverter and transformer. This modeling can be applied to55

systems with a load demand by setting the bid equal to the load.56
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Figure 3: Modeling flowchart

The storage system is viewed as a black box defined by57

the following static technical characteristics: ESS capacity58

S, maximal charge powerPmax
sto , maximal discharge power59

−Pmin
sto , minimal state of chargeS OCmin, maximal state of60

chargeS OCmax, initial state of chargeS OC0, maximal depth61

of dischargedodmax, charge/discharge efficiencyηc andηd. The62

global efficiency of the storage block in figure 3 encompasses63

electrical conversion devices. It is assumed that the time step64

is sufficiently large compared to the systems dynamics. The65

ESS is supposed to have a response time lower than the time66

scale used (i.e. 10 minutes in this study). It must normally67

compensate for the deviation between the power bid and the68

actual power output. The main assumption is that whatever69

the state of chargeS OC(t) betweenS OCmin andS OCmax the70

storage device can charge or discharge during∆t the desired71

energy. This is generally the case as power deviation to balance72

is much lower than the rated capacity andS OCis not closed to73

extreme values.74

The actual ESS powerPsto is constrained by the75

charge/discharge rated power and capacity limitations. The76

modeling developed in this study is similar to the approach77

considered in [13] with depth of discharge managing. As the78

operating conditions and the strategy require, the ESS has to79

charge or discharge a certain powerPth at timet as follows:80

• DISCHARGE (Pth) with Pth > 0:















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
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


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




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
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

Psto(t) = min(Pth,Pmax
sto ,Pmax(t),Pbid(t) + tol)

Pgrid(t) = Pout(t) + Psto(t)

Plost(t) = 0

S OC(t + 1) = S OC(t) − 1
ηd

Psto(t)∆t

dod(t + 1) = dod(t) + (S OC(t) − S OC(t + 1))/S

(5)

• CHARGE(Pth) with Pth ≤ 0:









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


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




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






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











Psto(t) = max(Pth,Pmin
sto ,Pmin(t),−Pout(t))

Pgrid(t) = min(Pout(t) + Psto(t),Pbid(t) + tol)

Plost(t) = Pout(t) + Psto(t) − Pgrid(t)

S OC(t + 1) = S OC(t) − ηcPsto(t)∆t

dod(t) = 0

(6)

where














Pmax(t) = (S OCmax− S OC(t)) · ηd/∆t

Pmin(t) = (S OCmin − S OC(t))/(ηc∆t)
(7)

Ideally, without any strategy, the ESS should compensate
for the exact power deviation between bid and output i.e.:

Pth = Pdev(t) = Pbid(t) − Pout(t) (8)

This will be modified when applying the adaptive charge81

strategy developped in section 3. The power supplied to the82

grid Pgrid and the corresponding annual energyEgrid have to83

be as high as possible under the paramount constraint that the84

service is met.85

For given storage parameters, the initial problem is to find
the storage operation that maximizes the energy injected into
the grid meeting the service while compliying with storage
power, capacity and discharging constraints. This can be
expressed as:

maxEgridS1,S2 s.t.







































DTR< DTRmax

Pmin
sto ≤ Psto(t) ≤ Pmax

sto

S OCmin ≤ S OC(t) ≤ S OCmax

dod(t) ≤ dodmax

t = 1, ...,N

(9)

This is a large-scale non-linear optimization problem86

which can be approximated as a quadratic programming [14]87

minimizing the quadratic difference between the ESS power88

and the power bid deviation under linear capacity constraints.89

However this annual optimization cannot be performed in90

operational conditions as the whole year data are needed. The91

heuristic approach considered in this study consists of raising92

|Psto| as high as possible while respecting the constraints at each93

time stept. Operation strategies are added and developed in94

section 3 for DTR and sizing improvement. The interest with95

the proposed methodology is that a more flexible control and an96

optimal operation management of the ESS is possible at each97

time step, with decisions made based on the current forecast,98

output and state of charge. On the other hand, this model is99

helpful for testing and choosing storage operation strategies100

in order to compare viable results with regard to any kind of101

services. These services could either be related to the gridor to102

the load, for instance in stand-alone systems or zero net energy103

buildings.104

2.3. Economic model105

In this section the economic analysis methodology of the106

different services described above is presented. The study is107

based on the guidelines described in [15]. The classical cash108

flow and net present value (NPV) methodology is considered.109

A similar approach was used in [16] to assess the economic110

performance of a renewable energy farm with ESS facilities.111
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Cumulated NPV is computed via following equation:

NPV(Y) =
Y
∑

n=0

Cn

(1+ i)n
(10)

whereCn is the total annualized cash flow for a given periodn,112

i the discount rate andY the study period.113

Annual revenues from energy supplied to the grid are given
by:

RevenuesRenewables=c0 · Egrid (11)

RevenuesRenewables+ES S=ci · EgridS i i = 1, 2 (12)

where the feed-in tariff without storagec0 is the tariff when114

output is supplied directly to the grid and no specific service is115

provided.c1 andc2 are the annual feed-in tariffs (FIT ) for S1116

and S2 services, with the price conditionc0 < c1 < c2.117

As the revenues vary directly with the energy supplied while
the service is met, the economic criterion is not the revenues
but the value-added of the ESS. The economic performance of
the ESS is therefore evaluated by its contribution to operational
profit for each service. This study aims to compute the minimal
FIT c∗1 or/and c∗2 for each service that results in a storage
payback time of 20 years. The facility lifespan is supposed to
be greater than this duration. The contribution of the storage
device to operational profit for yeary is computed by:

ProfitES S(y) = NPVRenewables+ES S(y) − NPVRenewables(y) (13)

The storage payback time is the earliest yeary for which118

the ESS profit is positive. In order to compare renewables and119

services as function of storage payback, the feed-in tariff c0 is120

chosen equally for all renewables. As the tariff decreases when121

more energy is supplied to the grid with a fixed ESS capacity,122

the 20-year storage payback limitation is also a constrainton123

grid energy and thus on energy lost. In terms of electricity124

purchase, service S2 may be of more interest than S1 because125

annual guaranteed power may have a higher feed-in tariff than126

the non-guaranteed service.127

2.4. Inputs128

For wind, wave and PV power facilities, the rated powers129

are normalized to a capacity of 1MWp i.e.Pinst = 1000kW. The130

considered simulation time step is 10 minutes i.e.∆t = 1/6 hour131

and thus the number of time points isN = 52560.132

Wind power output was measured every 10 minutes from133

September 2010 to August 2011 in a Guadeloupe wind farm,134

a French overseas department. Wind power hourly forecasts135

are based on meteorological forecasts of the french national136

forecasting centre Meteo France and provided by a subsidiary137

specializing in regional climate services. The PV power138

output was measured from January to December 2009 in Saint-139

Pierre, Reunion (France). PV forecasts are given by the140

persistence model where the forecast power is equal to the141

measured output at the same time the previous day. Wave142

data measurements where made from a site near Saint-Pierre143

(Pierrefonds) in Reunion. The data collected includes wave144

height and period measured from 2000–2007 and 2009. Wave145

state forecasts from W3 models are published by the US-NAVY146

at http://www.usgodae.org/.147

Forecasts errors are shown in figure 4. Associated statistical148

indicators are presented in table 1. As during a failure of power149

supply, the default time is unchanged whether the deviation150

to compensate by the ESS is much higher or not, the chosen151

forecast accuracy metrics is the relative Mean Absolute Error152

rMAE. This metrics is less sensitive than root mean square153

error (RMSE) to extreme values [17].154
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Figure 4: Wind, wave and PV power forecast errors

Table 1: Forecast and output statistical indicators

Renewable annual output Pout Pf max(Pout) MAE rMAE Output-forecast Day-ahead

Source [MWh/MWp] [kW] [kW] [kW] [kW] [%] correlation [%] correlation [%]

Wind power 1692.2 193.2 189.4 1000 90.9 47.1 77.3 52.0

Wave power 964.3 110.1 107.1 888.8 47.9 43.5 72.6 69.7

PV power 1356.6 154.9 154.9 923.1 48.7 31.4 87.1 87.1

The base values of ESS and economic fixed parameters used155

for the simulations are given in tables 2.

Table 2: ESS and economic parameters values

Parameter Value Parameter Value
Pmax

sto 500kW Investmenta 2Me/MWp
−Pmin

sto 500kW Investmentb,c 4Me/MWp
ηd 90% Op.&Maintenancec 5%
ηc 90% Op.&Maintenancea,b 10%
S OCmax 90% Storage lifespan 20 years
S OCmin 10% ESS cost 700e/kWh
S OC0 50% c0 100e/MWh
dodmax 60% Discount rate 10%

a=Wind, b=Wave, c=PV

156
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3. Storage operation optimization157

3.1. Tolerance Layer Strategy158

As the producer can supply any power in the tolerance159

layer [Pbid − tol; Pbid + tol] without default nor penalties, it160

is pertinent to choose the optimal power supply level in this161

range. Three levels are defined in figure 5 for charge and162

discharge which gives nine strategies. The strategies+/-, 0/0163

and -/+ correspond to power bidsPbid − tol, Pbid andPbid + tol164

respectively. Strategies+/0,+/+ and 0/+ are inconsistent inside165

the tolerance layer and no charge/discharge order is performed.166

0h 6h 12h 18h 0h
0 kW

50 kW

100 kW

150 kW

200 kW

250 kW

Pbid + tol

Pbid

Pbid - tol

max charge

       "+"

min discharge

         "-"

Output Power

Storage Power

exact charge

     "0"

min charge

      "-"

exact discharge

        "0"

max discharge

         "+"

Figure 5: Tolerance layer strategies.

3.2. Adaptive charge167

The maximum charging/ minimum discharging strategy is168

adopted to further decrease the required ESS capacity. In this169

strategy the default energy provided by the renewables farmand170

the ESS in case of failure is supplied to the grid. This energy171

is little or not valued, if not accepted, by the utility operator.172

It is therefore better to use it directly for charging the storage173

device. This is called the “Default= Charge” strategy.174

However when operating with this single strategy some175

oscillations occur in the grid power supply. These oscillations176

are shown in the first graph of figure 6 for a low wind power177

output day, 21/04/10, with a 25% tolerance and an ESS capacity178

of 1000kWh/MWp. They are due to alternating charge and179

discharge phases corresponding to empty and almost empty180

storage. This behavior is unacceptable for the grid operator as181

it infers instability in grid management.182

In order to reduce these oscillations, an “adaptive charge183

parameter”acp is introduced. acp represents the energy (in184

ESS capacity unit) which must be charged into storage before185

supplying power to the grid. Ideallyacp might be half the186

energy produced during a default series. It is thus very187

dependant on the default mean time from when the output drops188

until it rises again. The longer the default series is the higher189

the adaptive parameter may be. This parameter can be updated190

every day or even at every time step if short-horizon forecasts191

(e.g. one to six hours) were available at a default series start.192
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Figure 6: Grid supply oscillations curtailment with adaptive charge

3.3. Strategy comparison193

Strategy comparisons are presented in figures 7 and 8 for194

services S1 and S2 with ESS capacityS = 1000 kWh/MWp and195

tolerancetol = 25%Pout. As the main constraint is to meet the196

service, the selection criterion is the annualDTR. Regardless197

of wind, wave or PV power, a lowerDTR is obtained with the198

+/- strategy.
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Figure 7: Tolerance layer strategies comparison

199

Generally speaking, a maximal charge strategy is the best200

for reducing defaults and thus ESS capacity, even if the energy201

losses can be higher and power supplied to the grid slightly202

lower. It can be also noted that only PV can meet the S1 service203

(5%-DTR) with a 1000kWh/MWp ESS and 25%-tolerance.204
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Other strategies lead to unworkable capacities greater than205

5 and 10MWh/MWp for 0/0 and -/+ strategies respectively.206

Maximum charging/minimum discharging is therefore chosen207

as a core strategy for ESS sizing. This strategy has been used208

for wave power storage sizing in [18].209

Decrease in oscillations through adaptive charge shown in210

figure 6 takes place all year round for all renewables evaluating211

the default mean timeDMT in figure 8. Lower oscillations212

are achieved with greater adaptive parameter. As a counterpart,213

higher DTR and therefore higher ESS capacity are obtained.214
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(c) DTR- S2.Pgtd=100kW
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Figure 8: Comparison of adaptive charge strategies

With the adaptive charge, output energy is kept for charge215

as much as possible, although in some cases, there is no default,216

within and above the tolerance layer. The contribution of this217

strategy is clearly established as theDTR is divided by two or218

more. 5%-DTRcapacities for all renewables are now feasible219

since they are lower than 2MWh/MWp.220

In conclusion, the choiceacp = 20% for adaptive221

charge offers for all renewables a good compromise between222

oscillations curtailment and an increase inDTR and thus223

required minimal ESS capacity. This optimization strategyis224

chosen as reference strategy for comparing renewables ESS225

sizing and corresponding energies or tariffs. This storage226

operation strategy can be applied by the supplier in operational227

conditions so as to comply with the service more efficiently.228

3.4. Optimal Sizing229

The optimized storage operation model presented in this230

paper, denoted as adaptive charge, aims at obtaining a lower231

DTR for a fixed ESS size and storage parameter base values232

while meeting the allowed maximal depth of discharge. This233

model gives also the corresponding supplied or lost energies234

and thus the feed-in-tariff for a 20-year storage payback. A235

feasible ESS sizing is first performed on the basis of tolerance.236

For a fixed power levelf actorand for each tolerancetol from 0237

to 60%Pout, the ESS sizeS is varying from 0 to 2000kWh/MWp238

to find the minimal feasible size that meets the service (DTR≤239

5%).240

Then the viable ESS sizing involves varying the power241

level f actor from 0.1 to 1.5 in order to find a viable solution242

(S∗,FIT ∗). S∗ is a feasible ESS size i.e. meeting the service243

with less than 2MWh/MWp and FIT ∗ is lower than 300 and244

400e/MWh for S1 and S2 respectively. The associatedf actor∗245

is the maximal multiplying factor on forecast for which at least246

one viable couple (S∗, FIT ∗) is found. It corresponds to the247

maximal power that can be viably supplied to the grid.248

4. Results and discussion249

The results for S1 and S2 are summarized in Table 3.250

4.1. Service S1251

In this section, simulation results for hourly smoothing (S1)252

are presented.253
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Figure 9: Storage sizing for hourly smoothing (S1.f actor = 1).

The optimal capacity is the minimal capacity that meets the254

service with less than 5%-DTR. For service S1 with a PV255

power aDTRmax of 5% is measured during daylight hours as256

no service is provided overnight. Figure 9 shows a comparison257

of renewables storage sizing, corresponding energies and tariffs258

for hourly smoothing (S1) with 100% forecast i.e.f actor= 1.259

The mean power supplied to the gridPgrid is around 85%-260

90% of the mean output. Tolerances lower than 20% of the261

mean output are unviable for wind or wave power. Within the262

5 to 35% tolerance range, PV results are better in terms of263

capacity, energy lost and tariff required for a 20-year storage264

profitability. This comes from the fact that for PV power this265
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service operates as if it is restricted to output hours sinceno266

energy is forecasted nor supplied overnight. Secondly, PV267

power is by nature more day-ahead predictable [19] with the268

higher output correlation (83%) from day to day (Table 1).269

The bell curve of energy lost is due to the concurrence of270

two phenomenas. On the one hand, increasing the tolerance271

allows for more power output to be supplied. On the other272

hand, adaptive charge tends to supply the lower boundPbid− tol273

to the grid. With high tolerance values the first phenomenon274

prevails. As the storage cost is significant compared to the275

potential revenues, theFIT for 20-year storage payback time is276

very dependant on its capacity. At over 40% tolerance, required277

capacities, 20-year storage paybackFIT and energy parts tend278

to be very similar. This comes from the first aforementioned279

phenomenon where an increasing part of the output is directly280

supplied to the grid. As the tolerance layer becomes larger the281

ESS is solicited less and has less impact with 80% and 20%282

ESS use time at 5% and 60% tolerance respectively.283

To sum up, an hourly smoothing service (S1) could be284

achieved with 5%-DTR and 20% adaptive charge for wind285

or wave power only at tolerances greater than 25%. That286

represents 4.8% and 2.5%Pinst for wind and wave power287

respectively. However, PV power is well suited for this service,288

particularly with tolerances lower than 25%, that is 3.9%Pinst.289

The energies or mean powers supplied to the grid with storage290

are still ranked and bounded by the initial outputs.291

4.2. Service S2292

Optimization results for annual leveling service (S2) are293

presented in figure 10. It is clearly more difficult for all294

renewables to comply with this service as an important amount295

of energy is lost (35-70%).296
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Figure 10: Viable storage sizing for annual leveling at 25 and 40%-tolerance

When decreasingf actor, viable results can be found for297

wave and wind power at 25% tolerance. However, the298

guaranteed power supplied is still low: less than 70kW. For299

service S2, viable capacities and FITs can be obtained with PV300

power only at higher tolerances greater than 30%.301

The annual mean forecast (f actor = 1) cannot feasibly be302

provided at a tolerance below 60% by any renewable source. In303

a general manner, energy losses are higher with annual leveling304

than with hourly smoothing. This can be easily explained since305

the guaranteed powerPgtd is well below the mean outputPout.306

PV power is not well suited for all-day constant power supply307

services like S2. With these services too large ESS capacities308

are needed and too much energy is lost.309

With PV power, annual leveling service (S2) is more310

effective if limited to 9am-5pm as shown in figure 11.311
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Figure 11: PV energy storage sizing with restricted serviceS2

During this time range, with 25% tolerance and 1000kWh312

ESS capacity, 314kW for S2.f actor = 1, can be guaranteed all313

year long at 5%-DTR. Lower energy losses are also obtained314

with 22% of lost output energy.315

The folowing conclusions on service S2 can be drawn :316

• Feed-in tariffs FIT for a 20-year storage payback are very317

dependant on ESS capacities as initial costs are high.318

• With low ESS capacities viable solutions can be found but319

only with low f actor and power supplied to the grid. It may320

be sometimes worthless to consider larger ESS capacities as321

only an improvement of a few kW of power supplied to the322

grid is obtained, see figure 10(a) and (c) for an example.323

• 100% annual mean forecast is viable at 25% tolerance for324

wind or wave power but not for PV power. With wave power325

the power supplied to the grid is much lower (70 vs 180kW)326

but with less energy loss and smaller ESS capacities.327

• PV power is more suited to daylight hours services e.g.328

hourly forecast smoothing (S1) or annual leveling (S2)329

during [9am-5pm], especially with small tolerances.330

• At 40% tolerance or more, viable capacities and FITs are331

possible for all renewables but the mean powers and thus332

energies supplied to the grid are still ranked by initial outputs.333

4.3. Impact of forecast accuracy334

As the annual guaranteed power with service S2 can be
not based on the mean forecast but for instance on mean past
outputs the influence of forecast accuracy is assessed with
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the service S1. In order to compute the impact of forecast
accuracy on sizing and feed-in-tariffs the hourly forecast error
is multiplied by a factorα ≥ 0. Hence, the mean absolute error
is also multiplied byα. The new forecast vectorPfα is given by:

Pfα = (1− α)Pout + αPf (14)

with Pfα restricted to [0;Pinst], so that 1-α represents the335

forecast accuracy variation: positive for improvement and336

negative for reduction. The impact of the forecast accuracyon337

the techno-economic results for service S1 is shown in figure338

12 forα in the range between 0.7 and 1.3.
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Figure 12: Impact of forecast accuracy for service S1

339

A high impact of forecast accuracy is noted for all340

renewables since 5% forecast accuracy improvement gives an341

optimal ESS capacity decrease of 22.3%, 28.3%, 13.2% and342

12.5%, 17.9%, 4.4%-FIT reduction for wind, wave, PV power343

respectively. Forecast accuracy reduction yields more impact344

than its improvement with for example a required ESS capacity345

tripled or more for 30%-MAE increase. It is thus important to346

realise that if the forecast quality is not taken into account, then347

the proposed sizing solution may not be worthwhile from an348

operational viewpoint.349

Table 3: Viable results for services S1 and S2

Service/ tol P
∗

grid f actor∗ S∗ E∗lost

Renewables (%Pout) (kW) (%forecast) (kWh) (%Eout)
Service S1 (FIT ∗ ≤ 300e/MWh)

Wind 25 167.2 104 1800 11.7
Wind 40 175.9 118 1900 6.3
Wave 25 93.1 99 900 13.9
Wave 40 98.2 111 1000 9.2
PV 25 146 112 1600 2.7
PV 40 146.3 118 1600 2.4

Service S2 (FIT ∗ ≤ 400e/MWh)
Wind 25 65.5 29 400 65.9
Wind 40 95.6 49 1100 50.1
Wind 60 124.8 71 1700 34.8
Wave 25 68.9 61 900 37.1
Wave 40 80.1 78 1200 26.8
Wave 60 88.6 100 1400 19.1
PV 25 No viable solution -
PV 40 65.9 58 600 55.4
PV 60 99.5 100 1400 31.0

5. Conclusion350

In order to improve the penetration of renewables into the351

electricity grid with respect to two specific services, an optimal352

viable storage sizing is performed in this study. The viable353

domain is defined so as to ensure a bounded ESS capacity and354

a not too high feed-in-tariff for a 20-year storage profitability.355

PV power is more efficient if restricted to daylight hours,356

particularly at tolerances lower than 25%Pout. This is the case357

for S1 with 112% of the hourly forecast where 146kW on358

average can be annual guaranteed during evening peak. For not359

restricted S2 wind and wave power are more suitable than PV.360

Guaranteed power above 100kW can be feasibly supplied only361

with wind power but at higher tolerance (60%) and huge output362

energy loss (35%Eout). Besides, energy losses below 20% can363

be attained only with wave power but with a lower supply of364

89kW. With hourly restricted S2, 314kW can be guaranteed365

with PV power all year long during 9am-5pm time range. For366

S1 forecast accuracy is a key factor of storage sizing. Tolerance367

on power supply and power levelf actor have also a huge368

impact on optimal size, energies and FIT. So as to increase the369

energy injected into the grid meeting the service, particularly370

during peak hours, and reduce energy losses, combination of371

the two services can be an interesting way.372
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