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Techno-economic storage sizing for wind, wave and PV power

Laurent Bridief*, David Hernandez-TorrsMathieu Davi@, Phillipe Lauret

aUniversité de La Réunion, 40 Avenue de Soweto, 97410-Baine, Réunion, France

Abstract

In this paper a techno-economic comparison of an energggtmystem (ESS) sizing for three intermittent renewabliesi, wave
and PV power, with regard to two electricity grid servicepiesented. These services are defined by the utility opdratoder

to meet diferent load needs and have to be provided by the producer. FBhedivice consists of output hourly smoothing, based
on day-ahead power forecasts (S1). The second servicaesigphr-round guaranteed power (S2). This leads to an bdefzalt
time rate DTR) for which the actual power supplied does not match the deaad power bid within a given tolerance. A heuristic
optimization strategy based on the ESS state of chargee@astdaptive chargés developed in this study. This approach enables
the minimal 5%BPTR ESS capacity, power, energy and feed-inffario be inferred from the operating conditions, depending
on tolerance. Ocean wave and PV power measurements andgtgece used in French overseas department Reunion and wind
power in Guadeloupe. The simulations assess and compaeetiv®-economic viability andigciency of every renewable sources
coupled with ESS. Annual results show that PV power is méieient with daylight hours restricted services and highevgro
levels can be guaranteed for S1. In the other hand, wind ane p@ver are more suitable than PV for services dedicatedltddy
power delivery, as in the case of S2. For hourly smoothingdhecast accuracy influence is studied and yields a high énpra
the techno-economic sizing.

Keywords: renewable energy storage, grid utility services, optitiizra

Nomenclature N Number of time points
rMAE Relative Mean Absolute Error [P,
Phid Guaranteed power bid [KW] NPV Net present valueg§/MWh]
P¢ Power forecast [kW] FIT 20-year storage payback feed-in taf€/MWh]
Pou Eout ~ Output power, energy (from converter) [kW,kWh]Co Feed-in tarff without storage€/MWh]
Psto Storage powerHs, > 0 discharge, C1,C2 Feed-in taiffs for services S1, SE/MWh]
Psto < 0 charge) [kW] X mean value of parametar
Pyrid Power supplied to the grid [KW] X* Optimal viable solution for parameter
Egrids: s Annual energy supplied while service is met [kWh]
Pdev Deviation between power bid and output [kKW]
Pgtd Annual guaranteed power bid [kKW]
Pinst Installed capacity [kW] > 1. Introduction
Piost Elost ~ Lost output power, energy [kKW,kWh]
S Useful storage capacity [kWh] With the depletion of fossil fuel energy sources and the

> W

SOC Storage state of charge [kWh] certainty of peak oil, the integration of renewable energg h
dod Depth of discharge [%S] s become necessary, if not essential. In non-interconnected
Nds N Storage block ficiency (discharge, charge) [%] systems, particularly island grids, the challenge is todéase

acp Adaptive charge parameter [%S] 7 the energy independance and to cut the energy bills. However
DTR Default time rate [%] s When the integration rate of the renewables exceeds 15 oy 20%
tol Allowed tolerance on power bid [KW, P o the grid operator has to cope with new problems. Since the
At Time step, 10 min. in this study [h] o renewable source is by nature highly intermittent, it iiclult
factor Part of forecast taken as power bid [%0] u to increase the input of renewable energy sources into the
a forecast accuracy factor [u] » grid. In order to mitigate this variability and supply a snioo

1z guaranteed power to the grid, renewable energy storage is a
1 feasible solution and has, for several years, been studidd a
installed around the world [1].

*corresponding author
Email addresseslaurent .bridier@univ-reunion. fr (Laurent =

Bridier), david.hernandez-torres@univ-reunion.fr (David . . .
Hernandez-Torrespathieu.david@univ-reunion.fr (Mathieu David), 1 Various papers have been written about the coupling

phillipe.lauret@univ-reunion.fr (Phillipe Lauret) i of energy ESS with renewable sources [2]. PV, wind or
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hybrid PVywind systems with batteries or pumped hydroa service met. The actual power supplied to the grid can be
energy storage (PHES) systems have been well studied [3]ightly different than the day-ahead bid due to this tolerance
[4]. The optimal ESS sizing is usually based either.sonon power supply and also to the defaults.

analytical methods [5] [6] or iterative methods such as @ene
Algorithms [7] to minimize costs [8]. Another increasingly
widespread approach is to take into account the uncertafnty
renewable power through stochastic programming [9] [10]. |
these studies, the time step is usually one hour, during Bdsho
or a few days.

The default time rateDTR is defined as the part of the
total period during which the power supplied to the dfiglq
does not meet the day-ahead power Bigy, announced by
the supplier to the grid operator, within the tolerance. The
definition is considered as developed in [12] for a hybricsol
wind system, where the DTR represents the Loss of Power

In this paper, a storage system with a 10-minute or lesSupply Probability (LPSP), with the power bid given by the
response time for power management applications is ewuat load. This is shown in figure 2 and can be described as:

The goal is to size the storage in an optimal viable way so that

the supplier can provide to the grid utility two specific yigar 18
services: hourly smoothing and annual leveling. Thesdcsy DTR= N Z(ngid(t) < Ppia(t) - tol) (3)
t=1

may boost the integration of renewables into vulnerabldsyri

[11]. A scheduled storage operation strategy that can biee@p \where the inequalty is 0 if false (service met), 1 if true ¢dg).

by the supplier to meet the considered service under opgrati For PV powerN corresponds to the number of daylight time
conditions is initially presented. Secondly, the resgltlBSS,, steps.

sizings are compared and discussed.

Fas
2. Modeling +tol

2.1. Grid services

Two kinds of grid services defined by the utility operator,
S1 and S2, are analyzed in this study and presented in figure 1.

The first service S1 is an “hourly smoothing”. It yields an Oh 24h
hourly smoothed output of the day-ahead forecast pdwer

h Figure 2: Tolerance and default of power supply.
that is

S1 = Puia(hour)= factor- Pr(hour) @ There is no overshoot default. The output energy that cannot
for every exact hour and linear interpolation in betweenis  be neither supplied to the grid nor charged into the ESS is
the multiplying factor on forecast error in order to compile ~ considered lost. This loss occurs when first the output is@bo
impact of forecast accuracy. the allowed power supply upper bouRg(t) + tol and second

_ i _ the storage is full. The supplier meets the service when the
Service S2 provides a year round constant power bid. Thi$yTR is less tharDTR™ 5% in this work. The aim is first

guaranteed power commitmeRgs may be based directly (or 4 infer the minimal ESS capaci§ meeting each service and
not) on the forecast. For this studq is a partfactor of 5 geterminate corresponding energies andfgriFor a given

the annual mean forecast power. Variyife@ctor changes how  gjerance and ESS capacity;,, is the maximal guaranteed
much ESS capacity is needed by the producer to supply the,ver that meets the service with S9FER Secondly, for a
corresponding power bid all year. fixed tolerance, an optimization process achieves the malxim
power that can be supplied to the grid depending on the ESS
capacity.Egrigg, s, is the energy supplied to the grid only while
the service S1 or S2 respectively is met:

S2 = Pyig(year)= Pyq = factor- P¢(year) )

S1 B S2
Egridsis, = Z Pgrid (1) - At (4)

Hourly foregqst Annual guaranteed power 1<t<N
. S : Pgrid (t)=Phia (t)-tol

Powersubp;l;-/ B
.. Tolerance
- ‘ s 2.2. Storage model
oh 24h Oh  24h  4sh
Figure 1: Grid services; The dashed lines represent the gilerance layer.ss The figure 3 represents the flowchart of the output and

s« Storage block model where electrical devices may be coswert
The tolerance levebl may be used by the grid operatorsas inverter and transformer. This modeling can be applied to
a decision parameter in a bidding process to have more ssirefystems with a load demand by setting the bid equal to the load

2
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RENEWABLE OUTPUT BLOCK STORAGE BLOCK where
ENERGY fm e , . .
| P i {Pmax(t) ~ (SOC™*—S0QY)) - na/At

- ¢ | OuTPUT : : . 7
Fromnl ] sren ||| S Prin() = (S OC™™ ~ S OQN)/(reA) "
P
: : ; . Ideally, without any strategy, the ESS should compensate
Producer | ... EleEC\;E:ECSAL ; 5 E'gfg\;g:ECSA'- ; for the exact power deviation between bid and output i.e.:
: i —" !
P T Poo ||| Pow Pin = Pdedt) = Pbia(t) — Pout(t) (8)
Poid \ Pout P'“‘I (chartge) (distcharge)
l CONTROL UNIT l s This will be modified when applying the adaptive charge
Pgria & Strategy developped in section 3. The power supplied to the
T~ ] Y
I——IG”d Operato GRID = grid Pgig and the corresponding annual eneffyiq have to

s be as high as possible under the paramount constraint #at th

Figure 3: Modeling flowchart L
s Service Is met.

For given storage parameters, the initial problem is to find
storage operation that maximizes the energy injectied in
the grid meeting the service while compliying with storage
power, capacity and discharging constraints. This can be
expressed as:

The storage system is viewed as a black box defined b%/h
the following static technical characteristics: ESS cépac €
S, maximal charge powePJ2X, maximal discharge power
—PTin minimal state of chargés OC™", maximal state of
chargeS OC"® initial state of chargé& OG, maximal depth
of dischargalod™®*, chargg¢discharge fiiciencyn; andngy. The ax
global dficiency of the storage block in figure 3 encompasses DT_R< DTR"
electrical conversion devices. Itis assumed that the ti@e s o r o Psig < Paiolt) < Pge” -1 N
is sufficiently large compared to the systems dynamics. The gsrsz SOC"" < SOQt) < Socnax o
ESS is supposed to have a response time lower than the time dod(t) < dodmax
scale used (i.e. 10 minutes in this study). It must normally 9)
compensate for the deviation between the power bid and the
actual power output. The main assumption is that whatever This is a large-scale non-linear optimization problem
the state of chargé OQ(t) betweenS OC™" and S OC"@* the which can be approximated as a quadratic programming [14]
storage device can charge or discharge durihghe desirede Minimizing the quadratic dierence between the ESS power
energy. This is generally the case as power deviation tombata a@nd the power bid deviation under linear capacity consfain

is much lower than the rated Capacity BDCis not closed ta° However this annual Optimization cannot be performEd in
extreme values. « operational conditions as the whole year data are needezl. Th

« heuristic approach considered in this study consists sfngi
The actual ESS powerPs, is constrained by thg |pg | as high as possible while respecting the constraints at each
charggdischarge rated power and capacity limitations. Lheime stept. Operation strategies are added and developed in
modeling developed in this study is similar to the approachsection 3 for DTR and sizing improvement. The interest with
considered in [13] with depth of discharge managing. As,thehe proposed methodology is that a more flexible control and a
operating conditions and the strategy require, the ESStas bptimal operation management of the ESS is possible at each
charge or discharge a certain poviRgf at timet as follows:  ;  time step, with decisions made based on the current forecast
. ) e output and state of charge. On the other hand, this model is
* DISCHARGE i) with P > 0: w0 helpful for testing and choosing storage operation stieseg

Psto(t) = Min(Pen, PTX Pmax(t), Ppia(t) + tol) w in order to compare viable results with regard to any kind of

Pgria(t) = Pou(t) + Psto(t) w2 Services. These services could either be related to thegtal

Pg (=0 (5)” the load, for instance in stand-alone systems or zero neggne
lost\!) =

s buildings.
SOQt+1) = SOQY) - Psift)At

dod(t + 1) = dod(t) + (SOQt) - SOQt + 1))/S
e CHARGE(Py,) with Py, < O:

Psio(t) = MaxPin, P11, Prin(t), —Pou(t)) wo In this sec_tion the ec;onomic anglysis methodology of the_
different services described above is presented. The study is

10s  2.3. Economic model

Paria(t) = Min(Pou®) + Psio0). Poia(t) + tol) e based on the guidelines described in [15]. The classicdl cas
Plosi(t) = Pou(t) + Psto(t) — Pgria (1 (6)109 flow and net present valu&lfV) methodology is considered.
SOQt+1) = SOQt) — ncPsto(t)At w0 A similar approach was used in [16] to assess the economic
dodt) =0 m  performance of a renewable energy farm with ESS facilities.
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Cumulated NPV is computed via following equation: .. persistence model where the forecast power is equal to the
12 Mmeasured output at the same time the previous day. Wave
(10 data measurements where made from a site near Saint-Pierre
s (Pierrefonds) in Reunion. The data collected includes wave
1us  height and period measured from 2000-2007 and 2009. Wave
state forecasts from W3 models are published by the US-NAVY
at http//www.usgodae.org

Cn
L+

NPW(Y) = zY:
n=0

whereC, is the total annualized cash flow for a given pernipd
i the discount rate and the study period. w

Annual revenues from enerav sunplied to the arid are d&en Forecasts errors are shown in figure 4. Associated statistic
gy supp 9 9 hdicators are presented in table 1. As during a failure efqro

10 supply, the default time is unchanged whether the deviation

Revenuessnewables=Co * Egrid (11y= to compensate by the ESS is much higher or not, the chosen
Revenues ¢ Eg. =12 (12)" forecast accuracy metrics is the rg_latlve Mean AbsoluterErr

newablesEs S = * =gridsi ’ s TMAE. This metrics is less sensitive than root mean square

14 error (RMSE) to extreme values [17].
where the feed-in taffi without storagecy is the tarif when

by:

outp_ut is supplied directly to the grid an_d no _specific Sexvic 1000 WD Pows Foreme et
provided.c; andc, are the annual feed-in t#lis (FIT) for S1 500
and S2 services, with the price condition< c; < c,. oA LY - ‘ i

-500 q

As the revenues vary directly with the energy supplied while | . . . |
the service is met, the economic criterion is not the revenue roog Oct10 Novid Deeld dantl Febtt Martt A“’L“:;fvépzw;:;;j;m
but the value-added of the ESS. The economic performance so0k i
the ESS is therefore evaluated by its contribution to oj@rat O%WW
profit for each service. This study aims to compute the mihima ~s00] |

POWER (kW)

FIT c; or/and c; for each service that results in a storage -l o0 0 0

. e . . Jan06 Fev06 Mar06 Apr06 May06 Jun06 Jul06 Aug06 Sep06 Oct06 Nov06 Dec06
payback time of 20 years. The facility lifespan is supposed t 1000 =PV Powa Foresas ol
be greater than this duration. The contribution of the gtera 500
device to operational profit for yeguis computed by: 0

-500 L

Profites 5(y) = NPVrenewableses s(Y) = NPVrenewaniely) (13) B

000 . . . . . . . . . . .
Jan09 Fev09 Mar09 Apr09 May09 Jun09 Jul09 Aug09 Sep09 Oct09 Nov09 Dec09
TIME

The storage payback time is the earliest ygdor which
the ESS profit is positive. In order to compare renewables and
services as function of storage payback, the feed-iff @yis
chosen equally for all renewables. As theftadiecreases when Table 1: Forecast and output statistical indicators
more energy is supplied to the grid with a fixed ESS capacity,

the 20_year Storage payback I|m|tat|0n iS aISO a Constmnt Renewable annualoutput Poy Py max(Pow) MAE rMAE Output-forecast Day-ahead
Source [MWh/MWp]  [kW]  [kW] [kw] [kw] [%] correlation [%]  correlation [%]

Figure 4: Wind, wave and PV power forecast errors

grid energy and thus on energy lost. In terms of electriCity windpower ~ 16922 1932 1894 1000 909 471 773 52.0
purchase, service S2 may be of more interest than S1 becauggverover 9643 1101 1071 8388 479 435 726 69.7
PV power 1356.6 1549 1549 923.1 48.7 31.4 87.1 87.1

annual guaranteed power may have a higher feed-ifi then
the non-guaranteed service.
155 The base values of ESS and economic fixed parameters used
for the simulations are given in tables 2.
2.4. Inputs

. e, Table 2: ESS and economic parameters values
For wind, wave and PV power facilities, the rated powers P

are normalized to a capacity of IMWp it = 1000kW. The

. ) o X ) Parameter Value  Parameter Value
considered simulation tlme step is 1_0 minutesAe= 1/6 hour pmax 500KW _Investmemt IMEMWp
and thus the number of time pointsNis= 52560. —pmin 500kW  Investmenitt 4AME€/MWp

Wind power output was measured every 10 minutes from 7d 90% Op.&Maintenance 5%
September 2010 to August 2011 in a Guadeloupe wind farm, lc 90% Op.&Maintenance®  10%
a French overseas department. Wind power hourly forecastsS OC™* ~ 90%  Storage lifespan 20 years
are based on meteorological forecasts of the french nationaS OC™ 10% ESS cost 768/kWh
forecasting centre Meteo France and provided by a subgidiar S OG S0%  co 100€/Mwh
specializing in regional climate services. The PV power_dod™ 60% Discount rate 10%

output was measured from January to December 2009 in Sairfe=Wind, b=Wave, =PV
Pierre, Reunion (France). PV forecasts are given by,the

4
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3. Storage operation optimization SOT0% adaptive charge = P (kW)
800 (“Default = Charge”) .« Pyt tol (kW) =
7007"’/,, -+ Py —tol (kW) :j' 4
600 B ——— Pyria (kW) L

3.1. Tolerance Layer Strategy . o gy | il
500 B iy e

. 400 ‘
As the producer can supply any power in the tolerance 300,

layer [Ppig — tol; Ppig + tol] without default nor penalties, it 200}

is pertinent to choose the optimal power supply level in this 100p

range. Three levels are defined in figure 5 for charge an S

discharge which gives nine strategies. The strategies0/0 800 -

and 7+ correspond to power bid®,q — tol, Ppiq andPyg + tol 600"

respectively. Strategieg0, +/+ and Q+ are inconsistent inside 200k
the tolerance layer and no chafdischarge order is performed.

2001

250 kW —————————————

‘ ‘Ol‘Jtp‘ut‘ P‘OV\‘IEI" 800} 4‘107‘0 a(‘lap‘tiv‘c ch‘arg‘c Y - |‘ ,
Storage Power ’ - s I
200 kW 9o Fower) oo
max charge min charge
150 kW "+ I -
Pbid + tol
. 6h
100 kW PRId.___ 4 - I S
Pbid - fol M Figure 6: Grid supply oscillations curtailment with adaptcharge
50 kW J lﬂ
i harge exactd|scharge max discharge
owbe or e 1z 3.3. Strategy comparison
Oh 6h 12h 18h Oh
Figure 5: Tolerance layer strategies. 19 Strategy comparisons are presented in figures 7 and 8 for

15 Services S1 and S2 with ESS capadty 1000 kWHMWp and

s toleranceol = 25%P,,.. As the main constraint is to meet the
3.2. Adaptive charge 1w Service, the selection criterion is the annDalR Regardless

s Of wind, wave or PV power, a lowdDT Ris obtained with the

The maximum chargingminimum discharging strategy is +/- Strategy.
adopted to further decrease the required ESS capacity.idn th
strategy the default energy provided by the renewables&auan

the ESS in case of failure is supplied to the grid. This energy =HE e /W
is little or not valued, if not accepted, by the utility optma £ Ju (
It is therefore better to use it directly for charging therage N AN
device. This is called the “Defauit Charge” strategy. //\/\/ oL

H- 0= = 40 00 -0 ++ O+ -+
Tolerance Layer Strateay 4= 0= - +0 00 -0 ++ O+ I+
Tolerance Layer Strategy

However when operating with this single strategy some

oscillations occur in the grid power supply. These oséls (a) Defaulttime rat®TRSL 1) | ot energyEigy - S1
are shown in the first graph of figure 6 for a low wind power . ©
output day, 204/10, with a 25% tolerance and an ESS capacity x ™
of 1000kWHhHMWp. They are due to alternating charge and I 5"
discharge phases corresponding to empty and almost empty : >
storage. This behavior is unacceptable for the grid opeesto 25 T

it infers instability in grid management.

3= 0= - 40 00 -0 4+ OF I+ W0 ok o 00
Tolerance Layer Stratogy Tole TS

In order to reduce these oscillations, an “adaptive charge
parameter’acp is introduced. acp represents the energy (in
ESS capacity unit) which must be charged into storage before
supplying power to the grid. ldeallgcp might be half the
energy produced during a default series. It is thus Very
dependant on the default mean time from when the output drops Generally speaking, a maximal charge strategy is the best
until it rises again. The longer the default series is thénbig for reducing defaults and thus ESS capacity, even if theggner
the adaptive parameter may be. This parameter can be updatedses can be higher and power supplied to the grid slightly
every day or even at every time step if short-horizon foressas lower. It can be also noted that only PV can meet the S1 service
(e.g. one to six hours) were available at a default series stas  (5%-DTR) with a 1000kWHMWp ESS and 25%-tolerance.

5

() DTR- S2Pg¢=100 KW  (d) Ejos: - sngtd 100 kW

Figure 7: Tolerance layer strategies comparison
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Other strategies lead to unworkable capacities greatersthaor a fixed power levelactor and for each tolerandel from 0
5 and 10MWHMWp for 0/0 and /+ strategies respectively. to 60%P,,, the ESS siz& is varying from 0 to 2000kWiMWp
Maximum chargingminimum discharging is therefore chosen to find the minimal feasible size that meets the serviZ€R <
as a core strategy for ESS sizing. This strategy has been.dus&éb).

for wave power storage sizing in [18].
P g gin [18] 201 Then the viable ESS sizing involves varying the power

Decrease in oscillations through adaptive charge shown ifevel factor from 0.1 to 1.5 in order to find a viable solution
figure 6 takes place all year round for all renewables evialgat (S*,FIT*). S* is a feasible ESS size i.e. meeting the service
the default mean tim®MT in figure 8. Lower oscillations with less than 2MWMMWp and FIT * is lower than 300 and
are achieved with greater adaptive parameter. As a cowantesp 400/MWh for S1 and S2 respectively. The associatadtor*
higher DTR and therefore higher ESS capacity are obtained. is the maximal multiplying factor on forecast for which aas

27 One viable couple*, FIT) is found. It corresponds to the
s maximal power that can be viably supplied to the grid.

DMT (h)

BN w s o o N

4. Resultsand discussion

Default Mean Time

The results for S1 and S2 are summarized in Table 3.

50 50 0 10 20 30 40 50 60

size) Adaptive parameter (%storage size)

(a)acpvsDTR-S1 (b) acpvs DMT - S1

10 0 0 4
Adaptive parameter (stor:

4.1. Service S1

In this section, simulation results for hourly smoothind)S
are presented.

12000

gymooo *

o -
0 0 20 30 40 50 60 0 10 20 30 40 50 60 z 8000
Adaptive parameter (%storage size) Adaptive parameter (%storage size) R

% 6000 v
(c) DTR- SZPgtdZZLOOkW (d) DMT - SZPgtdz]_OOkW § 4000

i

i 2000

5

Figure 8: Comparison of adaptive charge strategies s

0 10 20 30 40 50 60 10 20 30 40 50 60
Tolerance (% mean outout) Tolerance (%mean outout)

With the adaptive charge, output energy is kept for charge (a) Tolerance vs feasible size (b) tol vs Pyig
as much as possible, although in some cases, there is ndtdefai.
within and above the tolerance layer. The contribution @f th <
strategy is clearly established as & Ris divided by two or
more. 5%DT R capacities for all renewables are now feasibl
since they are lower than 2MViMWp.

%6 Eout)

Energy Loss Ejoq

A o o

In conclusion, the choiceacp = 20% for adaptive

. ] 10 20 30 40 50 60 10 20
charge drers for all renewables a good compromise betweer Tolerance (%mean output) Tolexance (Ymean outout)
oscillations curtailment and an increase DTR and thus
required minimal ESS capacity. This optimization strategy
chosen as reference strategy for comparing renewables ESS  Figure 9: Storage sizing for hourly smoothing (S4ctor = 1).
sizing and corresponding energies or ftati This storage
operation strategy can be applied by the supplier in operali, The optimal capacity is the minimal capacity that meets the
conditions so as to comply with the service mofigcgently. . service with less than 5%TR For service S1 with a PV
6 power aDT R™ of 5% is measured during daylight hours as
;7 N0 service is provided overnight. Figure 9 shows a compariso
s Of renewables storage sizing, corresponding energiesaaifid t

. . . 259 for hourly smoothing (S1) with 100% forecast ifactor = 1.
The optimized storage operation model presented in this

paper, denoted as adaptive charge, aims at obtaining a.ower The mean power supplied to the gigyiq is around 85%-
DTR for a fixed ESS size and storage parameter base valu&9% of the mean output. Tolerances lower than 20% of the
while meeting the allowed maximal depth of discharge. :Fhismean output are unviable for wind or wave power. Within the
model gives also the corresponding supplied or lost engegieb to 35% tolerance range, PV results are better in terms of
and thus the feed-in-tdfifor a 20-year storage payback..A capacity, energy lost and térrequired for a 20-year storage
feasible ESS sizing is first performed on the basis of tokan profitability. This comes from the fact that for PV power this

6

(c)tol vsFIT (d) tol vs Eyost

3.4. Optimal Sizing
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service operates as if it is restricted to output hours smme wave and wind power at 25% tolerance. However, the
energy is forecasted nor supplied overnight. SecondlywsP\guaranteed power supplied is still low: less than 70kW. For
power is by nature more day-ahead predictable [19] withdtheservice S2, viable capacities and FITs can be obtained With P
higher output correlation (83%) from day to day (Table 1).sn  power only at higher tolerances greater than 30%.

The bell curve of energy lost is due to the concurrenee of The annual mean forecadtgctor = 1) cannot feasibly be
two phenomenas. On the one hand, increasing the tolesanpeovided at a tolerance below 60% by any renewable source. In
allows for more power output to be supplied. On the othera general manner, energy losses are higher with annuailigvel
hand, adaptive charge tends to supply the lower b&ad-tolss  than with hourly smoothing. This can be easily explainedssin
to the grid. With high tolerance values the first phenomeroithe guaranteed pow@yq is well below the mean outp®Ry.
prevails. As the storage cost is significant compared te-th®V power is not well suited for all-day constant power supply
potential revenues, tifel T for 20-year storage payback timeds services like S2. With these services too large ESS capaciti
very dependant on its capacity. At over 40% tolerance, redsi are needed and too much energy is lost.
capacities, 20-year storage payb&dk and ener arts tend . . . .
to Ft))e very simi%ar. This 2onF1)eZ from the first agfgrzmentidﬂed W'_th PV power, annual leveling service (S2) is more
phenomenon where an increasing part of the output is d}?éctleﬁecuve if limited to 9am-5pm as shown in figure 11.
supplied to the grid. As the tolerance layer becomes latger t
ESS is solicited less and has less impact with 80% and 20¢ &
ESS use time at 5% and 60% tolerance respectively. 500

mean POWER supplied to the Grid 20-years storage payback Feed-In TARIFF
340

To sum up, an hourly smoothing service (S1) could be
achieved with 5%d®TR and 20% adaptive charge for wind
or wave power only at tolerances greater than 25%. Ths

N}
@
S

Tariff (euros/MWh)
N w
[o23 o
o o

100
7-19h 8-18h 9-17h 10-16h 11-15h 12-14h 2‘7‘919h 8-18h 9-17h 10-16h11-15h12-14h

represents 4.8% and 2.%%: for wind and wave power Time slot
respectively. However, PV power is well suited for this sesy
particularly with tolerances lower than 25%, that is 3R%. Figure 11: PV energy storage sizing with restricted sergize

The energies or mean powers supplied to the grid with storage

are still ranked and bounded by the initial outputs.
a12 During this time range, with 25% tolerance and 1000kWh

as  ESS capacity, 314kW for SPactor = 1, can be guaranteed all
s year long at 5%DTR Lower energy losses are also obtained

Optimization results for annual leveling service (S2)*areWith 22% of lost output energy.

4.2. Service S2

presented in figure 10. It is clearly morefittult for all, . The folowing conclusions on service S2 can be drawn :
renewables to comply with this service as an important arhoun
of energy is lost (35-70%). a7 o Feed-in taffifs FIT for a 20-year storage payback are very
a18 dependant on ESS capacities as initial costs are high.
6 . o as o With low ESS capacities viable solutions can be found but
o osf T 320 only with low factor and power supplied to the grid. It may
gﬁ’ i -~ =% a1 be sometimes worthless to consider larger ESS capacities as
3N =% =  only an improvement of a few kW of power supplied to the
‘554',313—" ¥ a23 grid is obtained, see figure 10(a) and (c) for an example.
6" dof T 2« o 100% annual mean forecast is viable at 25% tolerance for

o200 300 a0 R oo 200 300 a0 0 e 7m0 %0 75 wind or wave power but not for PV power. With wave power

. . i a6 the power supplied to the grid is much lower (70 vs 180kW)
(a) S™ vs Pyiq, t0l=25% (0) ST VS Bipgyy 101=25% it with less energy loss and smaller ESS capacities.

—aw 2 PV power is more suited to daylight hours services e.g.

i hourly forecast smoothing (S1) or annual leveling (S2)

----------------------- 330 during [9am-5pm], especially with small tolerances.

e At 40% tolerance or more, viable capacities and FITs are

332 possible for all renewables but the mean powers and thus

a3 energies supplied to the grid are still ranked by initialuds.

=
© S
S S

@
S

i (KW/MWp)
3

P,
@
3

@
3

200 800 1000 1200 200 400 600 800 1000 1200

400 600
Viable Size S* (kWh/MWp) Viable Size 5* (kWh/MWp)

* o . —AN0, * * —400
(€) S* Vs Pyiq, tol=40% (d) S* vs By, t01=40% s 4.3. Impact of forecast accuracy

Figure 10: Viable storage sizing for annual leveling at 28 48%-tolerance . .
As the annual guaranteed power with service S2 can be
not based on the mean forecast but for instance on mean past

When decreasindactor, viable results can be found for outputs the influence of forecast accuracy is assessed with
7



the service S1. In order to compute the impact of foresasb. Conclusion
accuracy on sizing and feed-in-tisithe hourly forecast error
is multiplied by a factorr > 0. Hence, the mean absolute error

351

is also multiplied byr. The new forecast vect@; is given by’ In order to improve the penetration of renewables into the
352

electricity grid with respect to two specific services, atirogl
viable storage sizing is performed in this study. The viable
domain is defined so as to ensure a bounded ESS capacity and
s a hot too high feed-in-tafti for a 20-year storage profitability.
with Py, restricted to [ORins], SO that le represents thg PV power is more ficient if restricted to daylight hours,
forecast accuracy variation: positive for improvement.andparticularly at tolerances lower than 25%;. This is the case
negative for reduction. The impact of the forecast accuoagy for S1 with 112% of the hourly forecast where 146kW on
the techno-economic results for service S1 is shown in f;gurgverage can be annual guaranteed during e\/ening peak_ fFor no
12 for@ in the range between 0.7 and 1.3. restricted S2 wind and wave power are more suitable than PV.
Guaranteed power above 100kW can be feasibly supplied only
with wind power but at higher tolerance (60%) and huge output
energy loss (35%,.1). Besides, energy losses below 20% can
be attained only with wave power but with a lower supply of
89kW. With hourly restricted S2, 314kW can be guaranteed

(14)353
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Ps, = (1 - @)Pout + aPs
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(a) Impact on ESS capacity (b) Impact on feed-in taffi _,,

Figure 12: Impact of forecast accuracy for service S1 o
372

A high impact of forecast accuracy is noted for all

with PV power all year long during 9am-5pm time range. For
S1 forecast accuracy is a key factor of storage sizing. dols

on power supply and power levdlactor have also a huge
impact on optimal size, energies and FIT. So as to increase th
energy injected into the grid meeting the service, pardidyl
during peak hours, and reduce energy losses, combination of
the two services can be an interesting way.

renewables since 5% forecast accuracy improvement gives dtcknowledgements
optimal ESS capacity decrease of 22.3%, 28.3%, 13.2% and

12.5%, 17.9%, 4.4%-IT reduction for wind, wave, PV powgf
respectively. Forecast accuracy reduction yields moreagfp
than its improvement with for example a required ESS capgcit
tripled or more for 30%MAE increase. It is thus important to
realise that if the forecast quality is not taken into acdptiren

the proposed sizing solution may not be worthwhile from an

. . . 377
operational viewpoint.
378

Table 3: Viable results for services S1 and S2 379
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