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 conjectured that the density of a positive α-stable distribution is hyperbolically completely monotone (HCM in short) if and only if α ≤ 1/2. This was proved recently by P. Bosch and Th. Simon, who also conjectured a strengthened version of this result. We disprove this conjecture as well as a correlated conjecture of Bondesson, while giving a short new proof of the initial conjecture, as a direct consequence of a new algebraic property of HCM and Generalized Gamma convolution densities (GGC in short) which we establish.

Résumé

L.Bondesson a conjecturé que la densité d'une variable aléatoire α-stable positive est hyperboliquement completement monotone (HCM) si et seulement si α ≤ 1/2. Ce résultat a été récemment établi par P.Bosh et Th.Simon qui ont aussi conjecturé une version plus forte de ce résultat. Nous infirmons celle-ci ainsi qu'une autre conjecture de L. Bondesson. Nous donnons aussi une courte et nouvelle preuve de la conjecture initiale, comme conséquence directe d'une nouvelle propriété algébrique des fonctions HCM et des densités gamma généralisées (GGC) que nous établissons.

Introduction

This paper is concerned with the HCM property for stable distributions and GGC random variables, whose definitions we recall below. Hyperbolically completely monotone functions (HCM in short) were introduced by Lennart Bondesson [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] in order to analyze infinitely divisible distributions. On the other hand, the generalized gamma convolutions (GGC in short) introduced by O. Thorin [START_REF] Thorin | On the infinite divisibility of the Pareto distribution[END_REF], are the weak limits of finite convolutions of Gamma random variables. These notions are closely related, indeed the main example of HCM functions are the Laplace transform of GGC variables. L. Bondesson proved, in [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF], that the α-stable positive random variables (denoted S α ), with density g α , are GGC for all α ∈]0, 1] and that they have an HCM-density when α = n -1 , for any integer n ≥ 2. He also conjectured that this property holds for all α ≤ 1/2. In a previous preprint [START_REF]Fourati α-stable densities are hyperbolically completely monotone for α ∈[END_REF] we proved that the density (denoted G α ) of S -β α , (with

β := α 1-α ) is HCM if α ∈ [1/3, 1/2]
. This implies easily the HCM property of g α for α in this range. Moreover, it is easy to see that β is the largest real number for which this property holds. Recently, Pierre Bosch and Thomas Simon [START_REF] Bosch | A proof of Bondesson conjecture on stable densities Arkiv för Matematik[END_REF] proved the full original Bondesson conjecture. Their proof makes use of the following result from Bondesson [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF] " The independent product or ratio of two GGC random variables is again GGC" . Furthermore they conjectured that G α is also an HCM function for all α ≤ 1/2. In the present paper, we prove that actually G α is not HCM for α < 1/3. Moreover, for α ∈]1/2, 1[, using the fact that e δx Gα(x) is HCM (see also [START_REF]Fourati α-stable densities are hyperbolically completely monotone for α ∈[END_REF]) , we obtain that G α is not the density of a GGC random variable. Since g α is a GGC-density, this gives an example of a GGC random variable S α such that S γ α is not GGC and |γ| > 1, thus providing a negative answer to a question of L. Bondesson [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF]. Finally, using Bondesson new remarkable property already mentioned, we prove that the multiplicative convolution of an HCM function and a GGC density is again HCM. As we show, initial Bondesson's conjecture is an immediate consequence of this result.

The central result of this paper is a representation of G α for all α ∈]0, 1]. One consequence of this representation is the estimate of this density by a convex combination of two gamma densities, namely Γ(1/2, δ) and Γ(α, δ), with δ = (1-α)α α 1-α . Hopefully, this might be useful for the numerical investigation of these functions.

This paper is organized as follow : In the first part, we recall the facts on HCM functions and GGC random variables which are used in the sequel, we refer to Bondesson [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] and James-Roynette-Yor [START_REF] James | Generalized Gamma Convolutions, Dirichlet means, Thorin measures, with explicit examples[END_REF] for more general informations on the subject, other examples of GGC or HCM functions can be found in the recent work of W. Jedidi and Th. Simon [START_REF] Jedidi | Further examples of GGC and HCM functions[END_REF] . In the second part, we do the same for α-stable densities, for which we refer to Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF].

In part 3, we give a first rough estimate of G α , as a function of a complex variable, obtained using the saddle point method. In part 4, the main result is given : we give a representation of the density G α of S -β α for every α ∈]0, 1[ and, as a first corollary, an estimate of S -β α by a convex combination of two Gamma distributions is given. In part 5, we prove that G α is not HCM for α < 1/3 (which disproves the Simon-Bosch conjecture), is HCM for α ∈ [1/3, 1/2] and anti-HCM (see definition below) for α > 1/2. As consequences, more precise estimates are given when α ∈ [1/3, 1/2] and a corollary of the anti-HCM property for α > 1/2 is that S α is GGC although S -β α is not. In part 6, we prove that the convolution product (sometimes called mixing) of an HCM function and a GGC density is again HCM. As a consequence, we obtain a short proof of the HCM property of S α .

Preliminaries

2.1. Hyperbolically completely monotone functions. We recall here the basic definition and properties of the class of hyperbolically completely monotone functions, and refer to [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] for more details. Definition 2.1. A real positive valued function H defined on ]0, +∞[ is called hyperbolically completely monotone (HCM) if, for every u > 0 the function H(uv)H(uv -1 ) is a completely monotone function of the variable v + v -1 .

Bondesson [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] has obtained the following characterization of HCM functions.

Proposition 2.2.

H is HCM if and only if it admits the following representation (2.1)

H(x) = cx β-1 exp -ax - ∞ 1 log x + t 1 + t µ 1 (dt) -bx -1 - ∞ 1 log x -1 + t 1 + t µ 2 (dt)
where a, b, c are non negative constants and µ 1 and µ 2 are positive Radon measures on [1, +∞[ that integrate 1/t at infinity.

We shall use a slightly different but equivalent representation of HCM functions, obtained by an integration by part from (2.2). Denote

θ(t) = µ 1 (]1, t])1 t≥1 -µ 2 (]1, 1/t[)1 t<1 + (β -1)
then θ is a (signed) non decreasing càdlàg function. The following is an immediate consequence of Proposition 2.2.

Corollary 2.3. H is HCM if and only if it admits the following representation,

(2.2) H(x) = c exp(-ax -bx -1 ) exp ∞ 0 ( 1 x + t - 1 t + 1 )θ(t)dt
where a, b, c are non negative constants and θ is a signed non decreasing function such that

∞ 0 (1 ∧ 1 t 2 )|θ(t)|dt < +∞ One has H(1) = ce -a-b . Moreover, if θ = θ 0 is a constant function and if a = b = 0, then H(x) = cx -θ0 . The integral condition ∞ 0 (1 ∧ 1 t 2 )|θ(t)
|dt < +∞ is the minimal condition to ensure finite values for H(x) for every x > 0. Note also that H(x) may be infinite at x = 0 and x = +∞. In the sequel, the functions admitting this representation with θ a non increasing function instead of a non decreasing function will be called anti-HCM functions.

The representation (2.2) implies that H has an analytic continuation on C\] -∞, 0]. If we denote this continuation by H again one has, using well known properties of the Stieltjes-Cauchy tranform:

H(-r + ) := lim z→-r,ℑ(z)>0 H(z) = R(r)e -iπθ(r)
where R(r)e -iπθ(r) is the polar decomposition of the complex number H(-r + ). This property will play a crucial role in the sequel.

Definition 2.4. The generalized Gamma convolutions (GGC) are the random variables which belong to the smallest class containing Gamma distributions and closed under taking sums of independent variables and weak limits.

The following results can be found in Bondesson [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] Proposition 2.5.

(1) A random variable is GGC if and only if its Laplace transform is an HCM function.

(2) An HCM function H is the Laplace transform of a random variable if and only b = 0, H(0) = 1, and the function θ in the representation (2.2) is non negative. Moreover, when these properties are satisfied, H is the Laplace transform of a GGC random variable.

The class of HCM functions and GGC random variables, have been much studied. We refer mainly to Bondesson monography [START_REF] Bondesson | Generalized gamma convolutions and related classes of distributions and densities[END_REF] and to Yor-Roynette-James [START_REF] James | Generalized Gamma Convolutions, Dirichlet means, Thorin measures, with explicit examples[END_REF], for GGC-random variables. Note that e -x α , α < 1, is an HCM function with a = b = 0 and θ(t) = sin παt α , while e -x α is the Laplace transform of the positive α-stable distribution S α , thus S α is GGC.

Stable random variables. Let

α ∈]0, 2[, ρ ∈]0, 1]
, and suppose γ = αρ ∈ [0, 1] and let g α,γ (x) denote the density of the normalized α-stable random variable S α,ρ with asymmetry parameter ρ (ρ = P(S (α,ρ) > 0) ) cf [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]). For ρ = 1 and γ = αρ = α ∈]0, 1[ (and only for these values) this distribution is supported on the half axis ]0, +∞[ and we simply put g α = g α,α .

The function g α,γ has Fourier transform

e -(iu) γ (-iu) α-γ = +∞ -∞ e -iut g α,γ (t)dt
where t α = exp(α log(t)) with log the principal determination of the logarithm.

The following integral representation (cf Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]) can be easily obtained by Fourier inversion.

Lemma 2.6. Zolotarev For r > 0, 0 ≤ α < 1 and 0 ≤ γ ≤ 1

(2.3) g α,γ (r) = (2iπ) -1 ∞ 0 (e -rt-t α e iπγ -e -rt-t α e -iπγ )dt
The above integral is well defined for all α ∈]0, 1[ and |γ| ≤ 1. We will use it as a definition in these cases.

Lemma 2.7. The function gα,γ (x) = x -1-α g α,γ (x -1 ) is (1) decreasing on ]0, +∞[ if 0 ≤ γ ≤ α ≤ 1. (2) completely monotone if 0 ≤ γ ≤ α ≤ 1/2
Proof. Recall that, if X is a stable variable with parameters (2α, ρ) and Y is an independent stable variable with parameters (1/2, 1), then Z = XY

1 2α is a stable variable with parameters (α, ρ) . Since g 1/2 (t) = e -1 2t √ 2πt 3 one has g α,γ (x) = 2α ∞ 0 g 2α,γ (y) e -1 2 (y/x) 2α y α √ 2πx α+1 dy Therefore x -1-α g α,ρ (x -1 ) = 2α ∞ 0 g 2α,ρ (y) e -1 2 (yx) 2α y α √ 2π dy
which is decreasing in x and completely monote if 2α ≤ 1.

Lemma 2.8.

For α ≤ δ < 1 ∞ 0 g α,γ (xy)g δ (y)ydy = x δ-1 g α δ ,γ (x δ )
Proof. Let g denote the tail function of g,

g(x) = ∞ x g(y)dy.
Instead of the identity of the lemma, we rather prove the equivalent identity on the associated tail functions,

∞ 0 g α,γ (xy)g δ (y)dy = 1 δ g α δ ,γ (x δ ) By (2.3) g α,γ (r) = (2iπ) -1 ∞ 0 (e -rt-t α e iπγ -e -rt-t α e -iπγ ) dt t therefore +∞ 0 g α,γ (xy)g δ (y)dy = (2iπ) -1 ∞ 0 (e -x δ t δ -t α e iπγ -e -x δ t δ -t α e -iπγ ) dt t
The proof follows by a simple change of variable (t → t 1/δ ) in the integral and (2.3) again.

Proposition 2.9. If α < γ ∧ 1/2 < 1 then g α,γ (x) is not of constant sign.

Proof. If γ ≤ 1/2, let δ = α γ < 1 then the complete monotonicity of y -1-δ g δ (y -1 ) and the positivity of g α,γ (x) would imply the complete monotonicity of g γ,γ (x γ ), but this cannot be true since g γ,γ (x γ ) is not monotonous.

If γ > 1/2 and α ≤ 1/2 then take δ = α and obtain that g 1,γ (x α ) would be completely monotonous and this is not true. Actually this function is not monotonous.

Remark Iterating the convolution with δ = 1/2 sufficiently, we could obtain that g α,γ (x) is not of constant sign, for all α < γ ≤ 1.

Let

α ∈]0, 1[, β := α 1-α and, for all x ∈]0, +∞[, G α (x) := β -1 x -1 α g α (x -β -1 )
The function G α is the density of the distribution of S -β α . It will play an important role in this paper. The following integral representation

(2.4) G α (x) = (2iπβx) -1 ∞ 0 (e -t-e iπα t α x 1-α -e -t-e -iπα t α x 1-α )dt x > 0
shows that G α has an analytic continuation to C\] -∞, 0], still denoted G α (z).

A rough estimate of G α

Let t 0 be the the minimum of the function f (t) = t -t α for t ∈]0, +∞[, and

δ = -f (t 0 ), i.e. t 0 = α 1 1-α and δ = (1 -α)α α 1-α . Define f 0 (t) = f (t) -f (t 0 ).
The next lemma gives a technical intermediate result that will be improved in the next section.

Lemma 3.1. There exist constants A > 0 and B > 0 such that for all z ∈ C\] -∞, 0]

|G α (z)e δz | ≤ A + B|z| -1
Before proving this Lemma we need a new representation of G α . Consider the analytic function on C \ [0, +∞[ which coincides with the principal determination t α on the upper half plane. Let f + (t) be the function obtained from f 0 by replacing t α by this function. In other words,

f + (t) = f 0 (t) = t -t α + δ if ℑ(t) > 0 f + (t) = t -e 2iπα t α + δ if ℑ(t) < 0. Similarly, let f -(t) = t -e -2iπα t α + δ if ℑ(t) > 0 f -(t) = f 0 (t) = t -t α + δ if ℑ(t) < 0. One has f + (z) = f -(z)
Proof. For all u < 0 and z ∈] -∞, 0] one has

u -u α e iπα z 1-α + δz = zf + ( u z ) u -u α e -iπα z 1-α + δ = zf -( u z )
Using this, we obtain from (2.4)

G α (z) = (2iπβ) -1 ( 1/
2D ĥ e zf+(t) -1/2D ĥ e zf-(t) dt) where 1/2D ĥ is the half line {-te iπh ; t ∈ [0, ∞[}, h is the argument of z. We change again the contour and replace the half line 1/2D ĥ by the curve [0, t 0 ] + ∪ {v + h (s), s = 0 → +∞[} for the first integral and t → [0, t 0 ] -∪ {v h (s); ] -∞, s]} in the second one. Notice also that f + (t + ) = f -(t -) = f 0 (t) for all t ∈ [0, t 0 ], consequently, the contribution of the two integrals over [0, t 0 ] compensate each other and the end point of the half line and the two curves coincide at infinity. Finally we obtain by the use of Cauchy theory that

G α (z) = (2iπβ) -1 ( +∞ 0 e zf+(v + θ (s)) dv + θ (s) - +∞ 0 e zf-(v - θ (s)) dv + θ (s)) = (2iπβ) -1 ( +∞ 0 e zse iπθ (dv θ (s) -dv θ (s))
The integral representation of G α follows after an integration by part. 

G α (z) = G α (1)e -δ(z-1) exp ∞ 0 ( 1 z + t - 1 t + 1 )θ(t)dt Moreover, G α (z) ∼ c 0 z -α (1 + O(z 1-α ) z → 0 G α (z) ∼ c ∞ z -1/2 e -δz (1 + O(z -1 )) z → ∞ with c ∞ = (2πβ) -1/2 α β/2 . c 0 = (2πβ) -1 Γ(α + 1) sin πα
The following estimate of G α (x) on the real line is an immediate consequence of this representation.

Corollary 4.2. Let

A ± = sup x∈[0,1] [x α e δx G α (x)] ±1 B ± = sup x∈]1,+∞[ [x 1/2 e δx G α (x)] ±1
then A + , B + , A -, B -are finite and non zero. Moreover, let

f 1 (x) = x -α e -δx 1 [0,1] (x), f 2 (x) = x -1/2 e -δx 1 ]1,+∞[ then A -f 1 (x) + B -f 2 (x) ≤ G α (x) ≤ A + f 1 (x) + B + f 2 (x)
For the proof of Theorem 4.1 we need first to study the behavior of G α near the boundary ] -∞, 0[. Using (2.4) one gets

(4.2) G α (-r + ) = (2iπβ) -1 ∞ 0 e -rt (e rt α -e rt α e -2iπα )dt Proposition 4.3. For r > 0 one has (1) ℑ(G α (-r + )) < 0. (2) G α (-r + ) = c 0 r -α e -iπα (1 + O(r 1-α )) for r → 0 (3) G α (-r + ) = -ic ∞ r -1/2 e δr (1 + O(r -1 )) for r → ∞. Proof. -(1) follows from ℜ(e rt α -e rt α e -2iπα ) = e rt α -e rt α cos 2πα cos[rt α sin(2πα)] ≥ 0 -(2)
The change of variables t → t r in (4.2) gives

G α (-r + ) = (2iπβr) -1
+∞ 0 e r 1-α t α -e r 1-α t α e -2iπα e -t dt

The function

E(z) = (2iπβz) -1
+∞ 0 e zt α -e zt α e -2iπα e -t dt is entire and E(0) = (πβ) -1 e -iπα Γ(α + 1) sin πα, moreover one has G α (-r + ) = r -α E(r 1-α ) from which (2) follows.

-(3) Using Laplace method we obtain the following estimate

(2iπβ) -1 ∞ 0 e -r(t-t α ) dt = -ic ∞ r -1/2 e δr (1 + O(r -1 )) r → ∞ Moreover, |e -δr G α (-r + )-(2iπβ) -1 ∞ 0 e -r(t-t α +δ) dt| ≤ (2πβ) -1 ∞ 0 e -r(t-t α +δ) e -(1-cos 2πα)t α r dt.
Since e -r(t-t α +δ) ≤ 1, this integral is bounded above by (1-cos 2πα)

-1/α Γ(1/α)r -1/α
Proof of Theorem 4.1.

Let G α (-r + ) = R(r)e -iπθ(r) be the polar decomposition of G α (-r + ). Since ℑG α (-r + ) is negative, we can choose θ(r) ∈]0, 1[ and continuous. Proposition 4.3 implies that

θ(r) = α + O(r 1-α ) r → 0 θ(r) = 1/2 + O(1/r) r → +∞ Let L α (z) = exp ∞ 0 1 z + t - 1 1 + t θ(t)dt,
this function is analytic on C\] -∞, 0] and satisfies, by well known properties of Stieltjes transforms,

L α (-r + ) L α (-r -) = e -2iπθ(r) r > 0, furthermore, since θ(t) = 1/2 + O(1/t), the integral ∞ 0 1 t+1 (θ(t) -1/2)dt is finite and z 1/2 L α (z) = exp ∞ 0 1 z+t -1 1+t (θ(t) -1/2)dt therefore z 1/2 L α (z) → z→∞ exp ∞ 0 1 1 + t (θ(t) -1/2)dt = C > 0 and L α (z) ∼ Cz -1/2 , z → ∞. A similar argument, using the fact that θ(t) = α + O(t 1-α ) t → 0, gives z α L α (z) → z→0 exp ∞ 0 1 t(1 + t) (θ(t) -α)dt = D > 0 On the other hand, G α (-r + ) G α (-r -) = e -2iπθ(r)
therefore the function E α (z) = e δz Gα(z)

Lα(z)
is analytic on C\] -∞, 0], and has a continuous extension to C \ {0}. It is also continuous at 0, because both L α (z) and G α (z) are equivalent to z -α up to a multiplicative constant, for z → 0. By Morera's theorem, the function E α can be extended to an entire function. Moreover, since the two functions e δz G α (z) and L α (z) are equivalent to z -1/2 at infinity up to a multiplicative constant, E α (z) is bounded on C. Finally, by Liouville theorem, E α is constant and this constant, equal to e δ G α (1) is positive.

Remark : If H is an HCM function then log H(x)

x is bounded, thus G α (x h ) is not HCM for any h > 0. Consequently, if g α (x γ ) is HCM then γ < β -1 .

HCM, non HCM, anti HCM property of G α

Theorem 5.1.

(1) For α ∈]1/2, 1], the function θ is decreasing and G α is anti-HCM, (2) For α ∈ [1/3, 1/2], the function θ is increasing and G α is HCM, (3) For α ∈]0, 1/3[, the function θ is not monotonous and G α is neither HCM, neither anti-HCM.

For the proof we need some preliminary results.

Lemma 5.2.

(1)

r α ℑ(G α (-r + )) is negative and decreasing (2) For α ∈]1/3, 1], sign(1/2 -α)r α ℜ(G α (-r + )) is positive and increasing (3) For α ≤ 1/3, r α -1 ℜ(G α (-r + ) is not of constant sign.
Proof. From (4.2) we get:

ℑG α (-r + )) = -(2πβ) -1 ∞ 0 e -rt ℜ(e rt α -e rt α e -2iπα )dt ℜ(G α (-r + )) = (2πβ) -1 ∞ 0 e -rt ℑ(e rt α -e rt α e -2iπα )dt
The change of variables t → t/r in the first identity gives

ℑ(G α (-r + )) = (2πβr) -1 ∞ 0
ℜ(e t α r 1-α -e t α r 1-α e -2iπα )e -t dt while t → t/r α in the second gives

ℜ(G α (-r + )) = (2πβr α ) -1 ∞ 0 ℑ(e -r 1-α α t-e iπ(1-2α) t α )dt
The function

r -1+α ℜ(e t α r 1-α -e t α r 1-α e -2iπα ) = n t nα r (1-α)(n-1) n! (1 -cos 2nπα)
is increasing in r for all t > 0. It follows that r α ℑ(G α (-r + )) is increasing.

The second identity and (2.3) give

r α ℜ(G α (-r + )) = β -1 x α+1 g α,1-2α (x) ( for x = r -1 β )
The end of the lemma follows from 2.9.

Proof of theorem 5.1 : According to section 2.1 it is enough to consider monotonicity properties of θ. Recall that, for all α, θ(0) = α and θ(+∞) = 1/2, moreover ℑ(G α (-r + )) = R(r) sin πθ(r) is negative and decreasing and, for α ≥ 1/3, ℜ(G α (-r + )) = R(r) sin πθ(r) has constant sign and is monotonous. It follows that G α (-r + ) takes all its values in a quarter plane and θ(r) has a constant sign and its absolute value is increasing, thus θ is monotonous, decreasing for α > 1/2 and increasing for α ∈ [1/3, 1/2].

Finally for α ∈]0, 1/3[, we obtain that ℜ(G α (-r + )) = R(r) cos πθ(r) can take negative values, thus θ(r) does not take all its value inside the interval [α, 1/2], thus it is not monotonous.

In the case α ∈ [1/3, 1[ we obtain a better estimate for G α (x) than in corollary 4.2.

Corollary 5.3. Let f 1 (x) = x -α e -δx 1 [0,1] (x), f 2 (x) = x -1/2 e -δx 1 ]1,+∞[ If α ∈ [1/3, 1/2], then G α (1)f 1 (x) + c ∞ f 2 (x) ≤ G α (x) ≤ c 0 f 1 (x) + G α (1)f 2 (x) If α ∈]1/2, 1], then G α (1)f 1 (x) + c ∞ f 2 (x) ≥ G α (x) ≥ c 0 f 1 (x) + G α (1)f 2 (x)
Using the proposition 2.5, we also obtain new GGC densities related to α-stable densities.

[ε(α -1/2) denotes the sign of α -1/2].

Corollary 5.4.

If α ∈ [1/3, 1] then 1) The function [c -1 0 .x -α G α (x)] -ε(α-1/2) is the Laplace transform of a random variable of the form Y -ε(α -1/2)δ where Y is GGC. 2) [c -1 ∞ x -1/2 e δ/x G α (1/x)] ε(α-1/2)
is the Laplace transform of a GGC random variable.

Finally we obtain another consequence for the α-densities.

Corollary 5.5. If α > 1/2 then S α is GGC and S -β α is not GGC.

proof The GGC property of S α is known and has already been already been mentioned in paragraph 2.2. Consider the Laplace transform, for λ ≥ 0,

Lp(S -β α )(λ) = ∞ 0 e -λx G α (x)dx = ∞ 0 e -t G α ( t λ ) dt λ Since (z 1/2 1 |z|>1 + z α 1 |z|≤1 )e δz G α ( 
z) is a bounded function of z, the integral can be analytically continued by an analytic to C\] -∞, 0] ∩ {|z| > δ} and this continuation satisfies again for r > δ,

Lp(S -β α )(-r + ) = - ∞ 0 e -t G α (-( t r ) -) dt r = - ∞ 0 e -rt G α (-t -)dt Since ℑ(G α (-t -)
) is positive and increasing while ℜ(ℑ(G α (-t -)) is negative and increasing, the same is true for -ℑLp(S -β α )(-r + ) and -ℜ(Lp(S -β α )(-r + ), consequently the opposite of the argument of Lp(S -β α )(-r + ) is decreasing again for r > δ.

Thus Lp(S -β α )(x) cannot be HCM, consequently S -β α is not GGC.

6. Some further properties of GGC and HCM functions Theorem 6.1. Let H be an HCM function and g be a GGC density, then the function ∞ 0 H(xy)g(y)dy is HCM if it is finite. For the proof of this result we derive some lemmas. The first one is due to Bondesson [START_REF] Bondesson | A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables[END_REF]. Lemma 6.2. The product and the ratio of two independent GGC random variables is GGC.

From this we deduce: Lemma 6.3. Let g be a GGC density and β a real number such that m β = ∞ 0 x β g(x)dx is finite, then m -1 β x β g(x) is a GGC density. Proof. Let H be the Laplace transform of a GGC random variable Y , and X be a GGC random variable with density g independent of Y .

The function ∞ 0 H(xy)g(y)dy is the Laplace transform of XY . According to lemma 6.2 the independent product XY is GGC again, thus ∞ 0 H(xy)g(y)dy is the Laplace transform of a GGC variable. Thus it is HCM. Replacing H(x) by this to H(x)e -x (ε -β (ε + x) -β ) which is the Laplace transform of Y + E ε + 1 where E ε has Γ(ε, β)-distribution, we obtain that the integral ∞ 0 H(xy)ε -β (ε + xy) -β g(y)dy is HCM. Multiply this integral by the constant ε β and let ε → 0, the monotone convergence theorem, and the fact that HCM property is stable by multiplication by a positive constant and by pointwise limit implies that ∞ 0 e -xy (xy) -β g(y)dy is HCM. Mutiplying this integral by m -1 β x β we again get an HCM function and the integral obtained is the Laplace transform of the density m -1 β x -β g(x). Since this Laplace transform is HCM the density is GGC. Lemma 6.4. Let θ be an increasing function and H the associated HCM funtion

H(x) = exp ∞ 0 ( 1 x + t - 1 1 + t )θ(t)dt
Then H is a pointwise limit of HCM functions H n whose θ-function in the representation (2.2) is bounded. Moreover one can chose the H n such that for all ǫ > 0 there exists N s.t. if n > N and x ∈]0, +∞[ then

(1 -ε)H(x) ≤ H n (x) ≤ H(x)e ε(x+x -1 )
Proof. Let n be a positive integer and θ(t) = θ n + (θ(t) -n)1 θ(t)≥n + (θ(t) + n)1 θ(t)≤-n with θ n = θ(t) ∨ (-n) ∧ n Moreover let

H n (x) = exp ∞ 0 ( 1 x + t - 1 1 + t )θ n (t)dt E n (x) = ∞ 0 ( 1 x + t - 1 1 + t )(θ(t) -n)1 θ(t)>n dt Ên (x) = ∞ 0 ( 1 x + t - 1 1 + t )(θ(t) + n)1 θ(t)<-n dt Clearly H = Ên H n E n Since 1
x+t -1 1+t and x -1 have the same sign and

-1 x>1 inf(x, t -2 ) ≤ 1 x + t - 1 1 + t ≤ 1 x<1 inf(x -1 , t -2 )
we obtain e -εnx1x>1 ≤ E n ≤ e εn1x<1 and e -εnx -1 1x<1 ≤ Ên ≤ e εn1x>1

Proof of Lemma 3. 1 . 1 ) 4 .

 114 If z ∈ [0, +∞[ let h be such that ze iπh = -|z|e iπε with |ε| ≤ |1/2 -α|. One has e δz G α (z) = (2iπβ) -1 z. +∞ 0 e -|z|t.e iπh (v + θ (t) -v - θ (t))dt Using the estimate of v + θ (t) and v - θ (t) given in lemma 3.3 we obtain, |e δz G α (z)| ≤ (2πβ) -1 (A(sin πα) -1 + 2(sin πα) -2 |z| -The main result Theorem 4.1. There exists a continuous function θ, taking values in ]0, 1[, such that, for all z ∈ C\] -∞, 0], α ∈]0, 1[, (4.1)

with

The positive numbers ε n and εn go to zero when n → +∞ for all ε > 0 , let N such that ε > ε n ∨ εn then H n (x) satisfies the required estimate of the lemma.

Proof of Theorem 6.1 Let X and Y be GGC random variables, let H be the Laplace transform of Y and g be the density of X. On the other hand, the sequence of functions (1

x and they are bounded by 1. Moreover the function

Thus, this function is HCM. Suppose that the random X has moments of all order, according to lemma 6.3 the function g(y) can be replaced by g(y)y β+n for any n and β, and again the integral xy y β g(y)dy is also HCM. Take a > 0 and b > 0, the hypothesis that X (with density g) has moments of all orders can be removed because the GGC densities with finite moments are dense in the family of GGC densities for the weak topology. Finally, the function xy y β g(y)dy is HCM for any H which is the Laplace transform of a GGC density , any real β and any GGC-density g.

Let H be any HCM function of the form

for an increasing function θ, and (H n ) be a sequence of HCM functions approaching H as it is discribed in lemma 6.4 The θ functions of H n are bounded bellow (say by -n), then H n are of the form x n Hn (x) where Hn are Laplace transform of GGC-variables.( see proposition 2.5). Thus , the functions Finally, by Lebesgue dominated convergence in 1/2 is H(x) = (2π) -1/2 .αx -3α-1 e -x -2α which is clearly HCM .

Applying theorem 6.1 to the HCM function x -1 H(x -1 ) and to the density of the GGC variable S 2α gives the required property.

Finally, let γ be the bigger power such that g α (x γ ) is HCM, we have obtained that γ = β -1 for α ∈ [1/3, 1/2] and γ ∈ [1, β -1 [ for α < 1/3.