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Abstract

In this paper we address the Preemptive Resource Constrained Project Schedul-
ing Problem (PRCPSP). PRCPSP requires a partially ordered set of activities
to be scheduled using limited renewable resources such that any activity can be
interrupted and later resumed without penalty. The objective is to minimize the
project duration. This paper proposes an effective branch-and-price algorithm
for solving PRCPSP based upon minimal interval order enumeration involving
column generation as well as constraint propagation. Experiments conducted
on various types of instances have given very satisfactory results. Our algorithm
is able to solve to optimality the entire set of J30, BL and Pack instances while
satisfying the preemptive requirement. Furthermore, this algorithm provides
improved best-known lower bounds for some of the J60, J90 and J120 instances
in the non-preemptive case (RCPSP).

Keywords: Project scheduling, interval order, column generation, constraint
propagation

1. Introduction

This paper deals with the Resource Constrained Project Scheduling Problem
(RCPSP). RCPSP aims at scheduling a set of activities subject to precedence

∗A preliminary version of this work was communicated in the 6th Workshop on Computa-
tional Optimization 2013 [15].
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and resource constraints, while minimizing the induced makespan (total dura-
tion of the project) value. The precedence constraints mean that some activities
must be completed before others can start. The resource constraints specify
that each activity requires constant amounts of renewable resources (with lim-
ited capacities) throughout the scheduling process. RCPSP has been extensively
studied in its non-preemptive version where every activity has to be run as a
whole without any kind of interruption. The Preemptive Resource Constrained
Project Scheduling Problem (PRCPSP), on the other hand, corresponds to the
case where each activity can be interrupted and later resumed without penalty.

There are not many works on PRCPSP. Demeulemeester and Herroelen [8]
have developed a branch-and-bound algorithm; Ballest́ın et al. [2] have looked
at preemption from a heuristic perspective; and Peteghem and Vanhoucke [16]
have designed a genetic algorithm for multi-mode Preemptive RCPSP. For the
sake of simplicity, authors often assume that all processing times are integral
and that preemption only occurs at integer valued dates. It is, however, easily
established that such a hypothesis is very restrictive and can produce only an
approximation of the optimal value of the problem. We refer to the surveys
published by Kolisch and Padman [12], Brucker et al. [5], Herroelen and Leus
[10], Hartmann and Briskorn [9]. Recently, Schutt et al. [18] propose an effective
algorithm for RCPSP based on Constraint Programming that allows many open
instances to be closed and the lower bounds for RCPSP to be improved.

In this paper we consider the problem in its most general form and suppose
that preemption is allowed for all activities and may occur at arbitrary rational
dates, and that no penalties are related to preemption. Ours is a branch-and-
price approach which involves constraint propagation, as well as the manage-
ment of a specific rational Antichain linear program whose variables are asso-
ciated with subsets of activities that may be simultaneously processed during
the schedule. This Antichain linear program, first introduced by Mingozzi et al.
[14], provides us with a lower bound of both preemptive and non-preemptive
RCPSP. Mingozzi et al. [14] have proposed a time-indexed linear formulation
for RCPSP involving antichains. This linear program approach requires the
implementation of a pricing or column generation scheme. Brucker and Knust
[4] combine constraint propagation techniques and this linear programming for-
mulation in order to obtain lower bounds for RCPSP. It was proved in Damay
et al. [7] that if the input RCPSP instance satisfies certain ad hoc properties,
then any optimal solution of the Antichain linear program may be turned into
a feasible optimal schedule without any increase in the makespan value. To the
best of our knowledge, only the work of Damay et al. [7] deals with optimal
solutions of PRCPSP without any restriction. Damay et al. propose a branch-
and-bound method for PRCPSP based on the linear programming formulation
of Mingozzi et al. [14] and introducing forbidden disjunctions.

The strategy described here is to use the linear programming formulation of
Mingozzi et al. [14] in order to perform a tree search which may be viewed as be-
ing embedded into the process of enumerating all the minimal extensions of the
precedence relation that define interval orders. The resulting process, capable
of solving exactly all 30 activity instances in the PSPLIB library and improv-
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d. An optimal solution of the Antichain linear Program

Figure 1: A preemptive instance example

ing the best existing lower bounds for several 60/90/120 activity instances in
the same library, is seen to be particularly effective, with a powerful separation
scheme based on a forbidden structure of interval orders.

The paper is organized as follows. We first recall the definition of Preemptive
RCPSP in Section 2, and then introduce in Section 3 the theoretical tools related
to the Antichain LP and to interval orders, which will be the basis of our new
approach. Section 4 describes our IOE algorithm and its implementation, and
Section 5 is devoted to the presentation of experimental results.

2. Problem description

An instance I = (X,K,≺) of the Resource Constrained Project Scheduling
Problem is defined by:

• A set X = {1, ..., n} of n activities: ∀i ∈ X, di denotes the duration of
activity i.

• A set K = {1, ...,m} of m resources: ∀i ∈ X,∀k ∈ K, rik denotes the
requirement for resource k by activity i. These resources are given back
to the system once the activity is over or interrupted.

• ∀i, j ∈ X, i ≺ j means that i precedes j: activity j cannot start before i is
over (Precedence constraints).

By convention we also introduce two activities 0 and n + 1 to respectively
represent the start and the end of the schedule. Hence, activity 0 (resp. n+ 1)
is a predecessor (resp. successor) of all the other activities. Furthermore, we
set d0 = dn+1 = 0 and r0k = rn+1,k = 0 for each k ∈ K.
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In the case of Non-Preemptive RCPSP, scheduling only means computing the
starting times ti(i ∈ X) of the activities. A schedule σ = (ti, i ∈ X) is feasible
if it satisfies the Precedence constraints and the Resource constraints. At any
time t during the process, and for any resource k, the sum

∑
i∈Act(σ,t) rik does

not exceed the global resource amount Rk, Act(σ, t) = {i ∈ X, ti ≤ t < ti + di}
denoting the set of the activities running concurrently at time t according to
schedule σ. So, solving non-preemptive RCPSP means computing σ with a
minimal makespan (total duration of the project).

In cases where preemption is allowed, scheduling an activity i means first de-
composing i into a sequence of sub-activities i1, .., ih(i), with durations di,1, ...,
di,h(i), such that:

∑
q=1...h(i) di,q = di, and next scheduling all these sub-

activities in the same way as for standard RCPSP. We also introduce for any
feasible schedule σ, StartT ime(σ, i) and EndTime(σ, i) to respectively denote
the starting time and finishing time of activity i which is ti,1 (respectively
ti,h(i) + di,h(i)). In this work we assume there are no restrictions either on
the number of sub-activities or on their durations, which may be arbitrarily
small.

Let us consider one resource with capacity R1 = 3 and 8 activities with
duration and resource requirements as described in Figure 1.a. The activities
have durations d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 3, d6 = 3, d7 = 1 and d8 = 1.
The activity requirements are such that r1,1 = r2,1 = r3,1 = r4,1 = r5,1 = r7,1 =
r8,1 = 1 and r6,1 = 2. We assume further that there are precedence constraints:
1 ≺ 3, 1 ≺ 4, 2 ≺ 5, 3 ≺ 6, 4 ≺ 6, 5 ≺ 7 and 5 ≺ 8.

A feasible preemptive (resp. non-preemptive) schedule with makespan 5.5
(resp. 6) is given in Figure 1.b. (resp. Figure 1.c.).

3. Basic tools

Let I = (X,K,≺) be some Preemptive RCPSP instance, defined according
to the notation given in Section 2. We suppose (as we are clearly entitled to
do) that the precedence relation ≺ is transitive. Then we define an antichain as
being any subset a of X such that there does not exist i, j ∈ a such that i ≺ j.
We say that such an antichain is valid if: ∀k ∈ K,

∑
i∈a rik ≤ Rk. It follows

that a subset a ⊆ X of activities is a valid antichain if and only if the activities
belonging to a may be simultaneously run inside some feasible schedule. We
denote the set of all valid antichains as A.

3.1. Antichain Linear Program

We are now able to express the following linear program, known as an An-
tichain Linear Program, associated with a Preemptive RCPSP instance I =
(X,K,≺), introduced in Mingozzi et al. [14], also used in Damay et al. [7], and
which we shall denote as PA:

Minimize
∑
a∈A

za (1)
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s. t.
∀i ∈ X,

∑
a∈A|i∈a

za = di (2)

∀a ∈ A, za ≥ 0 (3)

Let σ be any feasible schedule related to instance I, and for any valid an-
tichain a let z(σ)a denote the total amount of time during which the activities
simultaneously running in σ correspond precisely to the activities in a. We can
see that z(σ) = (z(σ)a, a ∈ A) is a feasible solution of PA, since constraints (2)
express the fact that any activity i needs to have completed, or, equivalently,
that the duration of all antichains containing i must be equal to the duration
of i. It follows that the optimal value of PA provides us with a lower bound of
the optimal value of I, which we denote as LB(I).

Let us consider the instance described in Figure 1.a. Figure 1.d. shows an
optimal solution z of the Antichain linear program with za1 = 1, za2 = 1, za3 = 3
and za = 0 ∀a ∈ A − {a1, a2, a3} where a1 = {1, 7, 8}, a2 = {2, 3, 4} and
a3 = {5, 6}. Also, we note that Figure 1.b. shows a preemptive schedule with
valid antichains {1, 2}, {3, 4, 5}, {5, 6}, {6, 7}, {6, 8} and {7, 8}.

3.2. Column generation

Since set A may be very large, even when the activity set X is small, PA
needs to be handled using column generation (see Mingozzi et al. [14] and
Brucker and Knust [4]). Column generation is a technique commonly used for
solving a linear program (LP) containing an exponential number of variables. It
involves first initializing this LP with a small number of active variables (which
may be obtained by applying some heuristic), iteratively solving the induced
restricted problem to optimality, and then using the dual variables to generate
new improving primal variables. The search for these improving primal variables
is called the related Pricing Problem. The new variables are added to the re-
stricted problem and the process goes on until no more improving variables can
be found. The solution of the restricted problem is then the optimal solution.
When this technique is associated with a branch-and-bound process (usually for
integer formulation) it gives rise to a branch-and-price solution method.

For our needs, let us consider some active antichain subset B ⊆ A, together
with some dual solution λ of the restricted Linear Programming formulation
PBA defined by (we suppose that B is such that this program admits a feasible
solution):

Minimize
∑
a∈B

za (4)

s.t.
∀i ∈ X,

∑
a∈B|i∈a

za = di (5)

∀a ∈ B, za ≥ 0 (6)

5



If we denote the dual variables corresponding to constraints (5) by λi, then
solving the related pricing problem PRICE(λ) means computing some valid
antichain a0, such that ∑

i∈a0

λi > 1 (7)

Though this problem is NP-Complete, it may be efficiently handled through
a combination of greedy search and Integer Linear Programming (ILP). A well-
fitted ILP formulation of the PRICE(λ) problem can be expressed as follows,
where we have only one type of decision variable, yi ∈ {0, 1}. This decision
variable is defined so that yi = 1 if and only if activity i ∈ a0.

Maximize
∑
i∈X

λiyi (8)

s.t.
∀i, j ∈ X|i ≺ j, yi + yj ≤ 1 (9)

∀k ∈ K,
∑
i∈X

rikyi ≤ Rk (10)

∀i ∈ X, yi ∈ {0, 1} (11)

3.3. Antichain linear program and feasible Schedules

Linear Program PA only provides a lower bound of Preemptive RCPSP
instance I. If vector z = (za, a ∈ A) is a feasible solution of PA, it may not

be possible to turn it into a feasible solution of I whose makespan is
∑
a∈A

za.

We can link the valid antichain set A to an oriented graph structure (A, E≺) by
specifying that there exists an arc (a, b) ∈ (A, E≺) from antichain a to antichain
b if there exist activities i ∈ a and j ∈ b such that i ≺ j.

Let z be some feasible solution of PA andA(z) ⊆ A be the setA(z) = {a ∈ A
such that za 6= 0} of active antichains according to z. Also, let GA(z) be the
subgraph of (A, E≺) induced by A(z).

For the instance described in Figure 1.a, Figure 1.d. shows an optimal
solution z of the Antichain linear program where A(z) = {a1, a2, a3} with a1 =
{1, 7, 8}, a2 = {2, 3, 4} and a3 = {5, 6}. Note that since 1 ≺ 3, 3 ≺ 6 and 5 ≺ 7,
we have (a1, a2), (a2, a3), (a3, a1) ∈ (A, E≺) and GA(z) contains a circuit.

The following result can easily be checked.

Theorem 3.1. Let z be some feasible solution of PA. Then there exists a
feasible schedule σ such that z(σ) = z if and only if the subgraph GA(z) does not
contain any circuit.

It may be remarked that program PA provides an additional insight into
Preemptive RCPSP. Let σ be any feasible Preemptive RCPSP schedule, and let
z(σ) = (z(σ)a, a ∈ A) be the related vector associated with σ and A. If A(z(σ))
is the related active antichain set, then we see that solving the restricted linear
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Figure 2: Forbidden structure for interval orders

program (PA(z(σ))
A ) using the Primal Simplex Algorithm yields another feasible

schedule σ∗ with makespan no larger than the makespan of σ. Furthermore,
Linear Programming Theory tells us that the number of active antichains related
to σ∗ (that is to say the cardinality of A(z(σ∗))) does not exceed the number of

constraints of (PA(z(σ∗))
A ), which is equal to the cardinality of the activity set X.

Preemptive RCPSP can thus be seen as a combinatorial problem related to the
search for some acyclic subgraph GB of the antichain graph (A, E≺) such that
Card(B) ≤ Card(X) and the optimal value of the program (PBA) is minimal.

3.4. Interval Orders

A partially ordered set (Z,≺io) is an interval order if the elements i of Z
may be represented as closed intervals [bi, ei] of the real line, such that, for any
pair i, j ∈ Z:

i ≺io j if and only if ei < bj

It is known (see [20]), that the partially ordered set (Z,≺io) is an interval
order if and only if (Z,≺io) does not contain a suborder isomorphic to the
structure described in Figure 2.

If we now consider our Preemptive RCPSP instance I = (X,K,≺), we see
that:

Theorem 3.2. If the partial order (X,≺) is an interval order, then the oriented
antichain graph (A, E≺) is acyclic.

Proof. We suppose the converse, and consider some circuit Γ in (A, E≺) with
minimal length. Then we must distinguish two cases:

First case: |Γ| = 2, which means that Γ contains two antichains a and b.
Here we see that |a| ≥ 2 and |b| ≥ 2, and there must exist i, j′ ∈ a and j, i′ ∈ b
such that i ≺ j and i′ ≺ j′. From this it follows that ({i, j, i′, j′}, {i ≺ j, i′ ≺
j′}) defines a forbidden structure for interval orders (Figure 2), which entails a
contradiction.

Second case: |Γ| ≥ 3. Since (X,≺) is acyclic, Γ must contain 3 consecutive
antichains a, b, c such that |Γ ∩ b| = 2 and there exist i ∈ a, j, i′ ∈ b and j′ ∈
c, such that i ≺ j and i′ ≺ j′. But from the minimality of Length(Γ) and from
the fact that a, b and c are antichains it can be deduced that i, j, i′ and j′ must
define a forbidden structure for interval orders (Figure 2), which also entails a
contradiction.

This result significantly impacts the design of the algorithm which will be
presented in the next section. Clearly, if σ is a feasible schedule for the Preemp-
tive RCPSP instance I = (X,K,≺), we remark that it is possible to extend the
precedence relation ≺ into an interval order ≺σ, so that σ remains consistent
with ≺σ. It is sufficient to define ≺σ such that for any activity pair i, j ∈ X:

7
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Figure 3: Minimal interval extensions for the forbidden structure for interval orders

i ≺σ j if and only if EndTime(σ, i) ≤ StartT ime(σ, j) (12)

Putting this last remark and Theorem 3.2 together shows us that for the
Preemptive RCPSP instance I it is sufficient to enumerate the extensions ≺io of
the order relation ≺, which are interval orders. We can in fact restrict ourselves
to those extensions ≺io which are minimal for inclusion, that is to say where
there exists no extension ≺′ of ≺ that is an interval order and where ≺′ ⊂ ≺io
and≺′ 6=≺io (this means that for any activity pair i, j in X: i≺′ j implies i ≺io j
and there exist i′, j′ ∈ X such that i′ ≺′ j′ without i′ ≺io j′). Furthermore, it
is easy to establish the following straightforward result.

Proposition 3.1. Let (X,≺′) be an interval order extension of (X,≺). There-
fore, if (X,≺) contains a forbidden structure of interval orders ({i, j, i′, j′}, {i ≺
j, i′ ≺ j′}), then (X,≺′) contains at least the constraints i ≺′ j′ or i′ ≺′ j.

The structures ({i, j, i′, j′}, {i ≺′1 j, i′ ≺′1 j′, i ≺′1 j′}) and ({i, j, i′, j′}, {i ≺′2
j, i′ ≺′2 j′, i′ ≺′2 j}) are known as minimal interval extensions of ({i, j, i′, j′}, {i ≺
j, i′ ≺ j′}). These structures are described in Figure 3.

The next section is devoted to detailed description of how the enumeration
of interval extensions is performed.

4. Interval Order Enumeration Algorithm

Sections 2 and 3 lead us to reformulate PRCPSP for any instance I =
(X,K,≺) as follows. It is a matter of computing an extension ≺io of the prece-
dence relation ≺ that is an interval order and where the optimal solution zio of
the related Linear Program PAio

corresponding to antichains Aio of ≺io is the
smallest possible.

Our algorithm IOE based on Interval Order Enumerations is a branch-and-
bound algorithm which performs some enumeration of the extensions ≺io of
≺. We will now specify the components of the tree search process. First we
describe the extensions of Preemptive RCPSP instance I = (X,K,≺) which
define the nodes of the related search tree. Then we describe in some detail how
branching, bounding and related filtering are performed. We also explain the
constraint propagation scheme and the branching strategy, before presenting a
summary of the whole algorithm.

4.1. The nodes of the IOE search tree

A node in the search tree induced by a branch-and-bound algorithm is usu-
ally defined by a set of additional constraints imposed on the initial problem.
In the case of the Preemptive RCPSP instance I = (X,K,≺), those constraints
are:
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• additional precedence constraints with the aim of obtaining an interval
order extension of ≺. We denote by (X,→) the precedence graph con-
taining the precedence relations of (X,≺) and the additional precedence
constraints.

• anti-precedence constraints, denoted by i 9 j, meaning that i → j is
forbidden.

The precedence graph (X,→) is managed so that it always remains transi-
tive. If (X,→) is not an interval order, then it must contain some forbidden
structure for interval orders ({i, j, i′, j′}, {i → j, i′ → j′}). In order to remove
this forbidden structure, we enrich (X,→) with additional constraints. There
are two cases (see Proposition 3.1):

• Case 1: i→ j′

• Case 2: i′ → j and i9 j′.

We can therefore identify any node v of the search tree using a pair Add→(v)
and Add9(v) where Add→(v) and Add9(v) are respectively the sets of addi-
tional precedence constraints and anti-precedence constraints which constrain
≺io as follows:

• ≺ ∪Add→(v) ⊆≺io

• ≺io ∩Add9(v) = ∅.

Clearly, if the current order relation happens to define an interval order
(X,→), the related node v is a terminal node (a leaf).

The forbidden structure for interval orders allows us to perform a binary
branching process with immediate successors v1 and v2 by successively consid-
ering the two following alternatives:

• First alternative (successor v1): Add→(v1) = Add→(v) ∪ {i → j′} and
Add9(v1) = Add9(v)

• Second alternative (successor v2): Add→(v2) = Add→(v) ∪ {i′ → j} and
Add9(v2) = Add9(v) ∪ {i9 j′}

Our branching scheme splits the set of feasible schedules into two disjoint
subsets. Moreover, at each node of the search tree we are able to deduce addi-
tional information using constraint propagation to reduce computational effort.

4.2. Constraint Propagation

We apply several kinds of inference rules in order to detect inconsistencies or
to deduce additional precedence constraints and/or anti-precedence constraints.
These rules are based on the earliest and latest start times of the activities in
the desired schedule. We also use transitive closure and forbidden structures for
interval orders of the current relation → at each node.

9



4.2.1. Transitive closure

The first class of rules concerns transitivity, ensuring that at any time during
the process, current relation → remains transitive:

∀i, j, l ∈ X, i→ j and j → l =⇒ i→ l (13)

We use the Floyd-Warshall algorithm for computing the transitive closure
for the initialization at the root node of our search tree. This algorithm runs
in O(n3) time. However, at the other nodes of the search tree, we update the
transitive closure each time a new constraint i → j is found, according to the
following equation, leading to O(n2) time complexity.

∀i′, j′ ∈ X, i′ → i and j → j′ =⇒ i′ → j′ (14)

Besides, any relation i → i induces an inconsistency, implying that the
current search tree node must be pruned.

4.2.2. The earliest and latest start times

In this section we show how time windows based on the earliest and latest
start times can be used to deduce further precedence constraints. Our branch-
and-bound algorithm initially computes an upper bound UB at the root node,
which is then updated each time an improvement is discovered during the tree
search. The earliest start time ESi of an activity i is a lower bound for the
starting time of i. Also, using a lower bound for the time period between the
end of activity i and the upper bound UB, we define a latest start time LSi for
any activity i. Using initializations ES0 = 0 and LSn+1 = UB, these values are
computed for any activity i using recursion:

ESi = max
j∈X|j→i

(ESj + dj) (15)

LSi = min
j∈X|i→j

(LSj − di) (16)

Doing this allows us to implement the following classical inference rules,
which tend to keep the current precedence relation → from inducing the exis-
tence of a largest path with length greater than or equal to UB.

∀i, j ∈ X,ESi + di > LSj implies i9 j (17)

∀i, j ∈ X,LSi + di ≤ ESj implies i→ j (18)

These equations insert into Add→(v) and Add9(v) additional precedence
relations at node v which should be satisfied in any schedule with makespan
less than UB.
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4.2.3. Forbidden structures for interval orders

The last class of rules concerns the forbidden structures for interval orders
(see Section 3.4). We wish to prevent the current relation → from contain-
ing any such structure when new precedence or anti-precedence constraints are
introduced. The following proposition is straightforward.

Proposition 4.1. Let i, j ∈ X such that i→ j. Then

• ∀i′, j′ ∈ X, i′ → j′ and i′ 9 j =⇒ i→ j′

• ∀i′, j′ ∈ X, i′ → j′ and i9 j′ =⇒ i′ → j

• ∀i′, j′ ∈ X, i9 j′ and i′ 9 j =⇒ i′ 9 j′

Also, for any i, j ∈ X such that i9 j. Then

• ∀i′, j′ ∈ X, i→ j′ and i′ → j =⇒ i′ → j′

• ∀i′, j′ ∈ X, i′ 9 j′ and i→ j′ =⇒ i′ 9 j

• ∀i′, j′ ∈ X, i′ 9 j′ and i′ → j =⇒ i9 j′

Here the role of constraints i 9 j is obvious. They are useful for the inser-
tion of additional precedence constraints into the Add→(v) set with a significant
impact on the antichain set and on the optimal value of the related linear pro-
gram. Of course, whenever the forbidden structure for interval orders appears,
the current node is pruned.

4.3. Lower Bound, Upper Bound and Related Filtering

The lower bound which derives from a current node v defined by a couple
(Add→(v), Add9(v)), is provided by the optimal value of the program PA, where
valid antichains are considered as deriving from (→,9). We denote this lower
bound as LB(v). It can be obtained using column generation and a heuristically
solved pricing problem, or computed using the ILP model (see Section 3.2).
Every column which has been generated at some time during the process is kept
into memory.

In addition, an initial upper bound UB is obtained as part of a preprocessing
step, and this is updated as soon as some feasible solution is computed by the
IOE search process.

If the optimal solution z of the linear program PA is such that the subgraph
GA(z) does not contain any circuits, we consider that we have reached some
terminal node of the search tree. If the related value

∑
a∈A(z) za is smaller than

the value of the current solution (current upper bound UB), we update this
current solution.
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4.4. Branching Strategy

In Section 4.1 we described the branching mechanism, which is based on the
extraction of a forbidden structure of interval orders. Where there is more than
one forbidden structure, we need to specify the strategy used in order to decide
which forbidden structure ({i, j, i′, j′}, {i ≺ j, i′ ≺ j′}) will define the branching.

We proceed by focusing on the shortest circuits of the subgraph GA(z) and
on the antichains in A(z) which are the most involved in these circuits. We recall
that branching needs to be performed only if there exists some circuit in the
subgraph GA(z), where z is the optimal solution of PA, solved after constraint
propagation has been applied. We distinguish two cases:

• First case: a circuit of length 2 exists. Then consider any antichains
a, b ∈ A(z) such that there exist i, j′ ∈ a and j, i′ ∈ b with i ≺ j and
i′ ≺ j′. This means that S = ({i, j, i′, j′}, {i ≺ j, i′ ≺ j′}) is a forbidden
structure for interval orders. For each such S involved in a circuit of length
2 we determine the weight wS as follows:

wS =
∑

{a∈A(z)|i,j′∈a}

za +
∑

{a∈A(z)|j,i′∈a}

za (19)

Branching should use the forbidden structure S such that wS is maximized.
If there are several such structures with the same maximum, one of these
is simply chosen at random.

• Second Case: there are no circuits of length 2. From the proof of Theo-
rem 3.2 we know that there exist 3 antichains a, b, c ∈ A(z) such that i ∈
a, j, i′ ∈ b and j′ ∈ c, with i ≺ j, i′ ≺ j′ and ({i, j, i′, j′}, {i ≺ j, i′ ≺ j′}) is
a forbidden structure for interval orders. Therefore, there exist at least a
forbidden structure S and an antichain b ∈ A(z) that contains two activ-
ities j and i′ from S. For any such structure S, we determine the weight
wS as follows:

wS =
∑

{a∈A(z)|j,i′∈a}

za (20)

Again, branching should use the forbidden structure S such that wS is
maximized. As in the first case, if there are several such structures with
the same maximum, we choose one of them randomly.

4.5. The IOE branch-and-bound algorithm

We now present the general outline of our IOE branch-and-bound algorithm
IOE based on Interval Order Enumeration. It is implemented using a Breadth
First Search strategy where the node list, denoted as L, is ordered by increasing
optimal value of the antichain linear program, where antichains are computed
with precedence graph (X,→). We also recall that each node v of the search tree
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is defined by Add→(v) and Add9(v). Our IOE algorithm may be summarized
as described in Algorithm 1.

To the best of our knowledges, the only exact method in the literature is
the basic branch-and-price algorithm proposed by Damay et al. [7], whose aim
is to assess the performance of a neighbourhood search algorithm. The exact
algorithm is used by the authors for determining optimal solutions for J30. A
node v of the search tree consists of a set of forbidden disjunctions, implying
that optimal solution z of the antichain linear program does not contain these
couples of activities. If Gz is not acyclic, the serach tree algorithm determines a
minimal length circuit in order to develop the current node. Assume for example
that a circuit ({1, 2, 7}, {3, 4, 8, 9}, {5, 6}) is detected in Gz due to precedence
constraints (2, 3), (4, 5) and (6, 1). Therefore, the corresponding forbidden
disjunctions added to the three descendant nodes are respectively {1, 2}, {3, 4}
and {5, 6}. This branching scheme gives rise to a huge number of nodes and
does not deal with symmetries.

Our IOE algorithm is based on a new branching scheme in which the search
space is reduced to interval order extensions. Furthermore, each node of our
branch and bound tree has no more than two children, and constraint propaga-
tion is used extensively to deduce additional constraints.

4.6. An Example

The IOE Algorithm is illustrated using the instance shown in Figure 1.
We are seeking a preemptive schedule with makespan UB ≤ 8. To this end,
we initialize our branch and bound by creating a single node v0 such that
Add→(v0) = ∅ and Add9(v0) = ∅ and L = (v0). From the earliest and lat-
est start times we deduce the additional precedence relations {1 → 7, 1 → 8}
and Add→(v0) = {1→ 7, 1→ 8}.

Evaluation of node v0. The optimal solution value of the antichain lin-
ear program is 5 + 1/3 and then LB(v0) = 5 + 1/3 with (a1 = {1, 2}, za1 =
2/3), (a2 = {2, 3, 4}, za2 = 1/3), (a3 = {1, 5}, za3 = 1/3), (a4 = {3, 7, 8}, za4 =
1/3), (a5 = {4, 7, 8}, za5 = 1/3), (a6 = {3, 4, 8}, za6 = 1/3), (a7 = {5, 6}, za7 =
2 + 2/3), (a8 = {6, 7}, za8 = 1/3). Since 3 ≺ 6 and 5 ≺ 8, (a4, a7, a4) is a circuit
which induces a forbidden structure for interval orders ({3, 5, 6, 8}, {3 ≺ 6, 5 ≺
8}). We develop two successors :

• Node v1: Add→(v1) = Add→(v0) ∪ {5→ 6} and Add9(v1) = Add9(v0).

• Node v2: Add→(v2) = Add→(v0)∪ {3→ 8} and Add9(v2) = Add9(v0)∪
{5 9 6}.

Evaluation of node v1. The optimal solution value of the antichain lin-
ear program is 7 and then LB(v1) = 7 with (a1 = {1, 5}, za1 = 1), (a2 =
{2, 3, 4}, za2 = 1), (a3 = {5}, za3 = 2), (a4 = {6}, za4 = 1), (a5 = {6, 7}, za5 =
1), (a6 = {6, 8}, za6 = 1).

Evaluation of node v2. The optimal solution value of the antichain lin-
ear program is 5.5 and then LB(v2) = 5.5 with (a1 = {1, 5}, za1 = 1), (a2 =
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Algorithm 1: The branch-and-bound algorithm IOE

begin
Initialize at root node the breadth search list and the additional
constraint sets: L = (v0), Add→(v0) = ∅ and Add9(v0) = ∅;
Compute a feasible non-preemptive RCPSP schedule and derive an
upper bound UB (see Section 4.3);
Perform Constraint Propagation and extend Add→(v0) and Add9(v0)
(see Section 4.2);
Using column generation, compute an optimal solution z(v0) of the
antichain linear program and the lower bound LB(v0) (see Section
4.3);
while L 6= ∅ do

let v be the first node in L; Delete v from L;
if LB(v) < UB then

if GA(z(v)) is acyclic then
build a feasible schedule and update the upper bound UB;

else
Compute a forbidden structure for interval orders derived
from z(v), S = ({i, j, i′, j′}, {i ≺ j, i′ ≺ j′}) according to
Section 4.4 and create both related children:
Node v1: Add→(v1) = Add→(v) ∪ {i→ j′} and
Add9(v1) = Add9(v)
Node v2: Add→(v2) = Add→(v) ∪ {i′ → j} and
Add9(v2) = Add9(v) ∪ {i9 j′}
foreach u in {v1, v2} do

Perform Constraint Propagation and extend Add→(u)
and Add9(u) (see Section 4.2);
Using column generation, compute an optimal solution
z(u) of the antichain linear program and the lower
bound LB(u) (see Section 4.3);
Insert node u in L according to its related optimal
value;
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{2, 3, 4}, za2 = 1), (a3 = {5, 6}, za3 = 2), (a4 = {6, 7}, za4 = 1/2), (a5 = {6, 8}, za5 =
1/2), (a6 = {7, 8}, za6 = 1/2).

Considering LB(v2) < LB(v1), we first develop node v2. Since 1 ≺ 3 and
2 ≺ 5, (a1, a2, a1) is a circuit which induces a forbidden structure for interval
orders ({1, 2, 3, 5}, {1 ≺ 3, 2 ≺ 5}). We develop two successors :

• Node v3: Add→(v3) = Add→(v2) ∪ {1→ 5} and Add9(v3) = Add9(v2).

• Node v4: Add→(v4) = Add→(v2)∪ {2→ 3} and Add9(v4) = Add9(v2)∪
{1 9 5}.

Evaluation of node v3. The optimal solution value of the antichain lin-
ear program is 5.5 and then LB(v3) = 5.5 with (a1 = {1, 2}, za1 = 1), (a2 =
{3, 4, 5}, za2 = 1), (a3 = {5, 6}, za3 = 2), (a4 = {6, 7}, za4 = 1/2), (a5 = {6, 8}, za5 =
1/2), (a6 = {7, 8}, za6 = 1/2). We obtain a feasible schedule whose makespan is
equal to the smallest lower bound. This schedule is then optimal and the search
tree is stopped.

5. Numerical results

IOE is coded in C++ on linux CentOS, with an Intel(R) Xeon(R) 2.40GHz
processor. ILP formulation of the related pricing problem is handled by CPLEX
12 linear solver, and the global IOE process is embedded into the SCIP frame-
work for branch-and-cut-and-price algorithms SCIP [19]. The SCIP framework
consists of a template library which implements via breadth first search generic
branch-and-bound schemes involving linear programming together with pricing
scheme.

Different benchmarks were used to evaluate the performance of our branch-
and-bound algorithm. We used the PSPLib ([13]) that contains four classes
J30, J60, J90 and J120 with 30, 60, 90 and 120 activities respectively. Each
of the first three classes contains 480 instances, whereas class J120 has 600
instances. We also used the 40 instances (BL) with either 20 or 25 activities
proposed by [3]. In addition, we tested our algorithm using the 55 instances
(Pack) with a number of activities varying from 17 to 35 proposed by [6]. We
give a summary of our computational experiments bellow. Detailed results are
available on http://www.isima.fr/˜toussain/ [11].

In order to get an initial upper bound we apply to instance I a greedy
randomized algorithm designed for the non-preemptive RCPSP (see [17, 1]) and
which, in the case of 30 activity PSPLIB instances, approximates the optimal
non-preemptive RCPSP optimal value to within 2% in average.

5.1. Results on J30, BL and Pack instances

Our main achievement here is solving Preemptive RCPSP both exactly and
rapidly on all J30, BL and Pack instances. The results are presented in Table
1, where for each instance classes (J30, BL and Pack) the mean, minimum,
maximum and standard deviation are given for:
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Table 1: Results on J30, BL and Pack instances

Non Preemp. opt. Preemp. opt. #nodes cpu (s)
J30 mean 58.99 58.07 80.06 1.75

min 34 34 0 < 0.01
max 129 129 1930 65
std dev. 14.09 13.80 217.2 5.80

BL mean 20.90 20.27 34.68 0.08
min 13 13 2 <0.01
max 33 32.25 185 0.58
std dev. 5.30 5.21 46.52 0.1

Pack mean ? 64.87 3.84 0.02
min ? 19.71 1 <0.01
max ? 137.5 46 0.25
std dev. ? 29.08 7.13 0.04

• Non Preemp. opt.: optimal values for non-preemptive RCPSP, when avail-
able

• Preemp. opt.: optimal values for preemptive RCPSP (our results)

• #nodes: number of nodes created (0 means that an optimal value was
found by a heuristic in preprocessing and proved to be optimal by the
first constraint propagation)

• cpu (s): cpu time in seconds

In the case of J30, we noticed that for 236 instances out of 480, the optimal
values for the antichain linear program at the root node, for the preemptive
RCPSP and for the non-preemptive RCPSP coincide. Also, the optimal value
of the antichain linear program approximates in average the Non-Preemptive
RCPSP optimal value to within 6% on average.

5.2. Results on J60, J90 and J120 instances, new lower bounds for non preemp-
tive RCPSP

The computational results for J60, J90 and J120 are presented in Table 2
where we give for each instance class (J60, J90 and J120):

• #inst: number of class instances

• #svd inst: number of instances solved

• Avg LB: average lower bounds

• Avg UB: average upper bounds

• Avg ∆(UB/CP): average deviation in percent from the critical path lower
bound
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Table 2: Results on J60, J90 and J120 instances

j60 j90 j120
#inst. 480 480 600
#svd inst 383 299 21
Avg LB 78.26 92.29 114.13
Avg UB 80.91 100.19 139.35
Avg Delta(UB/LB) 2.94 7.60 21.00
Avg Delta(UB/CP) 12.09 15.61 47.26
Avg cpu (s) 2540.9 4650.4 10449.5
Avg #noeuds 40998.9 53472.2 35082.3

• Avg ∆(UB/LB): average deviation in percent from our best lower bound
LB

• Avg cpu (s): average CPU time in seconds

• Avg #noeuds: average numbers of visited search tree nodes

The results are given with a time limit of 3 hours. Our IOE algorithm is able
to solve to optimality 383 out of 480 instances for J60, 299 out of 480 instances
for J90, but only 21 out of 600 instances for J120. Though we were not able to
handle all 60/90/120 activity instances of the PSLIB library in an exact fashion,
we were nevertheless able to derive new lower bounds for 33 non-preemptive
RCPSP instances of the PSPLIB library. The results are summarised in Table
3, where

• best non-preemp. UB: best known upper bound for non-preemptive RCPSP
(available in PSPLIB website)

• Preemp. LB: lower bound for preemptive RCPSP (our method)

• deduced no preemp. LB: lower bound for non-preemptive RCPSP which
we deduce from Preemp. LB

• Best known LB: the best known lower bound currently available from the
PSPLIB website and updated with recent results of (see Schutt et al. [18]).

6. Conclusion

An effective branch-and-price algorithm for the preemptive RCPSP schedul-
ing problem based on minimal interval order enumeration has been developed
incorporating a number of constraint propagation techniques. As well as solv-
ing exactly small Preemptive RCPSP instances for three classes (J30, BL and
Pack), it is also able to improve the lower bounds for 33 non-preemptive RCPSP
instances. We are currently seeking to adapt this method to the non-preemptive
RCPSP.

17



Table 3: New best lower bounds

instance best non premptive deduced non Best known LB
preemp. UB LB preemp. LB

j6013 1.sm 112 106.41 107 105
j6029 2.sm 133 126.2 127 123
j6029 3.sm 121 117.29 118 115
j6029 4.sm 134 129.29 130 126
j6029 5.sm 110 104.04 105 102
j6029 6.sm 154 145.3 146 144
j6029 7.sm 123 116 116 115
j6029 9.sm 112 106.83 107 105
j6045 1.sm 96 91 91 90
j6045 2.sm 144 137.32 138 134
j6045 3.sm 143 137.5 138 133
j6045 4.sm 108 102.49 103 101
j6045 5.sm 106 100.41 101 100
j6045 6.sm 144 136.42 137 132
j6045 7.sm 122 116.04 117 113
j6045 8.sm 129 122.17 123 119
j6045 9.sm 123 118.2 119 114

j6045 10.sm 114 106.48 107 104
j9041 1.sm 142 129.18 130 129
j9045 3.sm 154 144.43 145 144
j9045 6.sm 175 163.26 164 163
j9045 8.sm 160 150.26 151 150
j9045 9.sm 158 145.12 146 145

j12036 4.sm 236 217.35 218 217
j12051 2.sm 221 200.37 201 200
j12051 5.sm 230 205.88 206 205
j12056 1.sm 237 218.17 219 218
j12056 3.sm 241 222.12 223 220
j12056 4.sm 222 206.62 207 205
j12056 5.sm 280 261.8 262 261
j12056 7.sm 283 263.29 264 260
j12056 8.sm 289 268.04 269 265
j12056 9.sm 288 266.34 267 264
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