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Introduction
The readability of a time-frequency representation gen-
erally depend crucially on a priori choices of some analy-
sis parameters, which are often chosen heuristically. We
describe here a set of methods for automatically select-
ing optimal parameters, exploiting sparsity requirements.
Using Shannon or Renyi entropies for defining sparsity,
we show that the “optimal” representation unfortunately
often depends on the criterion. Therefore, we present sev-
eral ways out for correcting such a shortcoming. In par-
ticular, we exploit the idea of “local optimization” in the
time-frequency plane. Two different approaches are pre-
sented. In a supervised approach, the user can manually
select the time-frequency domain in which window opti-
mization is to be performed. In the unsupervised case,
an iterative algorithm yields an automatic time-frequency
segmentation, together with a corresponding inversion al-
gorithm. As a by-product, it also provides multilayered
representations for signals as in [2] [4], using reconstruc-
tions from a given window type only.

Sparsity measure
We introduce in this section the main tools we shall be
using thereafter. For the sake of simplicity, we shall avoid
here discretization issues, and describe our approach in
terms of the short time Fourier transform (STFT), de-
fined as follows [1]. Given a finite energy window g (as-
suming that ‖g‖ = 1), associate with the finite energy
signal x the function Gg

x on the time-frequency plane

Gg
x(τ, ν) =

∫
x(t)g(t− τ) e−2iπν(t−τ) dt . (1)

As is well known, the STFT is invertible:

x(t) =
∫ ∫

Gg
x(τ, ν)g(t− τ)e2iπν(t−τ) dτ dν , (2)

and preserves energy∫ ∫
|Gg

x(τ, ν)|2 dτ dν =
∫

|x(t)|2 dt . (3)

Clearly, different windows g yield different time-frequency
representations of the same signal. We are concerned
here with the problem of selecting adaptively the “op-
timal” time-frequency representation for a given signal.
To do so, we have to introduce a criterion for optimality,
and sparsity is a fairly natural choice: the idea is to find
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the representation which optimally concentrates the en-
ergy of the signal on a small number of time-frequency
atoms. Unfortunately, there does not exist a unique way
of measuring sparsity, and we shall see below that differ-
ent sparsity measures yield different “optimal” represen-
tations. According to classical choices [6], we shall limit
ourselves to the family of Renyi entropies for defining
sparsity. Consider a finite energy signal x, its short time
Fourier transform Gγ

x with window γ, and introduce its
normalized spectrogram ργ(τ, ν) = |Gγ

x(τ, ν)|2/‖x‖2. For
α ∈ (0, 1), the corresponding α-Renyi entropy reads

Rα(γ) =
1

1− α
log
(∫ ∫

ργ(τ, ν)αdτdν

)
, (4)

and the Shannon entropy is obtained as the limiting case
S(γ) = limα→1 Rα(γ).

Given a family of window functions γ ∈ Γ, the “opti-
mal” one will be defined as the one which minimizes
the chosen entropy. We shall more specially focus on
window families Γ consisting of dilates of a single win-
dow: γs(t) = s−1/2g(t/s), therefore looking for an opti-
mal time-frequency representation from libraries of time-
frequency atoms that have been considered by several au-
thors in the literature [3]. Although we have only pre-
sented here the discussion in the continuous case, the
same argument goes through directly in the more prac-
tical situation where discrete Gabor expansions are con-
sidered instead of the STFT.

Supervised adaptation
Except for some specific cases, the size of the optimal
window will depend highly on the entropy chosen to de-
fine the optimality. For example, using Rα with a signal
containing time-frequency atoms of different characteris-
tics, smaller value of α turn out to yield smaller optimal
windows. This shows that the notion of optimal STFT
representation is not well defined for signals containing
components with various time-frequency characteristics.
But for a signal containing a well localized time-frequency
component, explicit calculation on simple cases and nu-
merical experiments show that the influence of the crite-
rion on the optimal choice is higly reduced or even negli-
gible. We thus introduce a first step in the adaptation to
insure the localization of the components of the signal, by
limiting the optimization to a user-defined region of the
time-frequency plane. More precisely, for a given region
Ω, using a given analysis window g, the corresponding
signal xg,Ω is reconstructed with

xg,Ω(t) =
∫

Ω

Gg
x(τ, ν) g(t− τ) ei2πν(t−τ) dτdν . (5)



The selection of the optimal window is then performed by
minimizing the chosen entropy for this new signal xg,Ω.

Unsupervised adaptation
A natural extension of the latter approach consists in in-
troducing a prior partitioning of the whole time-frequency
plane and doing the adaptation in each subdomain. A
simple example of such an approach can be built using
only two windows, a ”narrow” one g and a ”wide” one
h. This case is of special interest for the analysis and
processing of audio signals. Indeed, these signals often
contain two main class of components with different time-
frequency characteristics. On one side, transient compo-
nents are very localized in time and spread in frequency,
and so best represented using a narrow window. On the
other side, tonal components are slowly varying in time
and well localized in frequency and so represented using
a wide window. Therefore, as the automatic adaptation
determines which components of the signal are best rep-
resented using a narrow or a wide window, it gives the
opportunity to separate transient and tonal components
and to represent each with suitable parameters. This
algorithm could then for example be used as a precom-
putation to improve the quality of decompositions of the
type described in [5].

To perform the unsupervised adaptation we use an iter-
ative algorithm to control the reconstruction error. We
first define a tiling of the time-frequency plane into rect-
angular “super-tiles” defined by

�m,n = [m∆τ , (m + 1)∆τ )× [n∆ν , (n + 1)∆ν) , (6)

with ∆τ > 0 and ∆ν > 0 the time and frequency widths
of the tiles. We introduce localized versions of the pre-
viously defined entropies. For a given α ∈ (0, 1), for a
signal y and a window γ, we define

Cm,n
y (γ) =

1
1− α

log

(∫
�m,n

(
|Gγ

y(τ, ν)|2

Em,n
γ (y)

)α

dτdν

)
(7)

with Em,n
γ (y)=

∫
�m,n

|Gγ
y(τ, ν)|2dτdν the energy in �m,n.

The algorithm is initialized by defining r(0) = x. At each
iteration, starting from k = 1, the set of tiles for which
the window g is better than the window h

Sk = {(m,n) ∈ Z2|Cm,n
r(k−1)(g) < Cm,n

r(k−1)(h)} (8)

is determined. From this, the corresponding partial re-
construction x

(k)
g of the residual r(k−1) is obtained via

x(k)
g =

∑
(m,n)∈Sk

∫
�m,n

Gg
r(k−1)(τ, ν) g(t− τ) e2iπν(t−τ) dτdν,

(9)
and from the complementary subset Z2 \ Sk the other
partial reconstruction x

(k)
h of r(k−1) reads

x
(k)
h =

∑
(m,n)∈Z2\Sk

∫
�m,n

Gh
r(k−1)(τ, ν)h(t− τ) e2iπν(t−τ) dτdν.

(10)

x(k) = x
(k)
g +x

(k)
h is then an approximation of r(k−1) which

is used to construct the new residual r(k) = r(k−1) − x(k)

for the next iteration. Finally, we introduce the two layers

xg,K =
K∑

k=1

x(k)
g , xh,K =

K∑
k=1

x
(k)
h . (11)

xg,K contains components that are best represented with
the narrow window, i.e. mostly the transient part of x,
and xh,K contains components that are best represented
with the wide window, i.e. mostly the tonal part of x.
The approximation of x at iteration K is xK = xg,K +
xh,K . Numerical tests show that the approximation error
decreases (and become very small) as K grows.

An example of separation obtained with this algorithm is
shown on figure 1.

Figure 1: Example of separation on a glockenspiel sound :
spectrogram of the original sound (top), spectrogram of the
transient part computed with the narrow window (middle),
spectrogram of the tonal part computed with the wide window
(bottom).
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