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Résumé – Un grand nombre de problèmes de traitement du signal nécessitent des modèles précis et efficaces de signaux
transitoires, et des algorithmes de détection et estimation correspondants. On propose dans cet article un cadre général pour
des modèles de transitoires, basé sur des arbres dyadiques de coefficients d’ondelettes. Un modèle déterministe et un modèle
stochastique sont présentés, et des algorithmes d’estimation correspondants sont décrits. Les résultats sont illustrés par des
exemples numériques, dans un cadre de codage de signaux audio.

Abstract – Many signal processing problems call for accurate and efficient models for transient signals, and corresponding
detection/estimation algorithms. This paper proposes a general setting for transient models, based upon dyadic trees of wavelet
coefficients. A deterministic and a stochastic model are presented, and corresponding estimation algorithms are described.
Numerical results are given in the framework of audio signal encoding.

1 Generalities

In this paper, we address the problem of transient detec-
tion and estimation in the context of (audio) signal en-
coding. This work is a part of a more general program
on audio signal encoding, in which the input signal is de-
composed into “tonal”, “transient” and “stochastic” com-
ponents, which are estimated and encoded separately. A
more complete presentation of the scheme may be found
in [5]. For the sake of the present discussion, let us simply
stress that the scheme does not rely on any segmentation
of the signal, unlike most approaches, for instance the ap-
proaches described in [11].

The performances of the global scheme turn out to de-
pend heavily on its capabilities of separating correctly the
three components. In the context of transform coding
(see e.g. [6, 7]), and following ideas developed by Coif-
man and collaborators [2], it is tempting to use differ-
ent transforms for estimating and encoding the different
components, namely trigonometric bases (or, rather the
smoothed versions of such bases) for the tonal part, and
wavelet bases for the transients (see the discussion below):
the large coefficients of the expansion with respect to the
trigonometric basis are likely to “belong” to a tonal com-
ponent, while the large wavelet coefficients are more easily
interpreted as transients. However, such an approach is
generally not sufficient, as a choice of basis alone is not
enough to separate the components. A possible approach
amounts to impose additional structure on the coefficients
which are retained and encoded.

We focus here on the case of the transient part. Our
approach relies on the fact that transient signals not only

manifest themselves by (a small amount of) significant
small scale wavelet coefficients, but the latter coefficients
are “structured” in the time-scale space: a significant co-
efficient is likely to be accompanied by additional signif-
icant coefficients at the same location and coarser scales.
We use this remark as our definition for transients, which
are therefore associated with incomplete dyadic trees of
wavelet coefficients.

We describe and compare here two different methods for
estimating such transients on 1D signals. We also present
numerical illustrations on audio signals.

2 Transients and trees of wavelet
coefficients

The notion of transient signal, although heuristically clear,
is difficult to define in precise mathematical terms. In
general, most transient detection algorithms rely (at least
implicitely) on a priori models for transients. Note that
in an audio processing context, “transients” are usually
restricted to note onsets, or “attacks”. Our definition
will here be broader, as to include any well- localized fea-
ture. Wavelet-based methods have often been used for
singularity characterization and transient detection and
modelling [8]. It is well known that wavelet methods are
extremely efficient for characterizing localized features in
signals, because of their capability of “zooming” in partic-
ular regions in signals. In addition, they provide precise
characterization of singularities in functions, essentially
through the behavior of the wavelet coefficient magnitude
accross scales. Even though is does not make sense to



model transients strictly speaking as mathematical sin-
gularities, the rate of decay of wavelet coefficients across
scales provides useful information on the “local strength”
of the signal. However, such a characteristics is a prop-
erty of a family of coefficients rather than a property of
individual coefficients. Motivated by recent algorithms us-
ing trees-structured decompositions (see for example [10]
and [4]), we focus our analysis on wavelet coefficients trees.
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Fig. 1: Wavelet coefficients tree.

To sketch our notations, we work in the framework of
1D multiresolution wavelet transform. Let ψ denote a
compactly supported wavelet, and set as usual ψjk(t) =
2−j/2ψ

(
2−jt− k

)
. Denote by

djk = 〈f, ψjk〉 , j = 1, 2, . . . J

the wavelet coefficients of a signal f ∈ L2(R). The latter
are obtained via a sub-band coding algorithm (see [7] for
details), and are naturally associated with a dyadic tree
structure: each coefficient djk at scale j has two children
dj+1,2k and dj+1,2k+1 at scale j+1 (see Fig. 1). According
to the common practice, the samples fk of the input signal
are identified with small scale scaling function coefficients,
and we consider wavelet expansions of the form

〈f, φ0k〉 ≈ fk , f ≈
∑
k

skφJk +

J∑
j=1

∑
k

djkψjk .

A tree of wavelet coefficients is termed admissible if for
every node of the tree, its parent node belongs to the tree.
Given an admissible tree and a leave, the union of edges
connecting the root to the considered leave is called a con-
nected branch. A full branch is a connected branch whose
nodes have at least one child. Therefore, the leaves of full
branches correspond to the minimal considered scale.

We define transients from associated trees of relevant
coefficients: a transient structure is a connected tree of
wavelet coefficients which satisfies a given relevance prop-
erty. The latter property characterizes the transient model
under consideration. Two examples are given below.

2.1 Deterministic model

Our first model is strongly inspired by the discussion of [4],
and rests on local regularity estimates from wavelet co-
efficients. We first consider only trees consisting of full
branches. Such a tree of wavelet coefficients is considered
relevant if for all connected branches B, the corresponding
wavelet coefficients are significant in some average. This
is mathematically expressed by the fact that the following
modulus of regularity

κp,s[B] =
1

|B|
∑

(j,k)∈B

2js|dj,k|p ,

exceeds a fixed threshold (|B|denotes the length of the
branch B). The choice of assigning a cost to full branches
of the complete tree is motivated by the will of assigning
a local feature to a transient: the leaves of full branches
are naturally associated with samples in the signals.

The constants s, p characterize the type of transients
considered, in the sense that they weight coefficients cor-
responding to different scales. For example, large (pos-
itive) values of s emphasize large scales, and favor trees
with short branches, whereas smaller values favor longer
branches. A choice of s therefore represents an “a priori”
model for the transients to be considered. The choice of
p also influences the type of transients to be estimated.

2.2 Stochastic model

The second approach models wavelet coefficients as ran-
dom variables, distributed according to a mixture of two
different distributions (two states). Transitions from a
state to another are governed by (hidden) Markov chains.
Such hidden Markov trees have been introduced and stud-
ied by Baraniuk and coworkers [1] in the context of signal
and image modelling and denoising. The model is adapted
to our problem as follows. The wavelet coefficients dj,k are
“emitted” by random variables Yjk, whose distribution de-
pends on a hidden state Xjk ∈ {T,O} (T stands for “tran-
sient”, and O for “other”). At each scale j, the T -type
coefficients are the ones which belong to a transient struc-
ture, and are modelled by a centered distribution with a
large variance σ2

T,j . The O-type coefficients are modelled

by a centered distribution with a small variance σ2
O,j . For

the sake of simplicity, we limit ourselves here to normal
distributions. Such a choice is compatible with the choice
p = 2 in the previous section, as argued in [3].

The distribution of hidden states is given by a “bottom-
up” Markov chain, characterized by a 2×2 transition ma-
trix, and the distribution of the coarsest scale state. In
order to retain only connected trees, we impose a taboo
transition: the transition O → T is forbidden. Therefore,
the transition matrix assumes the form

Π =

(
π 1− π
0 1

)
where p denotes the probability of transition T → O:

π = P {Xj−1,` = T |Xj,k = T} , ` = 2k, 2k + 1 .

The hidden Markov process is completely determined by
the matrix Π and the “initial” probability distribution,
namely the probabilities ν = (νT , νO) of states at the
maximum scale J . The complete model is therefore char-
acterized by Π, ν, and the emission probability densities:

ρS(y) = ρ(y|X = S) , S = T,O .

According to our choice (centered Gaussian distributions),
the latter are completely characterized by their variances
σ2
T,j and σ2

O,j .

3 Tree Estimation

We describe two estimation procedures for wavelet coeffi-
cient trees, based upon the two above models. Example
of corresponding trees may be found in the next Section.



3.1 Deterministic model

The first approach considers only trees with “full length”
branches (i.e. the leaves always correspond to the finest
considered scales), and is a “top-down” algorithm. Start-
ing from a time index `, consider the branch of all its
ancestors, denoted by D`, and form

κp,s[`] =
∑

(j,k)∈D`

2js|dj,k|p ,

where s, p characterize the type of transients which are to
be retained. In the numerical examples given below, we
limit ourselves to the simplest choices s = 0 and p = 2.

The pruning is done by retaining the leaves ` whose
modulus of regularity κp,s[`] exceeds a threshold value κ̃[`],
which is to be adapted locally. All the wavelet coefficients
belonging to a retained branch are encoded. The threshold
value has to be estimated within a time frame larger than
the time frame defined by the complete tree. More details
on the estimation of threshold values may be found in [5].

3.2 Hidden Markov Trees

As stressed before, we limit our investigations here to the
case of Gaussian mixture models. Therefore, the emission
probability distributions are completely characterized by
the variances σ2

T,j and σ2
O,j . The estimation of the pa-

rameters of the model (the variances, and the transition
probability matrix Π and the large scale distribution ν
for the hidden states) may be performed using a standard
Baum-Welsh EM algorithm (see chap. 6 of [9] for a com-
prehensive account of Hidden Markov models, and [1] for
the adaptation to the Hidden Markov Tree situation.)

The hidden states are usually estimated via an adapted
version of the Viterbi algorithm. Unfortunately, the adap-
tation of the latter to HMT models is quite difficult, be-
cause of an increased complexity (at scale j, the number

of configurations goes like 22
J−j

, with j = 1, . . . J and J
typically equals 10), and we have to limit to local esti-
mations. The tree (i.e. the connected set of “T -class”
wavelet coefficients to be retained for encoding) is char-
acterized by its leaves. The latter are selected when their
posterior probability exceeds a given threshold value.

An important point is the fact that the EM parameter
estimation has to be performed on a more global basis
than the tree estimation (such a procedure is called “ty-
ing” in [1]). Otherwise, the algorithm has a tendancy
to detect transients in all time frames, which is quite in-
adequate. In the simulations presented below, a tree is
estimated within sets of 6 time frames (6× 1024 samples
long), while the parameters are estimated in 10 consecu-
tive frames simultaneously.

4 Results and discussion

4.1 Results

We illustrate our approach with a signal obtained from an
audio signal after estimating and removing a tonal com-
ponent (see [5] for details); therefore the signal contains

essentially transients and a residual. In some sense, the
goal of transient estimation in such a context is to obtain
a residual part as close as possible to a weakly stationary
random signal, with the smallest possible variance.
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Fig. 2: Estimation of transients in audio signal: from top
to bottom, input signal (with “tonal part removed”), tree
of “transient-type” wavelet coefficients, estimated tran-
sient component, and residual (deterministic model); tree,
estimated transient, and residual (stochastic model).

As an illustration, we show in Fig. 2 the transient es-
timates for about 4096 samples (center of the figure) of
audio signal (a jazz recording), sampled at 44100 Hz, with
the two algorithms (top: deterministic; bottom: stochas-
tic). The chosen frame is interesting as it contains an “at-
tack”. In both cases, parameters are tuned so that about
25 percent of the coefficients are retained. As may be seen,



the attack is fairly well detected and approximated, and
the residual exhibits much less “local” structures than the
original signal. In other words, the residual signal is easier
to model as a weakly stationary random signal with small
variance, and to estimate and encode as such.

The difference between the results of the two methods
is easily understood: the deterministic model imposes full
branches, which results on a smaller number of branches
and therefore a slightly more “lacunary” structure in the
estimated transients. However, more care is needed in the
interpretation as the parameters of the two models play a
significant role in the type of transients to be estimated.
A more detailed analysis is under progress.
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Fig. 3: HMT estimation of transients in audio signal,
complete signal decomposition

The transient estimates (using the HMT algorithm) on
a much larger signal sample is displayed in Fig. 3. As may
be seen from the figure, the algorithm succeeds to capture
the several “attacks” of the signal, but somehow fails to
turn the residual into a stationary signal (in the middle
part). This shows that the simple estimation procedure
described here (in particular the choice of the “training
frames” for the EM algorithm) has to be optimized fur-
ther.

The (sound and ascii) files corresponding to the figures
of this paper are publicly available at
http://www-sop.inria.fr/sysdys/personnel/smolla/

4.2 Perspectives

The discussion of the present paper was essentially done in
a signal coding context. The advantage of encoding trees
of wavelet coefficients is obvious, as it avoids run length
encoding of addresses of significant coefficients.

However, the models “tonal + transient + noise” and
corresponding transient estimation methods are likely to
yield several additional interesting applications. Among
them, let us simply quote signal modifications:

- Time-stretching without pitch modifications (or the
dual problem pitch shifting without time modifica-
tions) The most efficient methods usually rely on the

duplication of one elementary waveform (the sound
over one period) every N periods. However, dupli-
cating waveforms containing transients results in the
smearing of attacks. Our transient detection tech-
nique would prevent such artifacts, by allowing du-
plication only when no transient is present.

- Attack enhancements: the resulting sound can be
reconstructed using a weighted sum for the transient
and tonal part, thus leading to the enhancement (or
attenuation) of the transient information, which is
essentially perceived as attacks.
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