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Recognition of Technical Gestures
for Human-Robot Collaboration in Factories

Eva Coupeté, Fabien Moutarde, Sotiris Manitsaris and Olivier Hugues
Center of Robotics, Mines ParisTech
PSL Research University
Email: first-name.last-name @mines-paristech.fr

Abstract—Enabling smooth Human-Robot collaboration requires
enhancing perception and intelligence of robots, so that they
can “understand” the actions performed by the humans with
whom they are interacting. In this paper we are dealing with
new industrial collaborative robots on assembly-line and supply-
chain in automotive manufacturing. We are conducting research
on technical gestures recognition, to allow the robot to understand
which task is being executed by human worker, and react
accordingly. We use two kinds of sensors: depth-camera for
monitoring of human movements, and inertial sensors placed
on tools. In this study, we propose and use a method for head
and hands tracking using a top-view depth-map, and use HMM
(Hidden Markov Models) to recognize gestures with these data.
Then, we refine the results from the HMM with data from
inertial sensors equipping tools. Our research shows that: i) using
3D-vision only, we can obtain already good results of gestures
recognition for several workers: 80% of the gestures are correctly
recognized, ii) exploiting data from tools equipped with inertial
sensors significantly improve the recognition accuracy to 94% in
the same multi-user evaluation. A first test of our method with
a simple Human-Robot collaboration scenario is also described.

Keywords—Human-robot collaboration; Industrial application;
Assembly line; Gestures recognition; Depth camera.

I. INTRODUCTION

Robots are becoming more and more present in our every-
day life. They can be used for social interaction or for medical
support. In the industrial context, collaborative robots are
emerging that are intrinsically “safe”. These robots, devoted to
tasks that are either of low added-value, or potential source of
musculoskeletal disorders, are working nearby workers without
barriers between them contrary to current robots in factories.
Therefore, collaborative robots allow increased automation
of factories, saving of space and cost while improving pro-
ductivity in the industrial plants. This new configuration of
collaboration between robots and humans on assembly-line
and supply-chain is efficient only if human-robot collaboration
can be smooth, i.e., the robot is following the human gestures
in order to respond fluidly. To this end, and in order to
ensure workers’ safety, a collaborative robot has to be aware
its environment, to be able to adapt its speed to the worker
rapidity, and monitor worker’s actions in order to ensure
smooth cooperation.

Gesture recognition can meet these needs: by recognizing
the worker’s gestures, the robot can recognise which task is
being executed, adapt its speed and detect when something
unexpected happens. One of the difficulties of this goal is that,
contrary to most Human-Computer interactions where the user
can adapt to the system, the worker must be able to work “as
usal” and is not supposed to make any effort for his gestures
to be correctly understood by the robot.
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In this paper, we are focusing on technical gestures recogni-
tion for human-robot collaboration. To enable a robust gesture
recognition, we use two kinds of sensors: depth-camera and
inertial sensors. Depth-camera allows us to have information
on the worker’s postures, and to evaluate his distance to the
robot. In addition, we equip with inertial sensor some tools
manipulated by human workers, in order to know when they
are used. The main contribution of our paper is to show
the feasibility of a robust user-independent and totally non-
intrusive system for real-time recognition of typical technical
gestures of human workers in a factory, for allowing natural
interaction of collaborative robots. Also, one of the novelties
in our work is the use, as a complement to real-time analysis
of depth images, of an inertial sensor placed on a tool rather
than on the operator. This increases very significantly the rate
of correct gesture recognition, while keeping our system totally
non-intrusive.

This paper is organized in five parts. In Section II,
we present related work on human-robot interaction, gesture
recognition, human pose estimation, and sensors fusion. In
Section III, we present our experimental use-case. In Section
IV, we detail our methodology to recognize the gestures and
to fuse data from the depth-camera and the inertial sensors. In
Section V, we present our results of gesture recognition and a
first Human-Robot collaboration using our system. Finally in
Section VI, we provide conclusions and perspectives for our
future work.

II. RELATED WORK

In this Section, we present related work on the topics
of human-robot collaboration and gestures recognition. In
subsection II-A, we present several applications of human-
robot collaboration in different fields. Then in II-B, we de-
scribe different kinds of features and frameworks for gestures
recognition with depth camera only and with the addition of
inertial sensors.

A. Human-Robot collaboration

With the massive arrival of robot in our everyday life
the research on human-robot interaction and collaboration has
been very active these last years [1].

Robots are already very present in different fields. They are
used to interact with elderly people, [2], to guide visitors in a
museum [3] or to assist humans during walking training [4].
To be better accepted by humans, the interaction with the robot
has to be natural, using the same codes as a Human-Human
collaboration. Since gestures are important factors in Human-
Human conversations, non verbal interaction has already been
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used to enable a communication between the robot and the
human, [5] and [6].

In factories, new collaborative robots are designed to be
intrinsicly safe and to provide complementary skills to human
co-workers like the Kuka LWR [7] and the Universal Robot
UR [8]. In this context, collaborative robot and human can
work together, for example carrying the same object [9]. Some
studies have evaluated the worker’s acceptability to work with
this new kind of partner [10]. In [11], the authors present a
framework enabling the robot to adapt his behaviour to a new
user after a first step of joint-action demonstration.

B. Human pose estimation and gesture recognition

Human pose estimation is becoming easier since the appari-
tion of depth-cameras, for example the Microsoft Kinect [12],
[13]. This RGB-D sensor combines standard RGB images with
depth information obtained by analysis of a projected infra-
red pattern. We can sort the methods to estimate a human
pose using a depth-camera in two classes: without, [14], and
with, [15] and [16], a prior posture learning. The advantage
of the first class is that we do not need a previous dataset to
establish the human pose but these methods can be slower to
compute the human pose. Conversely, with prior learning the
acquisition of a dataset and its processing can be a long first
step, but the human pose estimation is performed more quickly.
However, a limitation of human pose estimation using learning
is that it can properly handle only postures similar to those
included in the dataset used for its design and training. For
example the Kinect SDK recognizes postures only when the
user is facing the camera. Once these postures are extracted,
they can be selected, fully or partially, to determine which
ones are the most discriminant to recognize gestures. In [17],
the authors use Principal Component Analysis (PCA) to select
the most useful features, among skeleton joints, to recognize
gestures. In [18], the authors convert the set of skeleton joints
to create a more robust and less redundant pose descriptor
based on joint-angles representation. They also use SVM to
determine key poses which will be used to do gesture training
and recognition.

Many methods to recognize gestures have been set up
these past years. The 3D skeleton tracking of the subject
with a depth camera is often used to recognize gesture, as
in [19] and [20]. Various approaches have been proposed to
handle dynamic gestures recognition. The most known are
HMM ([21] used, among other, in [22] and [23]. But other
machine-learning algorithms have been successfully applied:
Dynamic Time Wrapping (DTW), Support Vector Machines
(SVM), decision forest and k-Nearest Neighbours (kKNN). All
gesture recognition systems have limits and constraints, for
example the HMM based recognition needs a large amount of
training samples to be efficient. For all systems, the number
of recognizable gestures is predefined and limited. To be well
distinguished, two gestures must be different enough to enable
the recognition system to differentiate them.

The simultaneous utilisation of inertial sensor and depth-
camera have appeared in the literature in first place to deal with
calibration issue, as in [24]. Fusion of depth-map and inertial
sensor for gesture recognition is done in [25]. The authors
fused the data coming from the two types of sensor by re-
sampling and filtering. Then, they proceed at a classification
with HMM. In [26], the authors used only inertial sensor to
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Figure 1. Description of our experimental use-case, (a): the robot gives
motor parts to the worker, (b): we equipped the scene with a depth-camera
and an inertial sensor fixed on a screwing-gun tool

recognize technical gestures. However, up to our knowledge no
published work proposed, as we do in this paper, to improve
gestures recognition by using inertial sensors placed not on
monitored human, but rather on object or tool manipulated by
him.

III. PRESENTATION OF OUR EXPERIMENTAL USE-CASE

We work on a scenario where the worker and the robot
share the same space and work together. The task is inspired
from the assembly of motor hoses on supply chain. Presently,
the assembly process of motor hoses has some drawbacks: the
worker has to find the appropriate parts of the motor hoses
among other motor parts, which is a lack of time and increase
the cognitive load of the worker. In our set-up, the robot and
the worker are facing each other, a table is separating them,
see Figure 1(a).

On an assembly line, because mounting operations must
be achieved quickly and efficiently, the actions to be executed
by human operators are standardized as a rather strictly-
defined succession of elementary sub-tasks. To ensure a natural
human-robot collaboration, the robot has to perform an action
accordingly to which task the operator is executing, in order
to be useful at the right time and not delay the worker. In our
use-case, the assembling of motor hoses requires the worker
to take 2 hose parts respectively on left and right side, join
them, screw them, take a third part from left, join it, screw it,
and finally place the mounted motor hose in a box. The only
actions performed by the robot are giving a piece with the
right claw and giving a piece in the left claw. The set of human
operator’s gestures to be recognized by our system is therefore
rather straightforwardly deduced from above-mentioned sub-
tasks as:

1)  to take a motor hose part in the robot right claw (G1)
2) to take a motor hose part in the robot left claw (G2)
3)  to join two parts of the motor hose (G3)

4)  to screw (G4)

5)  to put the final motor hose in a box (G5)

These gestures will allow the robot to be synchronized with
the operator by understanding when an operator is taking a
piece from a claw and when the next piece is needed.

The classical sequence of gestures to assemble motor hoses
is: (G1 then G2) or (G2 then G1), then G3, then G4 then G2,
then G3, then G4, then G5. Some workers prefer to do the
two screwings after the second execution of G3, so that we
cannot suppose a strictly-defined ordering of operations, as it
is essential to leave to human workers some freedom degree
in their work.
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We equipped the scene with a depth-camera which is
filming the worker with a top-view. With this set-up, we are
avoiding most of the possible occultations on a supply-chain
due to workers or objects passages. We also put an inertial
sensor on the screwing-gun, in order to know when it is moved
by the worker, see Figure 1(b).

IV. METHODOLOGY

In this Section, we present our methodology to achieve
technical gestures recognition. The global processing pipeline
is illustrated on Figure 2: using segmentation and computation
of geodesics on top-view depth image, we estimate a 10D
feature vector characterizing operator’s posture, and used for
recognition of gestures. In subsection IV-A, we present our
method to extract hands positions of the worker from the
depth-map using geodesic distances between the top of the
head and each point of the upper body of the worker. In
subsection IV-B we explain how we put together information
from the depth-map about the worker posture to create features
to learn and recognize technical gestures. In subsection IV-C
we present our learning and recognition framework, and in
IV-D we show our method to merge information from the
depth-map and the inertial sensors.

3D localisation
of head-top T(t) (f T(t)\
and of two hands __ H|(t)lﬁ, Recognition

H(t) and H(t) Hr(t)| of gestures
Estimation of torso \8(t))
\ orientation 9(t)
Depth image 10D feature
(top view) I(t) vector

Figure 2. Pipeline from our raw depth image to gestures’ recognition

A. Tracking hands positions

To localize and track hands of the worker, we have adapted
and extended to top-view case the method proposed in [14].
Figure 3 illustrates our framework.

1) Upper-body and head extraction: We only need the
upper-body of the operator to recognize his gestures, because
the worker is staying in small area during his work and he
only uses his hands for assembling the motor hoses. From
the raw depth-image (see Figure 3(a)), we segment the upper-
body by keeping only the depth pixels that are above the
assembling table (see typical result on Figure 3(b)). Then, the
top of the head is located as the biggest ’blob” from the 10%
highest pixels of upper-body (the 10% threshold value was
determined by anatomic considerations). Finally, the center of
the head top is estimated as the center of the “top-of-head
blob”. Additionally, using typical anatomic values of height
distance from head-top to shoulders level, we locate the two
shoulders on the depth-image map; this allows to estimate torso
orientation as the horizontal angle of the straight line joining
the two shoulders.

2) Creation of the upper-body graph: In order to locate
hands, we make the assumption that they are the visible
parts of the upper-body that are the farthest from the head,
not in Euclidean straight line distance, but following the
body surface. To find these “farthest” points, we calculate
the geodesic distances between head-top and all points of
the upper-body. In order to compute geodesics, we create a
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(e)

Figure 3. Our hands-tracking method. (a): initial depth map, (b): upper body

of the worker, (c): geodesic distances between each point of the upper body

and the head (blue to red), (d): farthest upper body parts from the head, (e):

head and hands locations with the shortest paths between the hands and the
head

weighted graph with all pixels from the upper-body as nodes.
The first step is to connect each pixel with its eight neighbours
(only if they also belong to the upper-body). To each of these
connections is associated a weight equal to the absolute value
of difference between the two connected pixels (which is
approximately their height difference, since the depth camera is
pointing downwards and nearly vertically). In order to obtain
geodesics that link only anatomically contiguous body parts
(e.g. for instance, not ’jumping”, from an arm directly to the
torso it touches), we prevent connections between depth pixels
that have a too large depth difference.

3) Application of the Dijkstra algorithm for hands local-
ization: After creation of the upper-body graph, we apply to
it the Dijkstra [27] algorithm in order to find the shortest route
between each point of the upper-body and the head center. A
route is a succession of continuous connections from the graph
and the length of the route is equal to the sum of the used
connection weights. The result can be seen on Figure 3(c):
pixels with colder colours (blue, green) are those that are
geodesically-closest to the top of the head; conversely, pixels
with warmer colours (orange, red) are geodesically-farthest
from the top of the head. The hands approximate locations
are then found by computing the two biggest blobs inside the
part of upper-body that are farthest from the top of the head,
with typical outcome shown on Figure 3(d). Finally, as can be
seen on Figure 3(e), we obtain hands locations, as well as the
corresponding geodesics from head-top.
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B. Features

After the tracking of the hands positions, we need to define
features describing the worker’s posture, see Figure 4. To do
learning and recognition on several persons, we need a feature
that is independent from each person’s morphology.

Figure 4. Representation of our features: the two hands and the head
location (red dots) and the torso orientation (angle in yellow)

We chose to use the hands and head 3D locations (red
dots on Figure 4) and the torso orientation (angle illustrated
in yellow on 4). The third dimension of our vectors is equal
to the value of the associated pixels in the depth map. These
data are then concatenated in a ten-dimensions vector. For each
frame, we calculate a feature which describes a posture of the
worker.

C. Gestures recognition

To do the learning and the recognition we use discrete
HMM, a combination of K-Means and HMM, see Figure 5.
For the learning, once we have extracted the features from all
the frames independently of which gesture, we use this training
set to determine K clusters with the K-Means algorithm, the
centroid of each cluster represents an average posture. We use
this trained K-Means to quantize each series of postures, i.e.,
gesture. These quantized series are used as input for the HMMs
for learning and recognition.

Cluster 1 Learning

|

Recognition

Cluster K

Figure 5. Pipeline of our learning and recognition method

We train one HMM for each gesture. When we want to
predict which gesture is being performed, we test our quantized
series of postures on each HMM. The gesture associated to the
HMM with the highest likelihood to have generated this series
of posture is “recognized”. The Forward algorithm, described
in [21], is used to establish the most likely gesture.

D. Utilisation of the inertial data

In our set-up, we also put an inertial sensor on the
screwing-gun. We use this additional data source with a
“late-fusion” scheme: classification by HMMs based only on
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features extracted from depth image is done first, and tool’s
inertial data is considered only afterwards to obtain the final
output of our system. The screwing-gun is supposed to move
only when the worker is using it to fix two parts of motor hose.
We are in conflict with the result of the HMM classification
in two cases:

e case 1: when the gesture G4 is recognized while the
screwing gun did not move

e case 2: when a gesture which is not G4 is recognized
while the screwing gun did move

For the first case, if we suppose that the inertial sensor
cannot be broken, it is not possible to screw without moving
the screwing-gun. Since the gesture recognized corresponds
to the HMM associated with the highest likelihood to have
generated the sequence of features, we look at the output
likelihood of the HMM linked to gesture G4. If this likelihood
is above a threshold we decide that gesture G4 has been
executed, otherwise no gesture is recognized.

For the second case, it is possible that the screwing-gun
moved without being used. If the worker want to move it
from one side of the table to another for example. In this case
we also look at the output likelihood of the HMM matching
with G4. If this likelihood is above a threshold we replace the
gesture previously recognized by G4, otherwise we keep the
gesture associated to the HMM with the highest likelihood.

With this method, we make our system more robust by
correcting wrong recognitions.

V. RESULTS

In this Section, we will present our results of gestures
recognition using either the depth-camera alone, or the combi-
nation of depth-camera with inertial sensors. We will evaluate
impact of the addition of inertial sensor when we already have
a depth map for our use case. We will also present a scenario
of Human-Robot collaboration using our system of gesture
recognition in real time. We recorded seven workers and we are
using a jackknife method to evaluate our framework, i.e., we
are learning HMMs with labelled gesture from six workers and
testing our recognition framework on gestures of the seventh
worker. We test all the seven possible combinations.

A. Using only the depth map

For our study we chose to use HMM with four hidden states
and fifteen clusters for the K-Means algorithm. We obtain the
results in Table 1.

Table I. Gestures recognition rates with only data from the depth-camera

Output (Maximum likelihood)

GI G2 G3 G4 G5 Recall
N Gl 104 15 2 3 5 81%
f:: G2 10 230 5 6 1 91%
3 G3 1 7 1m0 67 10 67%
E. G4 5 5 51 180 1 74%
e G5 2 - 2 4 119 94%

Precision  85% 89% 74% 69%  88% 80%

We proceed at learning and recognition with all the possible
combinations of six workers for the learning and one worker
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for the recognition. Then, we add all the results of recognition
to obtain Table I.

The recall of a gesture i represents the rate of gestures i
which are recognized to be a gesture of class i. The precision
is the percentage of actual i gestures among all gestures that
the system labels as class i.

The total rate of correct gesture recognition is 80% which
is a good result. But we can see that gesture G1 is sometimes
mistaken with gesture G2. And gestures G3 and G4 are also
often mistaken. Indeed the recall and precision of G3 and G4
are low: respectively 67% and 74% for G3, and 74% and 69%
for G4.

B. Using combination of depth map and inertial sensors

Table II presents results of gestures recognition after cor-
rection with data from the inertial sensor fastened to the
screwing-gun, as explained in Section IV-D.

Table II. Gestures recognition rates with combined data from depth-camera
and inertial sensor

Output (Maximum likelihood)

Gl G2 &3 G4 G5  Recall
N Gl 104 15 1 - 5 83%
fg G2 10 230 4 - 2 93%
3 G3 ; 3 11 . 9 4%
g. G4 - - - 242 - 100%
- G5 1 - 4 - 119 96%

Precision  90%  93%  96% 100%  88% 94%

We can first observe, by comparison with Table I, that
all the false recognitions of G4 that were occurring without
inertial sensor data, have been corrected. The recognition
rate of gesture G3 is also dramatically improved. These two
gestures were previously often confused one for another.
With these corrections, our system reaches a global rate of
correct gestures recognition of 94%, which is an excellent
result, considering that our evaluation is multi-user (7 different
persons repeating several times the total assembling operation).
This result also highlights the interest of equipping tools with
inertial sensors and use these information as a second layer
after the classification of gesture with depth data.

C. Setting up a scenario of Human-Robot collaboration

We elaborate a scenario of collaboration between the
worker and the robot in our use case, see Section III. To
control the claws opening, the worker originally had to press
two buttons, one for each claw. We removed these buttons and
now use the gesture recognition to command the claw opening.
To prevent a motor piece to fall on the table without a hand to
grab it underneath, we combine the gesture recognition with
the detection of the hand position near the claw.

For the right claw, if we recognize gesture G1 (to take a
motor hose part in the right claw) and if the right hand is
near the right claw, we command the claw opening. The same
principle is applied for the left claw with gesture G2. This
scenario enables reduction of the cognitive load of the worker
because he does not have to think about the button and remains
concentrated on the motor hoses assembly.
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To command the claws openings we connected our com-
puter to the robot with a Arduino [28] board. Our algorithm is
coded in C++ language and processes 12 frames per second,
which allows us to enable a smooth collaboration between the
worker and the robot.

VI. CONCLUSIONS AND FUTUR WORK

In this paper, we have presented our research related to
Human-Robot interaction in factories of the future. The goal
is to enable tight and smooth cooperations between a human
worker and a collaborative safe robot. One of the pre-requisite
to attain this goal is to allow the robot to monitor and “under-
stand” the activities of its human co-worker. We therefore focus
on design, implementation and test of a method for robust and
non-intrusive recognition of technical gestures, as it is clearly
one of the key enabling technologies for achieving smooth
Human-Robot interaction in our factory context.

We chose to use a depth-camera because it is a non-
intrusive sensor robust to light changes and which provides
information on the worker’s posture. To augment the robust-
ness of our system, we further equipped the tools (screwing-
gun in our use-case) with inertial sensors. Our system therefore
does not require the workers to wear any special equipment.
We focused on a scenario of “handing” over of motor parts
from a collaborative robot to a worker. Our framework differs
from other studies using both a depth map and inertial sensor to
do gestures recognition, firstly because in our approach inertial
sensor is placed on a tool rather than on the monitored human.
We first presented a new method to track hands with a top-
view depth map without prior knowledge: geodesic distances
from head are estimated for upper-body by Dijkstra algorithm
applied on a graph of depth pixels, and hands locations are
determined by searching parts that are “geodesically-farthest”
from the head. For gestures recognition, we proposed a simple
feature based on head and hands 3D locations and torso orien-
tation, which is discretized by K-means and fed into discrete
HMMs. We have evaluated multi-user performances of our
system on a dataset obtained by recording 7 persons repeating
several times the total assembling operation. This showed that
with vision-only (the top-view depth-camera), already 80%
of good gesture recognition can be attained. Furthermore,
when combining with data from inertial sensor attached to the
screwing-gun, the recognition rate is significantly raised to an
excellent 94%. We tested our method on a simple scenario to
command the robot claw opening with the gestures recognition.

Two main conclusions can be drawn from our study:
1/ robust and non-intrusive user-independant recognition of
technical gestures of workers in factory seems feasible in
principle; 2/ it can be extremely valuable for improving
gestures recognition in factory to instrument workers’ tools
with inertial sensors. From these results, we can also conclude
more generally that it should be possible to develop intelligent
collaborative robots that can interact and cooperate smoothly
with human workers in factories.

In our future work, we will program more reactions of
the collaborative robot to the worker’s gestures. We shall
also record gestures from a larger pool of workers to extend
our results on a larger range of morphologies and gesture
executions. We will also work on an user-adaptive learning
to increase our correct recognition rate with the vision only.
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