
HAL Id: hal-01306466
https://hal.science/hal-01306466

Submitted on 24 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Correct Transformation: From High-Level
Models to Time-Triggered Implementations

Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Mathieu Jan, Saddek
Bensalem

To cite this version:
Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Mathieu Jan, Saddek Bensalem. Towards Correct
Transformation: From High-Level Models to Time-Triggered Implementations. RTAS, Apr 2016,
Vienna, Austria. pp.13. �hal-01306466�

https://hal.science/hal-01306466
https://hal.archives-ouvertes.fr


Towards Correct Transformation: From High-Level
Models to Time-Triggered Implementations
Hela Guesmi∗, Belgacem Ben Hedia∗, Simon Bliudze†, Mathieu Jan∗ and Saddek Bensalem‡

∗CEA, LIST, PC 172, 91191 Gif-sur-Yvette, France. Email: firstname.lastname@cea.fr
†EPFL IC IIF RiSD, Station 14, CH-1015 Lausanne, Switzerland. Email: simon.bliudze@epfl.ch

‡Verimag, 38610 Gieres, France. Email: Saddek.Bensalem@imag.fr

Abstract—In embedded systems, high-level component-based
design approaches have been proposed in order to allow specifi-
cation and design of complex real-time systems. However, their
final implementations mostly rely on the generation of code for
generic execution platforms. On the other hand, a variety of Real-
Time Operating System (RTOS), in particular when based on
the Time-Triggered (TT) paradigm, guarantee the temporal and
behavioural determinism of the executed software. However, these
TT-based RTOS do not provide high-level design frameworks
enabling the scalable design of complex safety-critical real-
time systems. The goal of our work is to couple a high-level
component-based design approach based on the RT-BIP (Real-
Time Behaviour-Interaction-Priority) framework with a safety-
oriented real-time execution platform, implementing the TT
approach. Thus, we combine their complementary advantages, by
deriving correct-by-construction TT implementations from high-
level componentised models. To this end, we propose an automatic
transformation process from RT-BIP models into applications
for the target platform based on the TT execution model. This
transformation is already partially implemented.

I. INTRODUCTION

The Time-Triggered (TT) paradigm for the design of real-
time systems was introduced by Kopetz [11]. TT systems are
based on a periodic clock synchronization in order to enable
a TT communication and computation. Each subsystem of a
TT architecture is isolated by a so-called temporal firewall.
It consists of a shared memory element for unidirectional
exchange of information between sender and receiver task
components. It is the responsibility of the TT communication
system to transport, by relying on the common global time, the
information from the sender firewall to the receiver firewall.
The strong isolation provided by the temporal firewall is key
to ensuring the determinism of task execution and, thereby,
allowing the implementation of efficient scheduling policies.

Developing embedded real-time systems based on the TT
paradigm is a challenging task due to the increasing complex-
ity of such systems and the necessity to manage, already in
the programming model, the fine-grained temporal constraints
and the low-level communication primitives imposed by the
temporal firewall abstraction. Several Real-Time Operating
Systems (RTOS) implement the TT execution model, such as
for instance [3], [10]. However, they do not provide high-level
programming models that would allow the developers to think
on a higher level of abstraction and to tackle the complexity
of large safety-critical real-time systems. Model-based design

frameworks, such as [1], [7], allow the specification, the
design and the simulation of real-time systems. In particular,
the framework of [1] is a component-based framework for
the design of real-time systems. It allows verification of
behavioural properties, such as deadlock-freedom, and lends
itself well to model transformations.

To the best of our knowledge, few connections however
exist between high-level component-based design framework-
sand TT execution platforms. A model transformation for
generating distributed implementations from (non-real-time)
BIP models is presented in [5]. A method for generating a
mixed hardware/software system model for many-core plat-
forms from a high-level non-real-time application model and
a mapping between software and hardware components is
presented in [8]. Nevertheless, these two approaches do not
target the platforms based on TT execution model, thereby
falling short of exploiting the strong temporal determinism
guaranteed by the latter. A design framework based on UML
diagrams and targeting the TT architecture is presented in [13].
[4] presents a transformation from SCADE [7] to PharOS [3].
The former does not target generic TT implementations since
it assumes the underlying TT protocol to be the FlexRay
standard, while the latter is limited to the relatively simple
temporal behaviours. [6] presents a method to reduce the gap
between models used for timing analysis and for TT code
generation. Nevertheless, these approaches do not rely on a
single semantic framework.

In this work, we establish a link between the model-based
design framework RT-BIP [1] and a RTOS based on TT
approach. Generating TT implementations from high-level RT-
BIP models is achieved by a two-step transformation. The first
step [9] transforms a generic RT-BIP model into a restricted
one, which lends itself well to an implementation based on
TT communication primitives. The second step, which is the
subject of this paper, transforms the resulting model into
the TT implementation provided by the PharOS RTOS. We
identify the key difficulties in defining this transformation,
propose solutions to address these difficulties and study how
this transformation can be proven to be semantics-preserving.

This paper is structured as follows. In Section II, we
provide the necessary background on RT-BIP and PharOS.
The transformation is presented in Section III, while the open
issues that remain to be addressed are discussed in Section IV.



II. BACKGROUND

A. The RT-BIP Component Framework

RT-BIP is a component framework for constructing systems
by superposing three layers of modelling: Behaviour, Interac-
tion, and Priority. The Behaviour layer consists of a set of
components represented by timed automata extended by data
and functions given in C. The Interaction layer describes pos-
sible interactions between atomic components. Interactions are
sets of ports allowing synchronizations between components.
The third layer includes priorities between interactions using
mechanisms for conflict resolution. Thus, in RT-BIP, systems
are built by composing atomic components with interactions
(presented by connectors) and priorities.

A component in RT-BIP is essentially a timed automaton
[2] labelled by ports that represent the component’s interface
for communication with other components. A transition in RT-
BIP automata can be constrained by a guard , i.e., a predicate
on a set of its variables. A transition can also be constrained
by timing constraint tc which is a guard over a set of clocks.
Timing constraint is used to specify when actions of a system
are enabled regarding system clocks. If c is a clock, a timing
constraint tc over c is of the form: lc ≤ c ≤ uc, where
lc, uc ∈ R+. Furthermore, in RT-BIP automata, a state l can be
constrained by a time progress conditions (tpc) used to specify
whether time can progress at a given state of the system. Any
time progress condition tpc can be written as: tpc = c ≤ uc,
where uc ∈ R+ ∪ {+∞}. In the example of Figure 1, we
display two RT-BIP components C1 and C2, composed by a
binary connector. Let us assume that the system reaches the
state L1 of C1 with a tpc equals to c ≤ 2 and c ∈ [1, 2]. It can
then either let the time progress until c = 2, or execute the
transition enabled for these instants. If the state L1 is reached
when c = 2, the system can not let time progress. It has to
execute the transition p1.

C1

L1start

L2

pi

p1

1 ≤ c ≤ 3
f1(x)

reset c

c ≤ 2

p1
x

clock c, int x
C2

L1start

L2’ L2

pi

pi

p2

f2(y)

p2 y

Fig. 1. Example of RT-BIP automata

B. TCA computation model and PharOS platform

Time-Constrained Automata (TCA) [12] is a formal com-
putation model of TT tasks. The temporal behaviour of a task
is specified using a directed graph, where arcs represent the
successive jobs of the task to be executed (one at a time), and
the nodes bear the temporal constraints of the jobs. There are
four kinds of nodes:

• After node (after(d)): defines d as the relative release date
of the following job. It is symbolized by .d;

• Before node (before(d)): defines d as the relative deadline
of the preceding job. It is symbolized by /d;

• Advance node (advance(d)): is a combination of .d and
/d nodes. It is symbolized by �d and defines the absolute
visibility date of the job data;

• No constraint node: imposes no temporal constraints on
preceding and following jobs. It is symbolized by ◦d.

A job can consult data whose absolute visibility dates are
less or equal than the absolute release date of the job. The
execution of an application can be seen as cyclically walking
in the graph of each task and let the underlying scheduler
choose when each encountered job is actually executed in the
time interval defined by its release date and its deadline.

In the TCA example displayed in Figure 2, we have six
jobs, labelled a to f , and five nodes. The release date of job
d is one unit of time after the previous advance node. Two
units of time after, job d should have ended. After jobs e and
a are executed, communications take place since an advance
node is used. The visibility date of data produced by e is three
units of time later the previous after node.

1 22 3

start

b

a
c d e

f

Fig. 2. Example of TCA automata

TCA computation model is implemented in PharOS [3].
PharOS is a method to design, implement and execute safety-
critical multitasking applications based on the time-triggered
paradigm. PharOS implements different variants of TT com-
munication mechanisms. We are specially interested in the
temporal variables which are real-time data flows. Values,
available to all agents, are stored and updated by a single
writer –the owner agent– at a predetermined temporal rhythm.

III. WORK-IN-PROGRESS: FROM RT-BIP TO PHAROS
In order to derive TT implementation from a high-level RT-

BIP model, we follow a two-step transformation (see Figure 3).
Step1: RT-BIP model adaptation. This transformation

consists in adapting the initial model, in order to comply with
the TT paradigm, and especially the TT communication pat-
tern. Each intertask interaction –initially held by connectors– is
transformed in order to be handled by a dedicated component,
standing for a medium between communicating tasks. The
obtained model consists only of atomic RT-BIP components
and connectors allowing unidirectional data transfer. Ports
in TT-BIP model are send, receive or internal ports. This
transformation is published in a previous work [9], and is
proven to be semantics preserving.

Step 2: RT-BIP to TCA transformation. In this step, the
output of the previous step is transformed into TCA automa-
ton. In this section, we first detail challenges of the second step
transformation. Then, we present the actual algorithm and how
we are going to tackle the correctness proof part.



RT-BIP TT-BIP TCA
step 1

[9]

step 2

Fig. 3. From RT-BIP to the TCA TT computation model: a 2-step transfor-
mation.

A. Transformation subtleties

Transforming a component-based high-level model into a
RTOS based system requires to address several subtleties.

Timing constraints mapping subtlety. The initial TT-BIP
model is based on an abstract notion of time. In particular, it
assumes that actions, corresponding to the computational steps
of the system, are atomic and have zero execution times. Only
start instant of these actions have timing constraints (tc) and
timing progress conditions (tpc). However in TCA models,
both release date and deadline of actions can be specified.

This issue is addressed by making use of the tpc notion in
TT-BIP model, in order to extract the deadline of the following
action. In fact the semantics of the tpc (used to specify whether
time can progress at a given state of the system) and the before
node in TCA are strictly similar. Both of them constraint the
action preceding the node to finish before a certain date. The
action succeeding the node starts right after the previous one.
Timing constraint lc ≤ c ≤ uc in TT-BIP, constrains only
the start instant of the transition. In order to keep the same
semantics in TCA, an empty action can be executed between
nodes after(lc) and before(uc). Right after, the actions of the
initial transition can be executed.

From absolute to relative constraints subtlety. In TT-BIP,
all constraints are defined using absolute labelling. However,
TCA nodes bear only relatively expressed constraints, i.e., as
an increment to the previous .d or �d node.

In order to address this second issue, we make use of the
variable dref . It is initiated to zero and updated whenever
a before node is instantiated. It stores then the current local
clock value. Relative constraint (drelative) is computed from
its corresponding absolute constraint (dabsolute) following this
formula:

drelative = dabsolute − dref (1)

Communication mapping subtlety. In the initial TT-BIP
model, all tasks are related to communication components
via connectors. Connectors provide not only unidirectional
data transfer but also synchronization between sending and
receiving actions of respectively the sender and the receiver
components. In TCA, one communication model is called
temporal variable. New values of temporal variables are made
visible by their owners, i.e senders, at each of their synchro-
nization points. Receivers of these data can consult their new
values when their current time is equal or higher to the timing
of these synchronization points. In our transformation two
requirements need to be satisfied; (1) the receive must consult
an updated temporal variable (i.e., after the sending action of
the sender task) and (2) we need to respect communication
semantics of the initial model.

This subtlety is addressed by generating TCA synchroniza-
tion points (advance nodes) that depends on whether the TT-
BIP transition is triggered by a send, receive or an internal
port. After each nodes that corresponds to a communicating
transition we instantiate an advance(n) node defined over a
fine-grained clock. For example let a sender and receiver
components having the same clock, and suppose they are
meant to communicate in the same instant t in TT-BIP model.
We can define a smaller clock, allowing to instantiate advance
nodes (send and receive) at t + ε. If we take the example of
time lines displayed in Figure 4, the visibility instant of the
sender data is 4∗t+1 of the clock g. The receiver will consult
these data in the instant 4 ∗ t+ 2 of the clock g.

fine-grained clock g: g = 4 ∗ c
4t

Sender clock: c
t

Receiver clock: c
t
visibility instant

4t+1

consultation instant

4t+2

Fig. 4. Example of advance nodes defines on a fine-grained clock.

B. Transformation Algorithm

In Algorithm 1, for each transition of each automaton in TT-
BIP model, we check if the transition source state has a tpc
constraint. If this constraint exists, we instantiate a before node
defined on the relative bound instant of this tpc. This before
node defines the deadline of the previous action. The out
transition of that node executes actions of the initial TT-BIP
transition. If the transition source state tpc does not exist, and

Algorithm 1 Translation algorithm: Step 1
dref = 0;
for t=transition do

if t.source.hasTpc then
newTcaNode(before(t.source.tpc.value - dref ));
Synchro(t.labelPort);
newOutTransition(t.actions);

else if t.hasConstraint then
newTcaNode(after(t.constraint.lowBound - dref ));
newOutTransition(update(dref ));
newTcaNode(before(t.constraint.upBound - dref ));
Synchro(t.labelPort);
newOutTransition(t.actions);

else
newTcaNode(NoConstraint());
Synchro(t.labelPort);
newOutTransition(t.actions);

a timing constraint is defined over the transition, we instantiate
two consecutive after and before nodes, defined successively
over the lower and the upper bounds of the timing constraint
of the initial transition. The transition relating these two states
executes no actions. And then, we instantiate a transition to



execute the initial actions. If neither tpc nor timing constraint
are defined in the initial automata, a node with no constraint
is instantiated. Its out transition executes the initial actions.

NewTcaNode() and newOutTransition() functions and dif-
ferent considered cases answer to the first subtlety of the
transformation. The use of the variable dref and update(dref )
function goes with solving the second subtlety.

The Synchro() function in algorithm 1, answers to the
third issue. It is responsible of adding synchronization points
depending on if the transition is triggered by a send, receive
or an internal port. Mainly it instantiates after/before variables
updating, the suitable advance node bearing a well defined
label at the rhythm of a fine-grained clock. The computation
of the relation between the task clock and the fine-grained
clock as well as the constraint supported by each instantiated
advance node are subject of ongoing work.

C. Approach to prove the transformation correctness

An essential point to the transformation correctness proof
approach is that the semantics of an RT-BIP component is
defined as a Labelled Transition System (LTS).

In order to prove this correctness, we follow the method
displayed in Figure 5. In this method we (i) express the
semantics of TCA models in terms of LTS, (ii) consider the
transformation between LTSs instead of the transformation
between models directly and (iii) we prove that this trans-
formation is semantics preserving using weak bisimulation
technique. Then the direct transformation between models
is correct by construction. This correctness proof method

TT-BIP’
(1)

LTS

TCA
(3)

LTS(2)

(1) + (2) + (3)

Fig. 5. Approach of the transformation correctness proof.

concerns correctness between an atomic component of TT-
BIP model and its associated TCA model. However, to prove
that the hole TT-BIP model is equivalent to the set of the
obtained TCA models and their communication system calls,
we need to prove that synchronization points preserve the same
production/consumption order as in the initial model.

IV. OPEN CHALLENGES

We have identified several open challenges that we believe
should be addressed when defining an optimized and generic
transformation process.

Identification of OS service patterns potentially existing
in the initial model: any OS has a number of services (com-
munication, synchronization, etc.). We strongly think that in
some initial models, and in components intended for handling
communication, we can identify exactly the same behavioural
pattern of one or more OS services. Transformation should
take this redundancy into account, and only transform into
TCA automata the part of the component which can not be

mapped into an OS services. The identified pattern is thus
mapped to a system call.

What about a generic transformation process? We
strongly believe that the transformation process defined above
can be generalized to any RTOS-based implementation ap-
proach with TT execution model. In fact, we just need to
present the semantics of the computation model of the target
platform as an LTS system.

V. CONCLUSION

In this paper we outline our approach to generate correct-
by-construction TT implementation from high-level RT-BIP
models. We divide this transformation into two steps; first
we transform RT-BIP model in order to express intertask
communication according to TT communication system, then
we transform the obtained model into TCA automata (the com-
putation model of PharOS applications). The first step is being
done in previous work, we are now working on the second one.
We define different subtleties induced by this transformation,
and we give a short outline of the planned transformation
strategy as well as the correctness proof process. We further
identify open challenges related to our approach, that we plan
to address with further research.

REFERENCES

[1] Tesnim Abdellatif. Rigourous Implementation of Real-Time Systems.
PhD thesis, UJF, 2012.

[2] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[3] C Aussagues, D Chabrol, V David, D Roux, N Willey, A Tournadre, and
M Graniou. PharOS, a multicore OS ready for safety-related automotive
systems: results and future prospects. Proc. of The Embedded Real-Time
Software and Systems (ERTS2), 2010.

[4] Simon Bliudze, Xavier Fornari, and Mathieu Jan. From model-based
to real-time execution of safety-critical applications: Coupling SCADE
with OASIS. In Embedded Real Time Software and Systems, ERTS2,
page 10, February 2012.

[5] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf,
and Joseph Sifakis. From high-level component-based models to dis-
tributed implementations. In Proceedings of the tenth ACM international
conference on Embedded software, pages 209–218. ACM, 2010.

[6] Etienne Borde, Smail Rahmoun, Fabien Cadoret, Laurent Pautet, Frank
Singhoff, and Pierre Dissaux. Architecture models refinement for fine
grain timing analysis of embedded systems. In Rapid System Prototyping
(RSP), 2014 25th IEEE International Symposium on, pages 44–50. IEEE,
2014.

[7] Jean-Louis Boulanger, François-Xavier Fornari, Jean-Louis Camus, and
Bernard Dion. SCADE: Language and applications. 2015.

[8] Paraskevas Bourgos. Rigorous Design Flow for Programming Manycore
Platforms. PhD thesis, Grenoble, 2013.

[9] Hela Guesmi, Belgacem Ben Hedia, Simon Bliudze, Saddek Bensalem,
and Jacques Combaz. Towards time-triggered component-based system
models. In ICSEA15, pages 157–169, Barcelone, Spain, November 2015.
ThinkMind.

[10] Robert Kaiser and Stephan Wagner. Evolution of the pikeos microkernel.
In Proceedings of the 1st International Workshop on Microkernels for
Embedded Systems, pages 50–57, 2007.

[11] Hermann Kopetz. The time-triggered approach to real-time system
design. Predictably Dependable Computing Systems. Springer, 1995.

[12] Matthieu Lemerre, Vincent David, Christophe Aussaguès, and Guy
Vidal-Naquet. An introduction to time-constrained automata. In Proc. of
the 3rd Interaction and Concurrency Experience (ICE 2010), volume 38
of EPTCS, pages 83–98, 2010.

[13] Kathy Dang Nguyen, PS Thiagarajan, and Weng-Fai Wong. A UML-
based design framework for time-triggered applications. In Real-Time
Systems Symposium, 2007. RTSS 2007. 28th IEEE International, pages
39–48. IEEE, 2007.


