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Abstract

In this paper, a numerical method based on finite elements is used to study the phenomena of resorp-
tion and growth of bone tissue and resorption of the biomaterial in the neighborhood of a dental implant
fixture of the type IntraMobil Zylinder (IMZ). The mechanical stimulus that drives these processes is a
linear combination of strain energy and viscous dissipation. To simulate the implant, an axisymmetric
model has been used from the point of view of the geometry; the material behavior is described in
the poro-visco-elastic frame. The external action is represented by a load variable with sinusoidal law
characterized by different frequencies. Investigated aspects are the influence of the load frequency and
of the lazy zone on the remodeling process.

Keywords: Dental implant, cycle load, resorbable biomaterial, dissipation, visco-poro-elastic mate-
rial, bone remodeling

1 Introduction

Dental implants are artificial systems usually consisting of an endosteal component, which is completely
implanted in the mandible or jawbone and of an abutment which connects the endosseous component with
the oral cavity, in order to replace one or more missing teeth [1]. The most recent experimental researches
have been aimed at the study of the response of bone tissue following the insertion of an implant. In
particular, researchers tried to make functional and structural interfaces between implant and bone and,
then, to improve the process of osseointegration through surface treatments and design optimization of
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Figure 1: Initial arrangement of sample under study.

the system [2-4]. The reaction of the bone tissue, in fact, depends on chemical properties of the materials
used and on the ability of the implant to induce a mechanical state of stress in the bone tissue that can
promote osteogenesis processes. Research, today, follows two main routes: i) clinical trial designed to
evaluate the incidence of known failure mechanisms of the implant, and ii) preclinical study that allows
to conduct a preliminary analysis of the system. This work follows the latter route: in fact, the use of
numerical simulation based on the finite element method appears advantageous in terms of time and costs
compared to carrying out experiments in vivo or in vitro on dental implants. In addition, it seems useful
to guide the clinical trial with a gallery of examples obtained by numerical studies. In relation to issues
of possible failure in the medium to long term, this paper is interested in the study of the remodeling of
bone in the neighborhood of the metal stem as its resorption may cause disconnection of the fixture from
the host tissue and therefore implant mobilization. The issues are addressed with the use of computational
tools and are intended to define design criteria to increase the average life of an implant. In particular,
in this paper, we numerically study an implant model characterized by axial symmetry and composed
of fixture, trabecular bone tissue and porous biomaterial. It allows to determine the evolution of the
states of deformation, stress, energy and dissipation that are originated in the compound. The geometry
of the device that inspired this research is the one of the IntraMobil Zylinder (IMZ) and the Bio-Vent®
implant [5-7]. They are particularly suitable for soft and atrophic bone tissue, and are both characterized
by coated cylinder implant designed for the mandibular jaw; the IMZ implant is coated with titanium
plasma spray, the Bio-Vent implant is coated with hydroxyapatite.



2 Modeling

A dental implant consists of a titanium cylinder or screw, between 8 and 16 mm long, inserted in the jaw
into a predisposed bony socket and acts as a replacement root for supporting a false tooth. Specifically, it
is made of a titanium alloy, a material that is known to be compatible with biological tissues and is able
to bond with adjacent bone during the healing process. Indeed at this stage, the titanium surface of the
implant fuses with the surrounding bone, in a process known as osseointegration. Only after this stage,
which can take about 3—6 months, the implant is stable enough to support a new tooth. The titanium alloy
presents also advantageous mechanical properties, namely, strength, endurance and good fatigue strength.
In addition, this alloy can be fabricated with high precision to provide a wide variety of implants taking
into account dimensions and state of health of bones and gums of a broad range of patients to ensure an
optimal implant stability. Indeed, the problem of buckling due to the architecture of trabecular bone and
the interaction with the graft under critical applied loads can occur. Possible strong problem singularities
and instabilities can be regularized using methods described in the literature [8-12].

Often there is a need to increase the quantity of bone at the jawbone site with a graft to allow an
optimal connection of the implant. The reason of this might be, for instance a lack of bone at that site
due to a long-term missing tooth, a periodontal disease and aging or injury. In these cases, it is possible
to use a synthetic bone substitute (resorbable alloplast) that acts as a sort of scaffold for the formation of
new bone from the surrounding region and may be replaced, in part or completely, by natural bone.

In this paper, we consider a simple geometry to describe the interaction between a titanium insert, a
bio-resorbable graft and the bone. In detail, we take into account a cylindrical region inside the jawbone
which hosts the graft, shaped according to a half-ellipsoid, and the titanium insert (see Fig. 1). Cylindrical
coordinates are the natural choice for this system exhibiting axial symmetry. Therefore, we introduce the
usual coordinate for this reference frame characterized by the unit basis vectors (e, eg, e,). Following a
Lagrangian description we identify the constituent particles of the system by their position in a geometric
configuration taken as a reference and denoted with C*, that is to say by the variable vector X whose
coordinates in the adopted reference frame are (R, ©, Z). Then, we express the value of any physical value
in the current configuration, i.e., Ct, depending on the particle to which it is related and the current time,
that is to say depending on variables X and t. In particular, a reference configuration is chosen such that
the system is free-stress. However, since the system under study is characterized by a mass variable in time,
the material properties of the reference configuration are not fixed, but evolve as the mass is varying. In
addition, it is worth noting that the time scale of biological phenomena, namely, the evolution of the mass
due to the remodeling process, is very slow compared to the scale characterizing the mechanical behavior
and, therefore, the biological evolution of the system can be assumed not to entail the occurrence of any
inertial effect due to mass variation.

By assuming for axisymmetric reasons that all the considered fields are invariant under rotations, the
position vector = (r,0, z) of the particle located in C* at position X is given by

x=re +ze,=x(R,Z,t) = Re, + Ze, + u(R, Z,t) (1)
where the displacement w of the particle located in C* at position X is obtained by

u(R, Z, t) :ur(R, Z7t)er+uz(R> Zyt)ez (2)



We assume the transformation of the medium between the configurations C* and C? to be infinitesimal,
namely, [|[Vu(X,t)|| < 1, and therefore the Green-Lagrange strain tensor is reduced to the linearized
strain tensor E that in cylindrical coordinates is expressed by the non-null components as
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To properly describe the behavior of the porous materials involved in this system, namely, living bone
and artificial bio-resorbable material, we consider a solid mixture composed of two phases (see e.g. [13-15]),
endowed with a microstructure that takes the presence of connected pores into account. As a result, in the
framework of micro-morphic continua (see e.g. [16-19]), we introduce another kinematic descriptor able
to characterize the mechanical response of pores inside the solid matrices considered (see [20-23] and for
further developments [24-31]): the change of the Lagrangian porosity (, i.e. the change of the effective
volume of the fluid content per unit volume of the body, or mathematically

C(Rv th) - (b(X(R? Z7t>7t) _¢*(Ra th) (4)

where ¢*! stands for the porosity in the reference configuration and ¢ is the Lagrangian porosity. The last
can be expressed in terms of volume fraction of bone and artificial material, ¢, and ¢, respectively, as

¢:1—(<b+cm):1—<’fb+’fm> (5)
Pb  Pm

where py, pm are the apparent mass densities of the two phases of the mixture, and py, pm are the true
mass densities (with self-explanatory indexes). This kind of approach indeed aims to incorporate microscale
effects, even if complex, into a continuum description (see e.g. [13,32-36] for applications to growth).

At the initial stage, the porous system is made of two distinct regions in which each of the phases, the
artificial bio-resorbable material and the living bone, are separately present (see Fig. 1); it is only during
the bone remodeling, in the process called osteoconduction, that new bone grows from the surrounding
bone in the material region and therefore this zone exhibits both phases of the mixture considered. It is
noted that the typical tools of the study of the phase transition can also be used in this context to model
the rise of a new region in which both constituents coexist (see e.g. [37-40]).

Following the same approach as proposed in [41], we assume the hypothesis of isotropic and inho-
mogeneous material; moreover, denoting respectively by pj and pj, the mass densities of bone and of
bio-resorbable material in the reference configuration, the stored energy density & (E, (; p§, p},) associated
with strain tensor F and fluid volume distortion from the reference configuration ¢ can be represented as

& = E(E;p,pi) + §K1(pb,pm)é2 + §K2HVCH2 — K3(p}, ) CtrE (6)

where £ = %ﬂj?lEij is the bulk strain-dependent energy density, and lel is the second Piola stress tensor
given by the constitutive relation:

TE = Apyy, pi) trES;; + 20(p3, o) B Q

! From this point on, the superscript * denotes all quantities in the reference configuration.




being A and p the Lamé parameters and where we associate the values taken by the subscripts i and j
ranging over the set {1, 2, 3}, in the given order, to the directions of the reference frame r, 0,z in order
to use the summation convention. Eq. (7) can be written in terms of Young’s modulus, Y, and Poisson’s
ratio, v, by recalling the following relationships:

Y (pt, PV _ Y(ph: pin)
I-201+v) "~ 20+v)

As a first approximation, Poisson’s ratio is assumed to be constant, while we hypothesize that Young’s
modulus changes with the bone remodeling according to the power-law:

Y = YRI(G,) P+ YA ) )

A= (8)

where Ybl\/[ax and Yé}dax are the maximal elastic moduli and the exponents 8}, 8 are constants.
The coefficient K7 which can be interpreted as a coefficient of compressibility related to the fluid phase
inside pores, i.e. the bone marrow, is assumed to depend on the reference porosity as follows:

* an — o — -1

where Kt is the marrow modulus, K4, = Y/(3(1 — 2v)) is the drained bulk modulus of the porous matrix
and ap is the Biot-Willis coefficient that satisfies the inequality ¢* < ap < 1. Moreover, the trace of the
small strain tensor E

Ouy  uy Ouy,
9R "R 0z (1)
is introduced to describe the interaction between the solid and the microstructure.
The gradient of the change of porosity, because of the axial symmetry, is given by
V(R Z,1) = Seent e,
and is used as an application of a second gradient theory —Cahn-Hilliard fluids— to take capillary inter-
action phenomena among neighbouring pores into account [42]. The material parameter Ko that appears
in Eq. (6) can be thus interpreted as a stiffness related to the influence of capillarity governed by the V(.
Higher order theories of deformation can also be usefully employed to model damage evolution of bone (see
e.g. [43-49]) which may be relevant in the remodeling process [50].
The material parameter K3 introduced in Eq. (6) can be physically interpreted as the coupling between
microstructure and solid bulk [41] and is evaluated according to the relation:

K3 = /g(¢*) A K1 (13)

where the monotonic function g(¢*) takes non-negative value less then one (see Fig. 2) and is designed to
emphasize the effect of pores when the level of porosity is high and to understate this effect when porosity
decreases according to:

g(o*) = A;:B {atan [5k3 <gz§* — ;)] + atan (8;3)} 0< Ag, <1 (14)
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Figure 2: Function §(¢*).

where Ay, and sj, are shape coefficients that can be chosen to characterize the coupling law adopted.
Specifically, the coefficient Ay, modulates the amplitude of the coupling law Eq. (14) while s, governs the
slope of the above mentioned law. Recalling that the material parameter K3 governs the coupling between
the variables of the solid bulk and those of the microstructure, the coupling law Eq. (14) has been designed
in order to i) penalize the coupling when the porosity tends to zero, and then the global behavior tends to
the one of the solid bulk, and ii) exalt the coupling when the porosity tends to one, and then the role of
the microstructure becomes increasingly more important.

In order to guarantee the positive definiteness of the stored energy density (6), the following inequalities
which involve the material parameters above defined should be satisfied as stated in [20]:

=0, K=A+2/3u>0, K >0, Ky>0, kK >4K3 (15)

Finally, interface conditions for the variable { can be formulated by adding to the energy density of
Eq. (6) a boundary extra term:

Ent = %K4 (ct—¢)?= %K4 [€]?  with K4 >0 (16)
which accounts for the contribution of the interface, 0By, between bone and material regions. Therefore,
the material parameter K, plays the role of a stiffness that rules the interaction between the two materials
in terms of the jump of {. For the sake of simplicity, the coefficients Ko and K4 are assumed to be constant.

Some features suggests the presence of viscous damping in bone [51]: total deformation under a constant
stress was not attained instantaneously, i.e, bone has a retardation time; an hysteresis loop arises from
loading-unloading cyclic tests; and so forth. Therefore, according to the Kelvin-Voigt formulation, viscous
damping can be added to the material model of the porous mixture by means of an extra stress Ty related

to the rate of elastic strain of the material

. 1. .
T5(E) = 2p” (Eij - 3Ekk5ij> + K" B0 (17)



where «¥ and pV are the bulk and shear viscosity coefficients, respectively. As a result, the dissipated power
is given by _
2D, = T} B (18)

It is worth observing that the validity of this simple model, satisfactory for low physiological rate evo-
lutions [52], becomes increasingly inadequate beyond the range of quasi-static loading which is herein
considered (for more complex models see e.g. [53,54]).

Since the problem under study is time-dependent, but the evolution in time is very slow, a quasi-static
formulation is assumed and then inertial effects are neglected. The numerical code used to calculate the
configuration sequences of the considered system includes a formulation of the poro-viscoelastic problem
linking external mechanical applied loads to the corresponding equilibrium deformation states. However, it
is also required the knowledge of the evolution of the mass densities, from which the stiffness of the mixture,
given by Eq. (9), can be evaluated at each step. The evolution problem involves only the equations for
time variations of apparent mass densities of the living bone tissue and the bio-resorbable material. On the
other hand, since time variations of mixture stiffness and variations of loads occur in a time scale which is
much larger than the transient characteristic time leading to macroscopic mechanical equilibrium, the two
problems, the mechanical and the evolutionary one, can be separately solved at each time step in sequence
with an iterative scheme as time increases.

2.1 Poro-viscoelastic formulation

The mechanical governing equations of the graft /bone system can be deduced from the generalized principle
of virtual work. Indeed, the total virtual work, including dissipative actions (see e.g. [55]), for any arbitrary
virtual displacement u and for a virtual change of porosity ( equal to zero is given by

_ /B {T’i;?léEij + K3 Cdc + Ko (,iégi — Kg (Eu(ig“ + CdEu)} dy — /BT'S(SEIJdV

- Ky [(] 5[[<Hd8+/ néuids+/ 26¢dS =0 (19)
aBint 876 oB

To solve our problem, we consider a mixed boundary value problem in which we impose the displacement
components

Ur(Re, Z,t) =0 V Z and t (20)
uz(R,0,t) =0 V R and t (21)

being R, the external radius of the cylinder under study. The titanium stem (here modeled as a linear
elastic solid) is loaded by an external pressure on its top, i.e. 9.Bp (see Fig. 1); in turn, the titanium
insert applies a surface traction 7; on the boundary 0B between the titanium stem itself and the mixture.
Possibly a micro-structural action =, related to the dilatant behavior of the porous mixture, can be applied
on the boundary dB. For further information about contact interactions in more general cases see for
example [56,57]. Since inertia effects are neglected but the mechanical governing equation is a differential



equation of first order in time for the presence of the dissipative actions, it is worth recalling that herein
the initial conditions are reduced to

w(R,Z,0) =0 VR, Z (22)

2.2 Evolution rules for the mass densities

The evolution equations for apparent mass densities are assumed to be first order ordinary differential
equations with respect to time. We also assume that the spatial gradient of mass densities does not affect
the remodeling equations, and therefore we simply assume that the process of remodeling is non-local only
as a function of the nature of the stimulus (herein it is obtained by an integral operator), and it does not
depends on what is occurring outside the representative elementary volume by other non-local phenomena
of pure mechanical nature. As a result, we assume that the total mass density rates depend on the stimulus
and the porosity field as follows:

Pb

e (23)

b <
P =An (S) H(¢) with 0 < pf, <

{p;; = A, (S) H(¢) with0<p
where A}, and A,, are piece-wise linear functions with different slopes for negative (r, and ry,) and positive
values of stimulus (s},); moreover for the bio-resorbable material and positive values of the stimulus the
function Ay, vanishes, since synthesis of bio-resorbable material cannot occur. Indeed, the maximum value
possible for p¥ is its initial one, i.e. pO. Specifically, we have

| S for S>0
Ap (8) = { .S for S <0 (24)

0 forS >0
Am () = { TmS forS <0

The function H (see Fig. 3) is evaluated as a normalized Specific Surface, i.e., the internal surface area
per unit volume of whole bone [58]. Indeed, this function is related to the surface available for resorption
or synthesis ‘inside’ the considered material particle which, in its turn, depends on the ‘effective’ porosity
field [59].

To take the experimental evidence into account, we consider a so called ‘lazy zone’ for stimulus. Par-
ticularly, when the signal falls in a given range then the effect of the actor cells is not macroscopically
appreciable. For this purpose, we introduce two activation thresholds, P° and P (‘s’ stands for synthesis
while ‘r” means resorption), that define the width of this ‘lazy zone’ associated with a balanced biological
equilibrium state and, therefore, the stimulus becomes:

(25)

P(X,t) — P5, for P(X,t) > P*,
S(X,t) =140 for P*. < P(X,t) < P®

P(X,t)—- P for P(X,t) < P.,

ef

(26)
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where P(X,t) is

P(X,t) = J5lEs (Xo,t) + £ Dy (X, t)] @ [pp (X0, 1)] e_%dxo

E=AE 27)

fB e 202 dX()

We assume that the signal stemming from sensor cells in a given material particle of the bone/bio-material
mixture is instantaneously transmitted, i.e., the transmission time scale is negligible compared to the
characteristic time of the remodeling phenomena, and that its intensity decays exponentially with the
distance from it [59-61]. Besides, to emulate the non-local behavior due to the sensor cell network, we
express the stimulus as a spatially averaged signal over a spherical region of radius D which represents the
range of action of sensor cells [62]. The function w is assumed to be:

@ (py) =ntanh(§py) 0<n<1 (28)

and it can be interpreted, in the framework of the feedback control theory [63], as a gain for the ac-
tual mechanical stimulus, i.e., ‘the actuating signal’, that takes the real activities of the osteocytes into
account [58].

Several stimulus models have been proposed in literature to match experimental observations. All these
models are characterized by a particular description of the stimulus; in some of them it is based on the
strain energy density [59,60,64], on a strain-damage energy density [65], on the adaptation of the elastic
modulus of the bone coupled directly to deviations of the strain tensor [66], while others propose a creep-
fatigue cumulative damage model [67,68], or a global optimal criterion for remodeling [69-74]. In this



paper, we propose for bone adaptation the use of a linear combination of the strain-dependent energy, &s,
and the dissipation power, Dy, in order to predict two important features of the remodeling phenomenon:
the bone capability to control its mass and stiffness directly related to static mechanical demands [59, 64]
for the function of load-carrying capacity, and the effects of the frequency of applied loads [75,76] for the
function of damping and shock absorption.

As a note, herein, we consider internal remodeling as being the resorption or deposition of bone material,
accompanied by the removal and densification of the architecture of bone, but without any change in the
overall shape [41,59,77,78]. An external or surface modeling is not studied. Such a kind of remodeling
causes a change of the external shape of the overall bone structure, and occurs by the resorption or
deposition of bone material on the surfaces (see e.g. [32,33]).

The bio-material which we assume to use as a graft is absolutely not active in both sensing and actuating
process. However, one could conceive a ‘smart’ prosthesis having much more effective performances by using
the concept developed in [79-83] or some new metamaterials [84] which exhibit interesting features such
as lightness and resistance to damage as proposed in [85-88].

3 Numerical simulations

In order to test the predictive capabilities of the proposed model, we performed numerical simulations,
using the commercial software COMSOL Multiphysics®, on a three-dimensional cylindrical sample of
height h, = 10 mm and radius R. = 2 hy/3. The sample is made of a piece of jawbone, a bio-material graft
and a titanium insert as sketched in Fig. 1.

Initially, the mass density distributions of the bone and of the graft material are taken spatially uniform
and segregated in two distinct zones, Cp and C,, respectively, to deal with a simple but representative case
for a dental implant. Hence, initial conditions for bone mass density, p;,, and bio-material density, p},, are

pi‘)(X,O):p%:pAb/Q VX € (29)
o (X,0) = % = pm/2 VX €Cp

Herein, the problem under study is recast in a non-dimensional form by normalizing the stored elastic energy
with respect to the maximal stiffness of bone Ybl\/laX = 18 GPa and the dissipated power by YbMaX /tref, being
tret & reference time assumed equal to 7.2576 x 106 s; the lengths are normalized with respect to the diameter
of the sample, and the apparent mass densities with respect to the p, = 1,800 kg/m?, which is assumed
equal to py,. The non-dimensional quantities are denoted by a tilde, and can be summarized as:

K = K/ Y,Mox, Ky = Ky /(Y Max4R2),
A=)\ yMax Ky = K4/ (YM*2R,), (30)
ﬂv — Mv/(trefoMaX)a RU = Hv/(trefoMax)

A cyclic compression load case is considered, in which an external force is applied on the titanium insert

along its longitudinal axis; in particular, the force 7¢%(t) = —Fy — Fy sin(2nft) with a pre-load Fy and

a cyclic contribution of magnitude F; = Fy/2 and frequency f = {5, 10, 20} cycles per unit of time is

10



Table 1: Values of the macro-parameters used in numerical simulations.

Y/T f/bMax ynl\l/lax Bb — Bm ﬂv P D n 5
6 1 1 1.5 01 1/6 1/5 0.1 10

Table 2: Values of the micro-parameters used in numerical simulations.

K¢ K, Apz sz Ky
0.1 1.0x103 0.6 10 0.1

employed. The non-dimensional value of the force is Fy = 0.00286 obtained normalizing by the stiffness
YbMaX. In absolute terms, the external force applied on the top of the fixture corresponds to a typical
masticatory load of about 160 N on the abutment top. Young’s modulus of titanium insert is assumed
to be Yr = 108 GPa. The limit values that define the range of the ‘lazy zone’ are ]5:ef = 1.63 x 107°
and ]E’rsef = 1.84 x 107Y. The values of the parameters used in the performed numerical simulations are
summarized in Tabs. 1-3. Plots of some results relatively to the probe point P,, = (R./8,10/13R.) in the
time range considered for simulation are showed since this point is located in the most stressed area, and
it involves the evolution of both components of the mixture.

As a side note, recent applications of the finite element method (as discussed in [89-99]) could be
usefully employed in this context to enhance the possibilities to improve the formulation and thus to
ensure a better fit for experimental evidence.

Figure 4 shows the reference porosity ¢* at the end of the process for different frequencies of loading.
With reference to the region of the biomaterial, it is observed that for low frequencies, the process is
slower and the biomaterial has more time to be reabsorbed. The area with high porosity (0.7 - blue zone)
compared to initial value (0.5) is very wide at frequency of 5 cycles per unit of time and is gradually being
reduced with increasing frequency; in this area the porosity of the mixture coincides with the one of the
biomaterial; in the red area (which is the most stressed because it is below the implant) where the porosity
decreases, there is growth of bone tissue and therefore the porosity is equal to the one of the mixture. For
high frequencies, the growth of bone tissue invades the entire region of the biomaterial (red zone) and the

Table 3: Rates of resorption and synthesis.

S, Th Tm
12 10 15

11
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Figure 4: Reference porosity ¢* at the end of the simulation.

minimum porosity (0.2) is reached.

Figure 5 shows the final mass densities of biomaterial represented in terms of variables R, Z at the end
of the simulation for different frequencies. The figure indicates that in the region of the biomaterial (or at
least in the more external discharged part) the reduction of the mass density of the material, in front of
bone growth, decreases as the frequency increases (from 0.5 to 0.3 at 5 cycles per unit of time, 0.5 to 0.32
at 10 cycles per unit of time, and finally from 0.5 to 0.41 at 20 cycles per unit of time), because the bone
tissue colonizes the material quicker as the frequency increases.

Figure 6 shows the change of the porosity ¢ at the end of the process for different frequencies. The
increase of frequency causes the mixture to exhibit a lower porous shrinkage leading the bone to grow faster
and the pores to be filled quicker. Hence, the system will become more compact.

Figure 7 shows the time histories of the mass densities of bone (solid line) and material (dotted-dashed
line) at the point P, probe for different frequencies. It is noted that while the mass density of the bone also
grows significantly as the frequency increases, the mass density of the material remains almost constant
and independent of frequency, as the bone is filling the voids of biomaterial.

Figure 8 shows the time histories of the change of porosity ¢ at the probe point P,,. As the frequency
increases the mass density of mixture grows and the porosity decreases (see Fig. 4), therefore the mixture
becomes stiffer and hence the change of porosity ( oscillates within an increasingly narrower band. The
trend is clearly stabilizing towards the stationary state confirming the adequate choice of the analysis
duration.

Figures 9 and 10 show the time histories of the elastic energy £; and of the dissipation power Dy at the
probe point P,,. It confirms the fact that, as the frequency increases, the mixture exhibits a less deformable
and more dissipative behavior.

Figure 11 shows the energy dissipation loops for the three principal directions at the probe point P,
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whose coordinates are (0.3R., 1.154R.). The diagrams were obtained by plotting the principal stresses in
terms of the corresponding principal strains for different frequencies. The rows correspond to the principal
directions and the columns to the loading frequencies. The area subtended by each cycle is proportional
to the energy dissipated in the same cycle. The first cycle is marked with green color, the last cycle with
red color. The shape of each cycle is approximately elliptical, due to the dissipation of a viscous nature.
The problem is complex, depending on such factors that influence each other resulting interdependent
as the stimulus, the dissipation, the evolution of the mass density of bone material which in turn affects
the stiffness of the mixture and thus the mechanical behavior. Starting from the third principal direction
(third row), we note that both compressive stress and strain are negative. At low frequencies (5 cycles per
unit of time), the deformation increases, the stress decreases and the final cycle is slightly larger than the
initial one, that is, the dissipation grows. The growth process is slower; because less bone mass is produced
and an erosion occurs in the area of the material (Fig. 4a) a higher porosity, a lower stiffness and a larger
deformation are therefore attained. At high frequencies (20 cycles per unit of time), it is observed a different
behavior compared to the one at low frequencies, by virtue of the faster evolution of bone mass density. In
fact, deformation and dissipation significantly decrease, whereas a moderate stress reduction is exhibited.
For intermediate frequencies, the two conflicting behaviors are approximately balanced and then final and
initial cycles do not significantly differ in terms of both deformation and dissipation. Turning to the first
principal direction (first row), characterized by deformation of elongation and tensile stress, it is observed
a behavior similar to that already noted for the third principal direction. In fact, the factor which drives
the described phenomenon is the rate of growth of the bone mass related to the frequency of the applied
action. For low frequencies, deformation and dissipation increase while the stress decreases. For high
frequencies, deformation, stress and dissipation decrease. For intermediate frequencies, the deformation
and dissipation are approximately comparable. Finally, the second principal direction (second row) refers
to the circumferential direction . From a quantitative point of view, the deformations are of an order of
magnitude smaller compared to the deformations in the other two principal directions (Poisson’s effect),
but the overall behavior reflects the considerations already made with regard to the two other principal
directions.

Figure 12 shows the influence of the width of the lazy zone on the reference porosity ¢* of the mixture
at the end of the process, at the frequency of 5 cycles per unit of time. The resorption threshold Pfef has
been fixed and the synthesis threshold Pf‘ef is increased from the value equal to Prref. It is observed that
as the synthesis threshold increases, the red area characterized by low porosity (high mass density) visibly
decreases in the most stressed area below the implant.
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Figure 12: Influence of the lazy zone: reference porosity ¢* at the end of the simulation and with a
frequency load of 5 cycles per unit of time.
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4 Conclusions

The subject of this work is a type of dental implant IMZ that is suitable to be inserted in soft and atrophic
bone tissue of mandibular jaw. It was studied the interaction of the implant with the biomaterial and the
functional adaptation of the bone tissue under a load slowly variable in time with different frequencies,
that produces a mechanical non-local stimulus consisting in the linear combination of deformation energy
and viscous dissipation. The main mechanical parameters that have been considered are: mass density,
porosity, change of porosity, density of strain energy and viscous dissipation. Attention was focused on
the evaluation of the influence of the load frequency and of the amplitude of the lazy zone. The increase
of frequency within a suitable range favors the production of bone as already reported in many studies
(see e.g. [75,76]). However, if the stimulus is such to induce a too fast process of bone growth, then the
conditions that should facilitate resorption of the biomaterial are not experienced. Therefore, the problem
is to find a fair compromise between osteointegration and resorption of the biomaterial. The aim of this
study was precisely to investigate the ways in which this compromise occurs and to quantify the limits
of implementation. As regards the influence of the lazy zone, the performed numerical simulations have
confirmed and quantified what might be expected intuitively, namely that the phenomenon of growth of the
bone tissue is slowed down by an increase in the threshold of the stimulus. The numerical results presented
in this study can be considered in view of reducing the risk of mobilization of the metallic stem with respect
of the host bone tissue in the medium and long term; indeed, such a risk is due to the possibility of a
non-perfect osteointegration at the interface between the implant cylinder and the jawbone.
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