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Modeling of a non-local stimulus for bone remodeling

process under cyclic load: Application to a dental implant using a bioresorbable porous material

Introduction

Dental implants are artificial systems usually consisting of an endosteal component, which is completely implanted in the mandible or jawbone and of an abutment which connects the endosseous component with the oral cavity, in order to replace one or more missing teeth [START_REF] Soncini | Computational approach for the mechanical reliability of a dental implant[END_REF]. The most recent experimental researches have been aimed at the study of the response of bone tissue following the insertion of an implant. In particular, researchers tried to make functional and structural interfaces between implant and bone and, then, to improve the process of osseointegration through surface treatments and design optimization of the system [START_REF] Andreaus | Coupling image processing and stress analysis for damage identification in a human premolar tooth[END_REF][START_REF] Ancillao | Finite element analysis of the stress state produced by an orthodontic skeletal anchorage system based on miniscrews[END_REF][START_REF] Marangos | Physico-mechanical properties determination using microscale homotopic measurements: application to sound and caries-a↵ected primary tooth dentin[END_REF]. The reaction of the bone tissue, in fact, depends on chemical properties of the materials used and on the ability of the implant to induce a mechanical state of stress in the bone tissue that can promote osteogenesis processes. Research, today, follows two main routes: i) clinical trial designed to evaluate the incidence of known failure mechanisms of the implant, and ii) preclinical study that allows to conduct a preliminary analysis of the system. This work follows the latter route: in fact, the use of numerical simulation based on the finite element method appears advantageous in terms of time and costs compared to carrying out experiments in vivo or in vitro on dental implants. In addition, it seems useful to guide the clinical trial with a gallery of examples obtained by numerical studies. In relation to issues of possible failure in the medium to long term, this paper is interested in the study of the remodeling of bone in the neighborhood of the metal stem as its resorption may cause disconnection of the fixture from the host tissue and therefore implant mobilization. The issues are addressed with the use of computational tools and are intended to define design criteria to increase the average life of an implant. In particular, in this paper, we numerically study an implant model characterized by axial symmetry and composed of fixture, trabecular bone tissue and porous biomaterial. It allows to determine the evolution of the states of deformation, stress, energy and dissipation that are originated in the compound. The geometry of the device that inspired this research is the one of the IntraMobil Zylinder (IMZ) and the Bio-Vent R implant [START_REF] Niznick | Product profile-achieving osseointegration in soft bone: The search for improved results[END_REF][START_REF] Babbush | Intramobile cylinder (IMZ) two-stage osteointegrated implant system with the intramobile element (IME): part I. Its rationale and procedure for use[END_REF][START_REF] Byrne | Fundamentals of Implant Dentistry[END_REF]. They are particularly suitable for soft and atrophic bone tissue, and are both characterized by coated cylinder implant designed for the mandibular jaw; the IMZ implant is coated with titanium plasma spray, the Bio-Vent implant is coated with hydroxyapatite.

Modeling

A dental implant consists of a titanium cylinder or screw, between 8 and 16 mm long, inserted in the jaw into a predisposed bony socket and acts as a replacement root for supporting a false tooth. Specifically, it is made of a titanium alloy, a material that is known to be compatible with biological tissues and is able to bond with adjacent bone during the healing process. Indeed at this stage, the titanium surface of the implant fuses with the surrounding bone, in a process known as osseointegration. Only after this stage, which can take about 3-6 months, the implant is stable enough to support a new tooth. The titanium alloy presents also advantageous mechanical properties, namely, strength, endurance and good fatigue strength.

In addition, this alloy can be fabricated with high precision to provide a wide variety of implants taking into account dimensions and state of health of bones and gums of a broad range of patients to ensure an optimal implant stability. Indeed, the problem of buckling due to the architecture of trabecular bone and the interaction with the graft under critical applied loads can occur. Possible strong problem singularities and instabilities can be regularized using methods described in the literature [START_REF] Di Egidio | Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams[END_REF][START_REF] Luongo | On the e↵ect of twist angle on nonlinear galloping of suspended cables[END_REF][START_REF] Ruta | A beam model for the flexural-torsional buckling of thin-walled members with some applications[END_REF][START_REF] Rizzi | On the postbuckling analysis of thin-walled frames[END_REF][START_REF] Rizzi | Initial postbuckling behavior of thin-walled frames under mode interaction[END_REF].

Often there is a need to increase the quantity of bone at the jawbone site with a graft to allow an optimal connection of the implant. The reason of this might be, for instance a lack of bone at that site due to a long-term missing tooth, a periodontal disease and aging or injury. In these cases, it is possible to use a synthetic bone substitute (resorbable alloplast) that acts as a sort of sca↵old for the formation of new bone from the surrounding region and may be replaced, in part or completely, by natural bone.

In this paper, we consider a simple geometry to describe the interaction between a titanium insert, a bio-resorbable graft and the bone. In detail, we take into account a cylindrical region inside the jawbone which hosts the graft, shaped according to a half-ellipsoid, and the titanium insert (see Fig. 1). Cylindrical coordinates are the natural choice for this system exhibiting axial symmetry. Therefore, we introduce the usual coordinate for this reference frame characterized by the unit basis vectors (e r , e ✓ , e z ). Following a Lagrangian description we identify the constituent particles of the system by their position in a geometric configuration taken as a reference and denoted with C ⇤ , that is to say by the variable vector X whose coordinates in the adopted reference frame are (R, ⇥, Z). Then, we express the value of any physical value in the current configuration, i.e., C t , depending on the particle to which it is related and the current time, that is to say depending on variables X and t. In particular, a reference configuration is chosen such that the system is free-stress. However, since the system under study is characterized by a mass variable in time, the material properties of the reference configuration are not fixed, but evolve as the mass is varying. In addition, it is worth noting that the time scale of biological phenomena, namely, the evolution of the mass due to the remodeling process, is very slow compared to the scale characterizing the mechanical behavior and, therefore, the biological evolution of the system can be assumed not to entail the occurrence of any inertial e↵ect due to mass variation.

By assuming for axisymmetric reasons that all the considered fields are invariant under rotations, the position vector x = (r, 0, z) of the particle located in C ⇤ at position X is given by

x = re r + ze z = (R, Z, t) = Re r + Ze z + u(R, Z, t) (1) 
where the displacement u of the particle located in C ⇤ at position X is obtained by

u(R, Z, t) = u r (R, Z, t)e r + u z (R, Z, t)e z (2) 
We assume the transformation of the medium between the configurations C ⇤ and C t to be infinitesimal, namely, kru(X, t)k ⌧ 1, and therefore the Green-Lagrange strain tensor is reduced to the linearized strain tensor E that in cylindrical coordinates is expressed by the non-null components as

E rr = @u r @R , E zz = @u z @Z , E rz = 1 2 ✓ @u r @Z + @u z @R ◆ , E ✓✓ = u r R (3) 
To properly describe the behavior of the porous materials involved in this system, namely, living bone and artificial bio-resorbable material, we consider a solid mixture composed of two phases (see e.g. [START_REF] Grillo | Evolution of a fibre-reinforced growing mixture[END_REF][START_REF] Placidi | Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena[END_REF][START_REF] Placidi | Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity[END_REF]), endowed with a microstructure that takes the presence of connected pores into account. As a result, in the framework of micro-morphic continua (see e.g. [START_REF] Goda | A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization[END_REF][START_REF] Altenbach | Analysis of the viscoelastic behavior of plates made of functionally graded materials[END_REF][START_REF] Altenbach | Acceleration waves and ellipticity in thermoelastic micropolar media[END_REF][START_REF] Aminpour | A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis[END_REF]), we introduce another kinematic descriptor able to characterize the mechanical response of pores inside the solid matrices considered (see [START_REF] Cowin | Linear elastic materials with voids[END_REF][START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF][START_REF] Biot | Generalized theory of acoustic propagation in porous dissipative media[END_REF][START_REF] Cowin | Bone poroelasticity[END_REF] and for further developments [START_REF] Dell'isola | A micro-structured continuum modelling compacting fluidsaturated grounds: The e↵ects of pore-size scale parameter[END_REF][START_REF] Dell'isola | Saint-Venant's problem for porous linear elastic materials[END_REF][START_REF] Madeo | A continuum model for deformable, second gradient porous media partially saturated with compressible fluids[END_REF][START_REF] Madeo | A variational deduction of second gradient poroelasticity II: An application to the consolidation problem[END_REF][START_REF] Tomic | Poroelastic materials reinforced by statistically oriented fibresnumerical implementation and application to articular cartilage[END_REF][START_REF] Federico | Possible approaches in modelling rearrangement in a microstructured material[END_REF][START_REF] Grillo | A poroplastic model of structural reorganisation in porous media of biomechanical interest[END_REF][START_REF] Dell'isola | Dynamics of solids with microperiodic nonconnected fluid inclusions[END_REF]): the change of the Lagrangian porosity ⇣, i.e. the change of the e↵ective volume of the fluid content per unit volume of the body, or mathematically

⇣(R, Z, t) = ( (R, Z, t), t) ⇤ (R, Z, t) (4) 
where ⇤1 stands for the porosity in the reference configuration and is the Lagrangian porosity. The last can be expressed in terms of volume fraction of bone and artificial material, & b and & m respectively, as

= 1 (& b + & m ) = 1 ✓ ⇢ b ⇢b + ⇢ m ⇢m ◆ (5) 
where ⇢ b , ⇢ m are the apparent mass densities of the two phases of the mixture, and ⇢b , ⇢m are the true mass densities (with self-explanatory indexes). This kind of approach indeed aims to incorporate microscale e↵ects, even if complex, into a continuum description (see e.g. [START_REF] Grillo | Evolution of a fibre-reinforced growing mixture[END_REF][START_REF] Gangho↵er | A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling[END_REF][START_REF] Gangho↵er | Mechanical modeling of growth considering domain variation-part II: Volumetric and surface growth involving eshelby tensors[END_REF][START_REF] Placidi | On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets[END_REF][START_REF] Placidi | An anisotropic flow law for incompressible polycrystalline materials[END_REF][START_REF] Dell'isola | What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets?[END_REF] for applications to growth).

At the initial stage, the porous system is made of two distinct regions in which each of the phases, the artificial bio-resorbable material and the living bone, are separately present (see Fig. 1); it is only during the bone remodeling, in the process called osteoconduction, that new bone grows from the surrounding bone in the material region and therefore this zone exhibits both phases of the mixture considered. It is noted that the typical tools of the study of the phase transition can also be used in this context to model the rise of a new region in which both constituents coexist (see e.g. [START_REF] Dell'isola | A phenomenological approach to phase transition in classical field theory[END_REF][START_REF] Dell'isola | On phase transition layers in certain micro-damaged two-phase solids[END_REF][START_REF] Yeremeyev | The stability of the equilibrium of two-phase elastic solids[END_REF][START_REF] Eremeyev | Phase transitions in thermoelastic and thermoviscoelastic shells[END_REF]).

Following the same approach as proposed in [START_REF] Andreaus | Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids[END_REF], we assume the hypothesis of isotropic and inhomogeneous material; moreover, denoting respectively by ⇢ ⇤ b and ⇢ ⇤ m the mass densities of bone and of bio-resorbable material in the reference configuration, the stored energy density E (E, ⇣; ⇢ ⇤ b , ⇢ ⇤ m ) associated with strain tensor E and fluid volume distortion from the reference configuration ⇣ can be represented as

E = E s (E; ⇢ ⇤ b , ⇢ ⇤ m ) + 1 2 K 1 (⇢ ⇤ b , ⇢ ⇤ m )⇣ 2 + 1 2 K 2 kr⇣k 2 K 3 (⇢ ⇤ b , ⇢ ⇤ m ) ⇣ trE (6) 
where

E s = 1 2 T el ij E ij
is the bulk strain-dependent energy density, and T el ij is the second Piola stress tensor given by the constitutive relation:

T el ij = (⇢ ⇤ b , ⇢ ⇤ m ) trE ij + 2µ(⇢ ⇤ b , ⇢ ⇤ m ) E ij (7) 
1

From this point on, the superscript ⇤ denotes all quantities in the reference configuration.

being and µ the Lamé parameters and where we associate the values taken by the subscripts i and j ranging over the set {1, 2, 3}, in the given order, to the directions of the reference frame r, ✓, z in order to use the summation convention. Eq. ( 7) can be written in terms of Young's modulus, Y , and Poisson's ratio, ⌫, by recalling the following relationships:

= Y (⇢ ⇤ b , ⇢ ⇤ m )⌫ (1 2⌫) (1 + ⌫) µ = Y (⇢ ⇤ b , ⇢ ⇤ m ) 2 (1 + ⌫) (8) 
As a first approximation, Poisson's ratio is assumed to be constant, while we hypothesize that Young's modulus changes with the bone remodeling according to the power-law:

Y = Y Max b (& b ⇤ ) b + Y Max m (& m ⇤ ) m (9) 
where

Y Max b and Y Max m
are the maximal elastic moduli and the exponents b , m are constants. The coe cient K 1 which can be interpreted as a coe cient of compressibility related to the fluid phase inside pores, i.e. the bone marrow, is assumed to depend on the reference porosity as follows:

K 1 = ✓ ⇤ K f + (↵ B ⇤ )(1 ↵ B ) K dr ◆ 1 (10) where K f is the marrow modulus, K dr = Y /(3(1 2⌫
)) is the drained bulk modulus of the porous matrix and ↵ B is the Biot-Willis coe cient that satisfies the inequality ⇤ 6 ↵ B 6 1. Moreover, the trace of the small strain tensor

E trE = @u r @R + u r R + @u z @Z (11) 
is introduced to describe the interaction between the solid and the microstructure. The gradient of the change of porosity, because of the axial symmetry, is given by

r⇣(R, Z, t) = @⇣ @R e r + @⇣ @Z e z ( 12 
)
and is used as an application of a second gradient theory -Cahn-Hilliard fluids-to take capillary interaction phenomena among neighbouring pores into account [START_REF] Seppecher | Second-gradient theory: application to Cahn-Hilliard fluids[END_REF]. The material parameter K 2 that appears in Eq. ( 6) can be thus interpreted as a sti↵ness related to the influence of capillarity governed by the r⇣. Higher order theories of deformation can also be usefully employed to model damage evolution of bone (see e.g. [START_REF] Yang | Higher-order stress-strain theory for damage modeling implemented in an element-free galerkin formulation[END_REF][START_REF] Yang | Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film[END_REF][START_REF] Placidi | A variational approach for a nonlinear 1-dimensional second gradient continuum damage model[END_REF][START_REF] Placidi | A variational approach for a nonlinear one-dimensional damage-elasto-plastic secondgradient continuum model[END_REF][START_REF] Rinaldi | A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices[END_REF][START_REF] Andreaus | Damage modelling and seismic response of simple degrading systems[END_REF][START_REF] Carcaterra | Macroscopic description of microscopically strongly inhomogenous systems: A mathematical basis for the synthesis of higher gradients metamaterials[END_REF]) which may be relevant in the remodeling process [START_REF] Lee | Bone adaptation to load: microdamage as a stimulus for bone remodelling[END_REF].

The material parameter K 3 introduced in Eq. ( 6) can be physically interpreted as the coupling between microstructure and solid bulk [START_REF] Andreaus | Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids[END_REF] and is evaluated according to the relation:

K 3 = p ĝ( ⇤ ) K 1 ( 13 
)
where the monotonic function ĝ( ⇤ ) takes non-negative value less then one (see Fig. 2) and is designed to emphasize the e↵ect of pores when the level of porosity is high and to understate this e↵ect when porosity decreases according to: where A k 3 and s k 3 are shape coe cients that can be chosen to characterize the coupling law adopted. Specifically, the coe cient A k 3 modulates the amplitude of the coupling law Eq. ( 14) while s k 3 governs the slope of the above mentioned law. Recalling that the material parameter K 3 governs the coupling between the variables of the solid bulk and those of the microstructure, the coupling law Eq. ( 14) has been designed in order to i) penalize the coupling when the porosity tends to zero, and then the global behavior tends to the one of the solid bulk, and ii) exalt the coupling when the porosity tends to one, and then the role of the microstructure becomes increasingly more important.

ĝ( ⇤ ) = A k 3 ⇡ ⇢ atan  s k 3 ✓ ⇤ 1 2 ◆ + atan ⇣ s k 3 2 ⌘ 0 < A k 3 6 1 ( 14 
)
In order to guarantee the positive definiteness of the stored energy density (6), the following inequalities which involve the material parameters above defined should be satisfied as stated in [START_REF] Cowin | Linear elastic materials with voids[END_REF]:

µ > 0,  = + 2/3µ > 0, K 1 > 0, K 2 > 0, K 1 > 4K 2 3 ( 15 
)
Finally, interface conditions for the variable ⇣ can be formulated by adding to the energy density of Eq. ( 6) a boundary extra term:

E int = 1 2 K 4 ⇣ + ⇣ 2 = 1 2 K 4 [[⇣]] 2 with K 4 > 0 ( 16 
)
which accounts for the contribution of the interface, @B int , between bone and material regions. Therefore, the material parameter K 4 plays the role of a sti↵ness that rules the interaction between the two materials in terms of the jump of ⇣. For the sake of simplicity, the coe cients K 2 and K 4 are assumed to be constant. Some features suggests the presence of viscous damping in bone [START_REF] Sedlin | A rheologic model for cortical bone: a study of the physical properties of human femoral samples[END_REF]: total deformation under a constant stress was not attained instantaneously, i.e, bone has a retardation time; an hysteresis loop arises from loading-unloading cyclic tests; and so forth. Therefore, according to the Kelvin-Voigt formulation, viscous damping can be added to the material model of the porous mixture by means of an extra stress T v ij related to the rate of elastic strain of the material

T v ij ( Ė) = 2µ v ✓ Ėij 1 3 Ėkk ij ◆ +  v Ėkk ij (17) 
where  v and µ v are the bulk and shear viscosity coe cients, respectively. As a result, the dissipated power is given by 2D

s = T v ij Ėij (18)
It is worth observing that the validity of this simple model, satisfactory for low physiological rate evolutions [START_REF] Bargren | Mechanical properties of hydrated cortical bone[END_REF], becomes increasingly inadequate beyond the range of quasi-static loading which is herein considered (for more complex models see e.g. [START_REF] Carcaterra | Dissipation in a finite-size bath[END_REF][START_REF] Carcaterra | Fractional dissipation generated by hidden wave-fields[END_REF]).

Since the problem under study is time-dependent, but the evolution in time is very slow, a quasi-static formulation is assumed and then inertial e↵ects are neglected. The numerical code used to calculate the configuration sequences of the considered system includes a formulation of the poro-viscoelastic problem linking external mechanical applied loads to the corresponding equilibrium deformation states. However, it is also required the knowledge of the evolution of the mass densities, from which the sti↵ness of the mixture, given by Eq. ( 9), can be evaluated at each step. The evolution problem involves only the equations for time variations of apparent mass densities of the living bone tissue and the bio-resorbable material. On the other hand, since time variations of mixture sti↵ness and variations of loads occur in a time scale which is much larger than the transient characteristic time leading to macroscopic mechanical equilibrium, the two problems, the mechanical and the evolutionary one, can be separately solved at each time step in sequence with an iterative scheme as time increases.

Poro-viscoelastic formulation

The mechanical governing equations of the graft/bone system can be deduced from the generalized principle of virtual work. Indeed, the total virtual work, including dissipative actions (see e.g. [START_REF] Lekszycki | Application of variational methods in analysis and synthesis of viscoelastic continuous systems[END_REF]), for any arbitrary virtual displacement u and for a virtual change of porosity ⇣ equal to zero is given by

Z B h T el ij E ij + K 1 ⇣ ⇣ + K 2 ⇣ ,i ⇣ ,i K 3 (E ii ⇣ + ⇣ E ii ) i dV Z B T v ij E ij dV Z @B int K 4 [[⇣]] [[⇣]]dS + Z @⌧ B ⌧ i u i dS + Z @B ⌅ ⇣dS = 0 (19)
To solve our problem, we consider a mixed boundary value problem in which we impose the displacement components

u r (R e , Z, t) = 0 8 Z and t (20) u z (R, 0, t) = 0 8 R and t ( 21 
)
being R e the external radius of the cylinder under study. The titanium stem (here modeled as a linear elastic solid) is loaded by an external pressure on its top, i.e. @ ⌧ B T (see Fig. 1); in turn, the titanium insert applies a surface traction ⌧ i on the boundary @ ⌧ B between the titanium stem itself and the mixture. Possibly a micro-structural action ⌅, related to the dilatant behavior of the porous mixture, can be applied on the boundary @B. For further information about contact interactions in more general cases see for example [START_REF] Dell'isola | Cauchy tetrahedron argument applied to higher contact interactions[END_REF][START_REF] Dell'isola | The postulations á la D'Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results[END_REF]. Since inertia e↵ects are neglected but the mechanical governing equation is a di↵erential equation of first order in time for the presence of the dissipative actions, it is worth recalling that herein the initial conditions are reduced to

u(R, Z, 0) = 0 8 R, Z (22) 

Evolution rules for the mass densities

The evolution equations for apparent mass densities are assumed to be first order ordinary di↵erential equations with respect to time. We also assume that the spatial gradient of mass densities does not a↵ect the remodeling equations, and therefore we simply assume that the process of remodeling is non-local only as a function of the nature of the stimulus (herein it is obtained by an integral operator), and it does not depends on what is occurring outside the representative elementary volume by other non-local phenomena of pure mechanical nature. As a result, we assume that the total mass density rates depend on the stimulus and the porosity field as follows:

( ⇢⇤ b = A b (S) H ( ) with 0 < ⇢ ⇤ b 6 ⇢b ⇢⇤ m = A m (S) H ( ) with 0 < ⇢ ⇤ m 6 ⇢ 0 m ( 23 
)
where A b and A m are piece-wise linear functions with di↵erent slopes for negative (r b and r m ) and positive values of stimulus (s b ); moreover for the bio-resorbable material and positive values of the stimulus the function A m vanishes, since synthesis of bio-resorbable material cannot occur. Indeed, the maximum value possible for ⇢ ⇤ m is its initial one, i.e. ⇢ 0 m . Specifically, we have

A b (S) = ⇢ s b S for S 0 r b S for S < 0 (24) A m (S) = ⇢ 0 for S 0 r m S for S < 0 (25) 
The function H (see Fig. 3) is evaluated as a normalized Specific Surface, i.e., the internal surface area per unit volume of whole bone [START_REF] Giorgio | A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials[END_REF]. Indeed, this function is related to the surface available for resorption or synthesis 'inside' the considered material particle which, in its turn, depends on the 'e↵ective' porosity field [START_REF] Lekszycki | A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials[END_REF].

To take the experimental evidence into account, we consider a so called 'lazy zone' for stimulus. Particularly, when the signal falls in a given range then the e↵ect of the actor cells is not macroscopically appreciable. For this purpose, we introduce two activation thresholds, P s ref and P r ref ('s' stands for synthesis while 'r' means resorption), that define the width of this 'lazy zone' associated with a balanced biological equilibrium state and, therefore, the stimulus becomes: where P (X, t) is

S(X, t) = 8 > < > : P (X,
P (X, t) = R B [a E s (X 0 , t) + b D s (X 0 , t)] $ [⇢ b (X 0 , t)] e kX X 0 k 2 2D 2 dX 0 R B e kX X 0 k 2 2D 2 dX 0 (27) 
We assume that the signal stemming from sensor cells in a given material particle of the bone/bio-material mixture is instantaneously transmitted, i.e., the transmission time scale is negligible compared to the characteristic time of the remodeling phenomena, and that its intensity decays exponentially with the distance from it [START_REF] Lekszycki | A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials[END_REF][START_REF] Mullender | Proposal for the regulatory mechanism of wol↵'s law[END_REF][START_REF] Madeo | A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery[END_REF]. Besides, to emulate the non-local behavior due to the sensor cell network, we express the stimulus as a spatially averaged signal over a spherical region of radius D which represents the range of action of sensor cells [START_REF] Kumar | Dissipation energy as a stimulus for cortical bone adaptation[END_REF]. The function $ is assumed to be:

$ (⇢ ⇤ b ) = ⌘ tanh(⇠ ⇢ ⇤ b ) 0 < ⌘ 6 1 (28) 
and it can be interpreted, in the framework of the feedback control theory [START_REF] Turner | Homeostatic control of bone structure: an application of feedback theory[END_REF], as a gain for the actual mechanical stimulus, i.e., 'the actuating signal', that takes the real activities of the osteocytes into account [START_REF] Giorgio | A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials[END_REF]. Several stimulus models have been proposed in literature to match experimental observations. All these models are characterized by a particular description of the stimulus; in some of them it is based on the strain energy density [START_REF] Lekszycki | A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials[END_REF][START_REF] Mullender | Proposal for the regulatory mechanism of wol↵'s law[END_REF][START_REF] Weinans | The behavior of adaptive bone-remodeling simulation models[END_REF], on a strain-damage energy density [START_REF] Hambli | Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling[END_REF], on the adaptation of the elastic modulus of the bone coupled directly to deviations of the strain tensor [START_REF] Cowin | Bone remodeling I: theory of adaptive elasticity[END_REF], while others propose a creepfatigue cumulative damage model [START_REF] Carter | A cumulative damage model for bone fracture[END_REF][START_REF] Caler | Bone creep-fatigue damage accumulation[END_REF], or a global optimal criterion for remodeling [START_REF] Lekszycki | Modelling of bone adaptation based on an optimal response hypothesis[END_REF][START_REF] Jang | Application of design space optimization to bone remodeling simulation of trabecular architecture in human proximal femur for higher computational e ciency[END_REF][START_REF] Andreaus | Optimal-tuning pid control of adaptive materials for structural e ciency[END_REF][START_REF] Andreaus | An optimal control procedure for bone adaptation under mechanical stimulus[END_REF][START_REF] Andreaus | Modeling of trabecular architecture as result of an optimal control procedure[END_REF][START_REF] Andreaus | Optimal bone density distributions: Numerical analysis of the osteocyte spatial influence in bone remodeling[END_REF]. In this paper, we propose for bone adaptation the use of a linear combination of the strain-dependent energy, E s , and the dissipation power, D s , in order to predict two important features of the remodeling phenomenon: the bone capability to control its mass and sti↵ness directly related to static mechanical demands [START_REF] Lekszycki | A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials[END_REF][START_REF] Weinans | The behavior of adaptive bone-remodeling simulation models[END_REF] for the function of load-carrying capacity, and the e↵ects of the frequency of applied loads [START_REF] Lanyon | Static vs dynamic loads as an influence on bone remodelling[END_REF][START_REF] Turner | Three rules for bone adaptation to mechanical stimuli[END_REF] for the function of damping and shock absorption.

As a note, herein, we consider internal remodeling as being the resorption or deposition of bone material, accompanied by the removal and densification of the architecture of bone, but without any change in the overall shape [START_REF] Andreaus | Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids[END_REF][START_REF] Lekszycki | A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials[END_REF][START_REF] Andreaus | A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time[END_REF][START_REF] Giorgio | The influence of di↵erent loads on the remodeling process of a bone and bioresorbable material mixture with voids[END_REF]. An external or surface modeling is not studied. Such a kind of remodeling causes a change of the external shape of the overall bone structure, and occurs by the resorption or deposition of bone material on the surfaces (see e.g. [START_REF] Gangho↵er | A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling[END_REF][START_REF] Gangho↵er | Mechanical modeling of growth considering domain variation-part II: Volumetric and surface growth involving eshelby tensors[END_REF]).

The bio-material which we assume to use as a graft is absolutely not active in both sensing and actuating process. However, one could conceive a 'smart' prosthesis having much more e↵ective performances by using the concept developed in [START_REF] Giorgio | Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications[END_REF][START_REF] Giorgio | Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network[END_REF][START_REF] Porfiri | Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control[END_REF][START_REF] Maurini | Comparison of piezoelectronic networks acting as distributed vibration absorbers[END_REF][START_REF] Pagnini | The three-hinged arch as an example of piezomechanic passive controlled structure[END_REF] or some new metamaterials [START_REF] Vescovo | Dynamic problems for metamaterials: review of existing models and ideas for further research[END_REF] which exhibit interesting features such as lightness and resistance to damage as proposed in [START_REF] Dell'isola | Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence[END_REF][START_REF] Dell'isola | Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution[END_REF][START_REF] Alibert | Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof[END_REF][START_REF] Madeo | Wave propagation in pantographic 2D lattices with internal discontinuities[END_REF].

Numerical simulations

In order to test the predictive capabilities of the proposed model, we performed numerical simulations, using the commercial software COMSOL Multiphysics R , on a three-dimensional cylindrical sample of height h b = 10 mm and radius R e = 2 h b /3. The sample is made of a piece of jawbone, a bio-material graft and a titanium insert as sketched in Fig. 1.

Initially, the mass density distributions of the bone and of the graft material are taken spatially uniform and segregated in two distinct zones, C b and C m respectively, to deal with a simple but representative case for a dental implant. Hence, initial conditions for bone mass density, ⇢ ⇤ b , and bio-material density,

⇢ ⇤ m , are ( ⇢ ⇤ b (X, 0) = ⇢ 0 b = ⇢b /2 8X 2 C b ⇢ ⇤ m (X, 0) = ⇢ 0 m = ⇢m /2 8X 2 C m ( 29 
)
Herein, the problem under study is recast in a non-dimensional form by normalizing the stored elastic energy with respect to the maximal sti↵ness of bone Y Max b = 18 GPa and the dissipated power by Y Max b /t ref , being t ref a reference time assumed equal to 7.2576⇥10 6 s; the lengths are normalized with respect to the diameter of the sample, and the apparent mass densities with respect to the ⇢b = 1, 800 kg/m 3 , which is assumed equal to ⇢m . The non-dimensional quantities are denoted by a tilde, and can be summarized as:

Kf = K f /Y Max b , K2 = K 2 /(Y Max b 4R 2 e ), ˜ = /Y Max b , K4 = K 4 /(Y Max b 2R e ), μv = µ v /(t ref Y Max b ), v =  v /(t ref Y Max b ) (30) 
A cyclic compression load case is considered, in which an external force is applied on the titanium insert along its longitudinal axis; in particular, the force ⌧ ext z (t) = F 0 F 1 sin(2⇡f t) with a pre-load F 0 and a cyclic contribution of magnitude F 1 = F 0 /2 and frequency f = {5, 10, 20} cycles per unit of time is . In absolute terms, the external force applied on the top of the fixture corresponds to a typical masticatory load of about 160 N on the abutment top. Young's modulus of titanium insert is assumed to be Y T = 108 GPa. The limit values that define the range of the 'lazy zone' are P r ref = 1.63 ⇥ 10 9 and P s ref = 1.84 ⇥ 10 9 . The values of the parameters used in the performed numerical simulations are summarized in Tabs. 1-3. Plots of some results relatively to the probe point P m ⌘ (R e /8, 10/13R e ) in the time range considered for simulation are showed since this point is located in the most stressed area, and it involves the evolution of both components of the mixture.

As a side note, recent applications of the finite element method (as discussed in [START_REF] Cazzani | Isogeometric analysis of plane-curved beams[END_REF][START_REF] Turco | A three-dimensional b-spline boundary element[END_REF][START_REF] Cazzani | Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches[END_REF][START_REF] Cazzani | Constitutive models for strongly curved beams in the frame of isogeometric analysis[END_REF][START_REF] Della Corte | Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: Perspectives of continuum modeling via higher gradient continua[END_REF][START_REF] Federico | An energetic approach to the analysis of anisotropic hyperelastic materials[END_REF][START_REF] Solari | A numerical algorithm for the aerodynamic identification of structures[END_REF][START_REF] Greco | B-Spline interpolation of Kirchho↵-Love space rods[END_REF][START_REF] Greco | An implicit G1 multi patch B-spline interpolation for Kirchho↵-Love space rod[END_REF][START_REF] Greco | An isogeometric implicit G1 mixed finite element for Kirchho↵ space rods[END_REF][START_REF] Cuomo | A variational model based on isogeometric interpolation for the analysis of cracked bodies[END_REF]) could be usefully employed in this context to enhance the possibilities to improve the formulation and thus to ensure a better fit for experimental evidence.

Figure 4 shows the reference porosity ⇤ at the end of the process for di↵erent frequencies of loading. With reference to the region of the biomaterial, it is observed that for low frequencies, the process is slower and the biomaterial has more time to be reabsorbed. The area with high porosity (0.7 -blue zone) compared to initial value (0.5) is very wide at frequency of 5 cycles per unit of time and is gradually being reduced with increasing frequency; in this area the porosity of the mixture coincides with the one of the biomaterial; in the red area (which is the most stressed because it is below the implant) where the porosity decreases, there is growth of bone tissue and therefore the porosity is equal to the one of the mixture. For high frequencies, the growth of bone tissue invades the entire region of the biomaterial (red zone) and the minimum porosity (0.2) is reached.

Figure 5 shows the final mass densities of biomaterial represented in terms of variables R, Z at the end of the simulation for di↵erent frequencies. The figure indicates that in the region of the biomaterial (or at least in the more external discharged part) the reduction of the mass density of the material, in front of bone growth, decreases as the frequency increases (from 0.5 to 0.3 at 5 cycles per unit of time, 0.5 to 0.32 at 10 cycles per unit of time, and finally from 0.5 to 0.41 at 20 cycles per unit of time), because the bone tissue colonizes the material quicker as the frequency increases.

Figure 6 shows the change of the porosity ⇣ at the end of the process for di↵erent frequencies. The increase of frequency causes the mixture to exhibit a lower porous shrinkage leading the bone to grow faster and the pores to be filled quicker. Hence, the system will become more compact.

Figure 7 shows the time histories of the mass densities of bone (solid line) and material (dotted-dashed line) at the point P m probe for di↵erent frequencies. It is noted that while the mass density of the bone also grows significantly as the frequency increases, the mass density of the material remains almost constant and independent of frequency, as the bone is filling the voids of biomaterial.

Figure 8 shows the time histories of the change of porosity ⇣ at the probe point P m . As the frequency increases the mass density of mixture grows and the porosity decreases (see Fig. 4), therefore the mixture becomes sti↵er and hence the change of porosity ⇣ oscillates within an increasingly narrower band. The trend is clearly stabilizing towards the stationary state confirming the adequate choice of the analysis duration.

Figures 9 and10 show the time histories of the elastic energy E s and of the dissipation power D s at the probe point P m . It confirms the fact that, as the frequency increases, the mixture exhibits a less deformable and more dissipative behavior.

Figure 11 shows the energy dissipation loops for the three principal directions at the probe point P whose coordinates are (0.3R e , 1.154R e ). The diagrams were obtained by plotting the principal stresses in terms of the corresponding principal strains for di↵erent frequencies. The rows correspond to the principal directions and the columns to the loading frequencies. The area subtended by each cycle is proportional to the energy dissipated in the same cycle. The first cycle is marked with green color, the last cycle with red color. The shape of each cycle is approximately elliptical, due to the dissipation of a viscous nature. The problem is complex, depending on such factors that influence each other resulting interdependent as the stimulus, the dissipation, the evolution of the mass density of bone material which in turn a↵ects the sti↵ness of the mixture and thus the mechanical behavior. Starting from the third principal direction (third row), we note that both compressive stress and strain are negative. At low frequencies (5 cycles per unit of time), the deformation increases, the stress decreases and the final cycle is slightly larger than the initial one, that is, the dissipation grows. The growth process is slower; because less bone mass is produced and an erosion occurs in the area of the material (Fig. 4a) a higher porosity, a lower sti↵ness and a larger deformation are therefore attained. At high frequencies (20 cycles per unit of time), it is observed a di↵erent behavior compared to the one at low frequencies, by virtue of the faster evolution of bone mass density. In fact, deformation and dissipation significantly decrease, whereas a moderate stress reduction is exhibited. For intermediate frequencies, the two conflicting behaviors are approximately balanced and then final and initial cycles do not significantly di↵er in terms of both deformation and dissipation. Turning to the first principal direction (first row), characterized by deformation of elongation and tensile stress, it is observed a behavior similar to that already noted for the third principal direction. In fact, the factor which drives the described phenomenon is the rate of growth of the bone mass related to the frequency of the applied action. For low frequencies, deformation and dissipation increase while the stress decreases. For high frequencies, deformation, stress and dissipation decrease. For intermediate frequencies, the deformation and dissipation are approximately comparable. Finally, the second principal direction (second row) refers to the circumferential direction ✓. From a quantitative point of view, the deformations are of an order of magnitude smaller compared to the deformations in the other two principal directions (Poisson's e↵ect), but the overall behavior reflects the considerations already made with regard to the two other principal directions.

Figure 12 shows the influence of the width of the lazy zone on the reference porosity ⇤ of the mixture at the end of the process, at the frequency of 5 cycles per unit of time. The resorption threshold P r ref has been fixed and the synthesis threshold P s ref is increased from the value equal to P r ref .

It is observed that as the synthesis threshold increases, the red area characterized by low porosity (high mass density) visibly decreases in the most stressed area below the implant. 

Conclusions

The subject of this work is a type of dental implant IMZ that is suitable to be inserted in soft and atrophic bone tissue of mandibular jaw. It was studied the interaction of the implant with the biomaterial and the functional adaptation of the bone tissue under a load slowly variable in time with di↵erent frequencies, that produces a mechanical non-local stimulus consisting in the linear combination of deformation energy and viscous dissipation. The main mechanical parameters that have been considered are: mass density, porosity, change of porosity, density of strain energy and viscous dissipation. Attention was focused on the evaluation of the influence of the load frequency and of the amplitude of the lazy zone. The increase of frequency within a suitable range favors the production of bone as already reported in many studies (see e.g. [START_REF] Lanyon | Static vs dynamic loads as an influence on bone remodelling[END_REF][START_REF] Turner | Three rules for bone adaptation to mechanical stimuli[END_REF]). However, if the stimulus is such to induce a too fast process of bone growth, then the conditions that should facilitate resorption of the biomaterial are not experienced. Therefore, the problem is to find a fair compromise between osteointegration and resorption of the biomaterial. The aim of this study was precisely to investigate the ways in which this compromise occurs and to quantify the limits of implementation. As regards the influence of the lazy zone, the performed numerical simulations have confirmed and quantified what might be expected intuitively, namely that the phenomenon of growth of the bone tissue is slowed down by an increase in the threshold of the stimulus. The numerical results presented in this study can be considered in view of reducing the risk of mobilization of the metallic stem with respect of the host bone tissue in the medium and long term; indeed, such a risk is due to the possibility of a non-perfect osteointegration at the interface between the implant cylinder and the jawbone.
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 912 Figure 12: Influence of the lazy zone: reference porosity ⇤ at the end of the simulation and with a frequency load of 5 cycles per unit of time.
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