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Abstract

It is well known that size effects play an important role in the mechanical behavior of bone tissues at different scales.
In this paper we propose a second gradient model for accounting these effects in a visco-poro-elastic material and
present some sample applications where bone is coupled with bioresorbable artificial materials of the kind used in
reconstructing surgery.
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1. Introduction

Substantial size effects are known to occur in the elas-
tic behavior of (i) single osteons [1], (ii) human compact
bone [2, 3, 4, 5, 6, 7], (iii) human trabecular bone [8, 9].
In the first case, the size effects are attributed to com-
pliance of the interfaces between laminae. In the sec-
ond case, there is experimental evidence that the cement
lines as compliant interfaces account for most of the dif-
ference in stiffness between osteons and whole bone. In
the third case, continuum properties vary by more than
20-30% over a distance spanning three to five trabecu-
lae and hence a continuum model for the structure is
suspect [8]. Therefore, Ramézani et al. [9] used the
Cosserat theory to describe the hierarchical multi-scale
behavior of trabecular human bone using micro-CT im-
ages, namely: i) macroscale, dealing with cancellous bone
or spongy bone at real size; ii) meso-scale, representing
non-homogeneous and stochastic network clusters; iii)
micro-scale, indicating the micro-randomness and het-
erogeneous deformations; iv) sub-micro- and nano-scale,
showing single lamellas including collagen fibers and ap-
atite crystals. Generally speaking, the limitations of the
continuum assumption appear in two areas: near bio-
logic interfaces, and where there are large stress gradi-
ents. To incorporate the scale of the microstructure of a
heterogeneous material within the continuum framework,
a number of phenomenological ‘remedies’ have been pro-
posed that involve the relaxation of the local action hy-
pothesis of classical continuum mechanics. Such enriched

(or enhanced) continuum models aim at including in-
formation on the microstructure and can be classified
into three main groups [10], namely: (i) non-local inte-
gral models [11, 12, 13], (ii) higher-order gradient mod-
els [14, 15, 16] and (iii) micropolar theories [17, 18, 19].
Bleustein [20] showed how the boundary conditions of
a linear theory of an elastic continuum with micro-
structure [21] can be reduced to those of a corresponding
linear form of a strain gradient theory [22]. Following
this way of thinking, second gradient materials can be
interpreted as a particular limit case of micromorphic (or
micropolar) media because they can be deduced from mi-
cromorphic ones by constraining the micromorphic kine-
matic descriptors to be equal to the classical strain ones
by introducing internal constraints and Lagrange multi-
pliers. We remark that this constrained approach which
is rigorous in a finite-dimensional space, it is assumed
reasonably acceptable in an infinite-dimensional space
on the basis of an argument of analogy. This paper is
inspired by the more general framework of a research
oriented to design the mechanical characteristics of the
biomaterial constituting the graft, namely mass density
and resorption velocity, in order to optimize the mass
density distribution of the growing bone tissue. From
the above it is clear the importance of size effects in me-
chanical behavior of bone tissues and biomaterials, since
one can think of achieving them with a structure similar
to that of bone tissue. Thus, in this paper we intend to
take these size effects into account by formulating a con-
stitutive model that includes the use of the displacement
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gradients higher than the first one.

2. Material and methods

The considered specimen is constituted by the union
of two bi-dimensional square portions, one constituted of
bone tissue and the other of biomaterial; the square size
is L/2 = W = 0.5 cm. The mass densities of the two ma-
terials are initially assigned in each zone and they will
evolve in the subsequent remodeling process according
to the mechanical and biological laws presented in the
following (see Eq. (17)). The support conditions on one
edge are shown in a self-explanatory way in Fig. 1. A
traction distribution corresponding to a pure bending is
applied to the opposite edge as shown in Fig. 1; the load
is harmonically variable with a low frequency Ω in or-
der to activate the component of the stimulus which is
related to dissipation, because this phenomenon plays a
key role in the bone functional adaptation, as discussed
in [23]. In particular, we set

fb(x2, t) =

(
2x2
W
− 1

)
[F0 + F1 sin(Ωt)] (1)

Some relevant results will be presented with reference to
the probe point Pm in the material zone (Fig. 1).

Figure 1: Sample under study at initial stage.

3. Governing Equations

Kinematics. In order to give a macroscopic description
of the system under study constituted by an insert of
bio-resorbable grafting material and a piece of bone, i.e.
a porous mixture, we introduce the placement field:

χ : (X, t) 7→ x (2)

which takes each point of body X in the reference con-
figuration B and time t ∈ R into a place x in the current
configuration. Therefore, we consider the solid-matrix
macroscopic displacement (u = x −X) as a basic kine-
matical descriptor and use the Saint-Venant strain tensor

Eij(X, t) =
1

2
(ui,j + uj,i + ui,k uk,j) (3)

to take elastic deformations into account. Because of the
porous nature of our system, we introduce another in-
dependent kinematical descriptor to describe the micro-
deformations of pores inside the solid matrix of the sys-
tem. In particular, we introduce the change of the La-
grangian porosity, i.e. the change of the effective volume
of the fluid content per unit volume of the body with
respect to an equilibrium volume [24]. In detail,

ζ(X, t) = φ(χ(X, t), t)− φ∗(X, t) (4)

where φ and φ∗ are the Lagrangian porosity related to
the current and the reference configuration, respectively.
By adopting the approach of the mixture theory, these
porosities can be expressed as follows

φ = 1− (ρb/ρ̂b + ρm/ρ̂m), φ∗ = 1− (ρ∗b/ρ̂b + ρ∗m/ρ̂m)
(5)

where ρb and ρm are the apparent mass densities of bone
tissue and artificial material, respectively; the superim-
posed hat denotes the true densities, while the super-
script * indicates all quantities in the reference configu-
ration.

Variational equation of motion. For the potential
energy-density —potential energy per unit of macro-
volume— we take a homogeneous, quadratic function of
the variables E, ∇E, ζ and ∇ζ [21, 25, 26, 15]

E =
1

2
λ(ρ∗b, ρ

∗
m)EiiEjj + µ(ρ∗b, ρ

∗
m)EijEij+

4α1(ρ∗b, ρ
∗
m)Eii,jEjk,k + α2(ρ∗b, ρ

∗
m)Eii,jEkk,j+

4α3(ρ∗b, ρ
∗
m)Eij,iEkj,k + 2α4(ρ∗b, ρ

∗
m)Eij,kEij,k+

4α5(ρ∗b, ρ
∗
m)Eij,kEik,j +

1

2
K1(ρ∗b, ρ

∗
m)ζ2+

1

2
K2ζ,iζ,i −K3(ρ∗b, ρ

∗
m) ζ Eii (6)

where λ and µ are the Lamé parameters

λ =
ν Y (ρ∗b, ρ

∗
m)

(1 + ν)(1− 2ν)
, µ =

Y (ρ∗b, ρ
∗
m)

2(1 + ν)
, (7)

here expressed in terms of the Young modulus of the
mixture

Y = Y Max
b (ρ∗b/ρ̂b)

βb + Y Max
m (ρ∗m/ρ̂m)

βm (8)

and Poisson ratio. Y Max
b and Y Max

m are the maximal elas-
tic moduli and the exponents βb, βm are constants. The
second gradient stiffness coefficients are assumed to be:

α1 = α2 = α4 = Y (ρ∗b, ρ
∗
m)`2, α3 = 2Y (ρ∗b, ρ

∗
m)`2,

α5 = 1/2Y (ρ∗b, ρ
∗
m)`2 (9)

being ` a suitable scale length of the microstructure. The
coefficient K1 is a coefficient of compressibility related to
the bone marrow inside pores and can be evaluated as

K1 =

(
φ∗

Kf
+

(αB − φ∗)(1− αB)

Kdr

)−1
(10)
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in which Kf is the marrow modulus, Kdr = Y/(3(1−2ν))
is the drained bulk modulus of the porous matrix and αB
is the Biot-Willis coefficient. The coupling between mi-
crostructure and solid bulk is assumed to be

K3 =
√
ĝ(φ∗)λK1 (11)

where the weight function

ĝ(φ∗) =
Ak3
π

{
atan

[
sk3

(
φ∗ − 1

2

)]
+ atan

(sk3
2

)}
(12)

modulates the micro-macro coupling depending on the
reference porosity. The coefficients Ak3 and sk3 can be
chosen to characterize the coupling law adopted.

To model dissipative phenomena, we employ a
Rayleigh dissipation function

2Ds = 2µv
(
ĖijĖij −

1

3
ĖiiĖjj

)
+ κv ĖiiĖjj (13)

related to the solid-matrix macroscopic rate strain. The
material parameters κv and µv are the bulk and shear
viscosity coefficients, respectively.

The Generalized Principle of Virtual Work, including
dissipation effects and neglecting inertia terms, for inde-
pendent variations δui and δζ, therefore, runs as follows

−
∫
B
δE dB +

∫
B
δW extdB =

∫
B

∂Ds
∂Ėij

δEijdB (14)

where δW ext is the variation of the work done by exter-
nal actions. The assumed potential energy-density (6) is
the motivation for the adoption of the following form for
the variation of work done by external action:

δW ext =

∫
∂τB

τiδuidS +

∫
∂τB

Tαδuα,jnjdS +

∫
∂B

Ξ δζdS,

(15)
where body and line forces are neglected, and Tα are
double forces per unit of area.

It is worth noting that a second gradient continuum
model can be deduced via an homogenization procedure
based on micro-macro identification to obtain an equiv-
alent model which reproduces at the macro scale the be-
haviour of the material characterised by a complex micro-
structure at micro-scale (see e.g. [30, 16, 31]). In this ho-
mogenization process, some critical issues as for instance
a damage occuring in the bone tissue or in the biomate-
rial can be taken into account (see e.g. [27, 28, 29]).

Interface modeling. Interface conditions can be formu-
lated by adding to the energy density (6) an internal
boundary extra term:

Eint =
1

2
Kζ [[ζ]]2+

1

2
Ku [[u]]·[[u]]+

1

2
K∇u [[(∇u)n]]·[[(∇u)n]]

(16)

This simple interface potential energy-density can be use-
ful to better describe the real conditions of connection
between bone tissue and artificial material with a proper
choice of the stiffnesses Kζ , Ku and K∇u, related respec-
tively to ζ, u and ∇u.

Evolution rules. The evolution of the apparent mass den-
sities is governed by the rules [32, 33]:{

ρ̇∗b = Ab (S) H (φ) with 0 < ρ∗b 6 ρ̂b

ρ̇∗m = Am (S) H (φ) with 0 < ρ∗m 6 ρ∗m(X, 0)
(17)

which are assumed to depend on the mechanical stimulus
S resulting from an external applied load and the current
porosity φ. The functions Ab and Am are taken to be

A{b,m} (S) =

{
s{b,m}S for S ≥ 0
r{b,m}S for S < 0

(18)

with different constant rates for synthesis (sb and sm =
0) and for resorption (rb and rm). Of course, we re-
mark that the synthesis of bio-resorbable material is not
allowed, i.e., sm = 0. The weight function H is character-
ized by a U-like shape with a maximum in the neighbour-
hood of φ = 0.5 to emphasize the most effective condi-
tions in the remodelling process. In the definition of the
stimulus, the presence of a lazy zone, bounded by two
thresholds (P s

ref
and P r

ref
for synthesis and for resorption,

respectively), is hypothesized where the osteoregulatory
balance of the bone is maintained. Mathematically:

S(X, t) =


P (X, t)− P s

ref
for P (X, t) > P s

ref

0 for P r
ref

6 P (X, t) 6 P s
ref

P (X, t)− P r
ref

for P (X, t) < P r
ref

(19)
The signal P related to the sensing biological activity is
assumed to take the following form [23]:

P (X, t) =

∫
B (a Es + b Ds) $ (ρ∗b) e−

‖X−X0‖
2

2D2 dX0∫
B e
− ‖X−X0‖2

2D2 dX0

(20)
characterized by a reference length D which delimits the
range of action of the biological processes. Es is the den-
sity of strain energy of the solid matrix (including first
and second gradient terms) and $ = ηρ∗b/ρ̂b is the den-
sity of active sensor cells assumed to be present only in
the living bone tissue.

4. Numerical results

The constitutive model of the second gradient for-
mulated in the previous section has been implemented
in a finite element code (COMSOL Multiphysics), opti-
mized for constitutive models of the first gradient. To
overcome this limitation, it was decided to find a micro-
morphic model of the first gradient that was equivalent
to the second gradient model, using the technique of La-
grange multipliers [34]. A further improvement can be
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achieved employing the recent developed tools of the iso-
geometric analysis particularly suitable for their inherent
high continuity to treat the second gradient models (see
for more details e.g. [35, 36, 37, 38]). Starting from an
initial apparent mass density uniform for the bone tis-
sue (ρ∗b = 0.5ρ̂b) and the biomaterial (ρ∗m = 0.5ρ̂m), we
perform a parametric analysis by varying the character-
istic length ` of the second gradient governed by Eq. (9).
The parameters used in the simulations are: Y Max

b = 17
GPa, Y Max

m = 0.8Y Max
b , ν = 0.3, ρ̂b = ρ̂m = 1800

kg/m3, βb = βm = 2, Kf = 0.1Y Max
b , D = 0.1L,

K2 = 1.7× 105 N, Kζ = 1.7× 107 N/m, Ku = 1.7× 1018

N/m3, K∇u = 1.7 × 107 N/m, η = 0.2, Ak3 = 0.9,
sk3 = 15, µv = 2.57 × 1012 N s/m2, κv = 2.06 × 1012

N s/m2, sb = 1.27× 10−7 s/m2, rb = 1.06× 10−7 s/m2,
rm = 1.59 × 10−7 s/m2, P s

ref
= 1.43 N/m2, P r

ref
= 1.29

N/m2, a =1, b = 6.048 × 106 s, F0 = 2.0 × 10−3 Y Max
b ,

F1 = F0/2 and Ω = 8.27× 10−7 Hz.
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Figure 2: Time evolution of the mass densities of bone (dashed line)
and material (solid line) in the probe point Pm when characteristic
length ` is varying.
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Figure 3: Time evolution of the mass densities of bone (dashed
line) and material (solid line) in the probe point Pm when Ym is
varying and ` = 0.

In all the following figures we plot mass densities nor-
malized with respect to the maximum values. In Fig. 2,
we compare the model of the first gradient (` = 0L)
with that of the second gradient, for two different values
of the characteristic length (` = {0.05L, 0.1L}), as re-
ported close to the respective curves in figure. The three
dashed curves refer to the bone, while the three contin-
uous curves relate to the material. It is observed that as
the characteristic length increases, the evolutionary pro-
cess takes place in a longer time and therefore the mate-
rial undergoes a greater resorption and this entails that
the bone has available a greater space to grow. There-
fore, in the stationary state, the bone attains a greater
mass density (and the material a lesser one) as the char-
acteristic length increases. We note that this behavior
is similar to that found in the case of the first gradient
(Fig. 3), when increasing values of the maximum Young
modulus Ym of the biomaterial are assumed. In this case,
the cause of stiffening is represented by the consideration
of the second gradient in the constitutive relation of the
mixture.

(a)

(b)

Figure 4: Distributions of the mass densities of (a) bone and (b)
material at the end of the process with ` = 0.

Figure 4 shows the situation at the end of the adap-
tation process in terms of apparent mass density of bone
(Fig. 4a) and biomaterial (Fig. 4b), when the model of
the first gradient is used. Figure 4 serves as a reference to
compare the results found via the second gradient model,
respectively with characteristic lengths 0.05L (Fig.5) and
0.1L (Fig.6).
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(a)

(b)

Figure 5: Distributions of the mass densities of (a) bone and (b)
material at the end of the process with ` = 0.05L.

(a)

(b)

Figure 6: Distributions of the mass densities of (a) bone and (b)
material at the end of the process with ` = 0.1L.

(a)

(b)

Figure 7: Distributions of bone mass density at the (a) beginning
and (b) end of the process.

(a)

(b)

Figure 8: Distributions of material mass density at the (a) begin-
ning and (b) end of the process.
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Figures 5 and 6 show the distributions of the appar-
ent mass density of (a) bone and (b) biomaterial at the
end of the process with the second gradient model with
` = 0.05L (Fig. 5) and ` = 0.1L (Fig. 6). It can be ob-
served that the main differences are located in the area
in the vicinity of the application of load (see Fig. 1) and
further from the bone area. The portions of resorbed bio-
material and deposited bone grow with increasing char-
acteristic length. To facilitate the understanding of the
distribution of mass density in Figs. 4, 5, and 6, the level
curves in plan have been reported too. In order to de-
sign the mass density to optimize the distribution of the
material, it is thought to reduce the initial mass density
in the neighbourhood of the neutral axis (see Fig. 8a),
given that the load condition is of bending. Thus, the
initial (a) and final (b) states of the remodeling process,
both as regards the bone (Fig. 7) and the biomaterial
(Fig. 8), were compared in the case in which the initial
mass density of the biomaterial is not uniform and the
characteristic length is 0.07L. In the present case the
neutral axis is aligned in the longitudinal direction of the
sample. It is noted that the biomaterial area with greater
porosity constitutes a fast track to the bone penetrating
inside the area of the material, which in fact is more dense
in the area where the initial density of the biomaterial is
lower, having a greater available space.

5. Conclusions

This paper presents a constitutive model for the bone-
biomaterial mixture, characterized by taking into ac-
count a second gradient model. The aim was to com-
pare the results obtained via a simpler model of the first
gradient, noting that the effect of the second gradient
is to delay the process of evolution, in a manner similar
to what happens when the biomaterial is stiffened under
the assumption of first gradient model. This study was
done assuming uniform initial mass densities of bone and
biomaterial in their respective areas. It is then analyzed
the case in which the mass density of the biomaterial is
not uniform at the beginning of the process, resulting in
a greater bone growth where the rarefaction of the bio-
material allows it.
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[36] A. Cazzani, M. Malagù, E. Turco, F. Stochino,
Constitutive models for strongly curved beams
in the frame of isogeometric analysis, Math.
Mech. Solids 21 (2016) 183–209. doi:10.1177/

1081286515577043.

7

http://dx.doi.org/10.1016/j.crme.2012.05.003
http://dx.doi.org/10.1016/j.crme.2012.05.003
http://dx.doi.org/10.1098/rspa.2015.0415
http://dx.doi.org/10.1007/s00033-015-0526-x
http://dx.doi.org/10.1007/s00033-015-0526-x
http://dx.doi.org/10.1002/zamm.200800207
http://dx.doi.org/10.1007/s00419-009-0365-3
http://dx.doi.org/10.1007/s00419-009-0365-3
http://dx.doi.org/10.1016/0020-7683(67)90029-7
http://dx.doi.org/10.1016/0020-7683(67)90029-7
http://dx.doi.org/10.1007/BF00248490
http://dx.doi.org/10.1007/BF00253945
http://dx.doi.org/10.1007/s10237-016-0765-6
http://dx.doi.org/10.1007/s10237-016-0765-6
http://dx.doi.org/10.1063/1.1728759
http://dx.doi.org/10.1007/s00033-015-0588-9
http://dx.doi.org/10.1098/rspa.2008.0530
http://dx.doi.org/10.1098/rspa.2008.0530
http://dx.doi.org/10.1007/s00161-014-0338-9
http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1007/s00161-012-0262-9
http://dx.doi.org/10.1007/s00161-012-0262-9
http://dx.doi.org/10.1016/j.jmbbm.2012.07.012
http://dx.doi.org/10.1016/S0020-7683(00)00018-4
http://dx.doi.org/10.1016/S0020-7683(00)00018-4
http://dx.doi.org/10.1002/zamm.201100082
http://dx.doi.org/10.1002/zamm.201100082
http://dx.doi.org/10.1007/s00033-014-0403-z
http://dx.doi.org/10.1007/s00033-014-0403-z
http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2009)135:3(117)
http://dx.doi.org/doi: 10.1177/1081286514531265.
http://dx.doi.org/doi: 10.1177/1081286514531265.
http://dx.doi.org/10.1177/1081286515577043
http://dx.doi.org/10.1177/1081286515577043


[37] L. Greco, M. Cuomo, An isogeometric implicit G1
mixed finite element for Kirchhoff space rods, Com-
put Methods Appl Mech Eng 298 (2016) 325–349.
doi:10.1016/j.cma.2015.06.014.

[38] L. Greco, M. Cuomo, An implicit G1 multi patch
B-spline interpolation for Kirchhoff–Love space rod,
Comput Methods Appl Mech Eng 269 (2014) 173–
197. doi:10.1016/j.cma.2013.09.018.

8

http://dx.doi.org/10.1016/j.cma.2015.06.014
http://dx.doi.org/10.1016/j.cma.2013.09.018

	Introduction
	Material and methods
	Governing Equations
	Numerical results
	Conclusions

