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A non-unital algebra has UUNP iff its unitization has UUNP

M. El Azhari

Abstract. Let A be a non-unital Banach algebra, S. J. Bhatt and H. V. Dedania
showed that A has the unique uniform norm property (UUNP) if and only if its
unitization has UUNP. Here we prove this result for any non-unital algebra.
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Let A be a non-unital algebra and let Ae = {a + λe : a ∈ A, λ ∈ C} be the
unitization of A with the identity denoted by e. For an algebra norm ‖.‖ on A,
define ‖a+λe‖op = sup{‖(a+λe)b‖ : b ∈ A, ‖b‖ ≤ 1} and ‖a+λe‖1 = ‖a‖+ |λ|
for all a+ λe ∈ Ae. ‖.‖op is an algebra seminorm on Ae, and ‖.‖1 is an algebra
norm on Ae. An algebra norm ‖.‖ on A is called regular if ‖.‖op = ‖.‖ on A.
A uniform norm ‖.‖ on A is an algebra norm satisfying the square property
‖a2‖ = ‖a‖2 for all a ∈ A; and in this case, ‖.‖ is regular and ‖.‖op is a uniform
norm on Ae. An algebra has the unique uniform norm property (UUNP) if it
admits exactly one uniform norm.

Theorem . A non-unital algebra A has UUNP if and only if its unitization Ae

has UUNP.

Proof: Let ‖.‖ and |||.||| be two uniform norms on Ae, then ‖.‖ = |||.||| on A
since A has UUNP, and so ‖.‖op = |||.|||op on Ae. By [3, Corollary 2.2(1)] and
since two equivalent uniform norms are identical, it follows that (‖.‖ = ‖.‖op or
‖.‖ ∼= ‖.‖1) and (|||.||| = |||.|||op = ‖.‖op or |||.||| ∼= |||.|||1 = ‖.‖1); equivalently,
at least one of the following holds:
(i) ‖.‖ = ‖.‖op and |||.||| = |||.|||op = ‖.‖op;
(ii) ‖.‖ = ‖.‖op and |||.||| ∼= |||.|||1 = ‖.‖1;
(iii) ‖.‖ ∼= ‖.‖1 and |||.||| = |||.|||op = ‖.‖op;
(iv) ‖.‖ ∼= ‖.‖1 and |||.||| ∼= |||.|||1 = ‖.‖1.
If either (i) or (iv) is satisfied, then ‖.‖ = |||.|||. By noting that (ii) and (iii) are
similar by interchanging the roles of ‖.‖ and |||.|||, it is enough to assume (ii).
Let (c(A), ‖.‖∼) be the completion of (A, ‖.‖), we distinguish two cases:
(1) c(A) has not an identity:
‖.‖∼ is regular since it is uniform. By [1, Corollary 2], ‖.‖∼op ≤ ‖.‖∼1 ≤ 3‖.‖∼op on
c(A)e (unitization of c(A)). Let a+λe ∈ Ae ⊂ c(A)e, ‖a+λe‖∼1 = ‖a‖∼ + |λ| =
‖a‖+|λ| = ‖a+λe‖1 and ‖a+λe‖∼op = sup{‖(a+λe)b‖∼ : b ∈ c(A), ‖b‖∼ ≤ 1} =
sup{‖(a+λe)b‖ : b ∈ A, ‖b‖ ≤ 1} = ‖a+λe‖op. Therefore ‖.‖op ≤ ‖.‖1 ≤ 3‖.‖op.
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By (ii), ‖.‖ and |||.||| are equivalent uniform norms, and so ‖.‖ = |||.|||.
(2) c(A) has an identity e :
Let (c(Ae), |||.|||∼) be the completion of (Ae, |||.|||). Since ‖.‖ = |||.||| on A, c(A)
can be identified to the closure of A in (c(Ae), |||.|||∼) so that ‖.‖∼ = |||.|||∼ on
c(A). Let a+ λe ∈ Ae ⊂ c(A),
‖a+ λe‖ = ‖a+ λe‖op by (ii)
= sup{‖(a+ λe)b‖ : b ∈ A, ‖b‖ ≤ 1}
= sup{‖(a+ λe)b‖∼ : b ∈ c(A), ‖b‖∼ ≤ 1}
= ‖a+ λe‖∼ since c(A) is unital
= |||a+ λe|||∼ = |||a+ λe|||. Thus ‖.‖ = |||.|||.
Conversely, let ‖.‖ and |||.||| be two uniform norms on A, then ‖.‖op and |||.|||op
are uniform norms on Ae, hence ‖.‖op = |||.|||op since Ae has UUNP. Therefore
‖.‖ = ‖.‖op = |||.|||op = |||.||| on A since ‖.‖ and |||.||| are regular.
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