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This paper presents a bounded formation controller for multiple quadrotors (UAVs) system with leaderfollower structure. Considering the actuator saturation of the quadrotors, the hyperbolic function is used in the formation controller design. The composite nonlinear feedback is integrated in the formation controller in order to improve the formation performance. The simulation and experimental results show that the formation task is achieved with small overshoot and rapid response speed.

I. INTRODUCTION

The cooperative control of multi-quadrotor systems has recently attracted the attention. The manipulation and transportation of large payloads by using multiple UAVs are investigated in [START_REF] Kushleyev | Towards a swarm of agile micro quadrotors[END_REF] and [START_REF] Michael | Cooperative manipulation and transportation with aerial robots[END_REF]. The problem of cooperative surveillance in large outdoor areas by a fleet of micro aerial vehicles is studied in [START_REF] Saska | Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance[END_REF]. The applications such as search and rescue are covered in [START_REF] Dames | Autonomous localization of an unknown number of targets without data association using teams of mobile sensors[END_REF].

In practice, the inputs of a quadrotor are subject to actuator saturations. This problem is taken into account in the quadrotor controller design in the literature. For instance, a nested saturation controller is proposed in [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF]. An algorithm of feasible trajectories planning is investigated in [START_REF] Hehn | Quadrocopter trajectory generation and control[END_REF], where the input constraints of quadrotor are considered.

To the best of our knowledge, the input saturations are not very much considered in the multi-quadrotor systems control. In [START_REF] Su | Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback[END_REF], a low gain feedback control is proposed to avoid the saturation of the system, such that a semi-global leader-follower consensus of linear multi-agent system is achieved. In the formation control of multi-UAV systems, a large formation error can generate a large control output. This could lead to big attitude angles for the UAVs of the formation. Although the low gain controller [START_REF] Su | Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback[END_REF] can guarantee the control output small, the response speed of the closedloop system is low.

In this paper, the formation of quadrotors with Leader-Follower (L-F) structure is investigated. Considering the input saturation of the quadrotor, a bounded formation controller is developed. The formation control strategy is proposed aiming at investigating a bounded differentiable formation controller and obtaining the closed-loop system with fast response speed and small overshoot.
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In recent years, authors in [START_REF] Lin | Toward improvement of tracking performance nonlinear feedback for linear systems[END_REF] [START_REF] Chen | Composite nonlinear feedback control for linear systems with input saturation: theory and an application[END_REF] have proposed and implemented a "composite nonlinear feedback" (CNF) control to improve the performance of a system. The objective of this control method is to reduce the overshoot and meanwhile, keep a rapid rising response.

In this paper, we are inspired by the CNF control method to improve the performance of the formation of UAVs. Considering the input saturation of the quadrotors, a hyperbolic tangent function is used instead of a standard saturated function, which has two non-differentiable points when the function gets saturated. The high-order derivatives of the formation controller of each UAV are needed for the attitude control. Therefore, if we use the standard saturated function, an infinite derivative will be generated at the nondifferentiable points. In contrary, the hyperbolic tangent function is always differentiable and has bounded high-order derivatives.

The paper is organized as follows. The modeling and control of one quadrotor are presented in section II. The formation control design and the stability analysis are shown in section III. Simulation and experimental results are given in section IV. Finally, conclusions are stated in section V.

II. MODELING AND CONTROL OF ONE UAV

A. Modeling

The dynamics of a quadrotor is modeled as the motion of a rigid body in 3-D space under a thrust force and three moments, which are generated by the thrust forces of the four rotors. The orientation of the quadrotor with respect to the inertial frame is represented by the rotation matrix R i ∈ SO(3), where SO(3) represents a special orthogonal group, and whose determinant is one.

Vector

X i = [X i ,Y i , Z i ]
T represents the coordinates of the center of mass of a quadrotor in the fixed inertial frame o e x e y e z e . The Euler angles (roll, pitch and yaw) are represented by the vector Θ i = [φ i , θ i , ψ i ] T . The inertia matrix J = diag{I x b , I y b , I z b } of a quadrotor is diagonal, if I x b , I y b and I z b represent the moments of inertia with respect to the bodyfixed frame x b , y b and z b respectively. The angular velocity of the quadrotor i in the body-fixed frame is represented by Ω i ∈ R 3 . The function S(•) : R 3 → R 3×3 represents an operation that transforms a vector in R 3 to a skew-symmetric matrix R 3×3 .

The roll, pitch and yaw moments are represented by

τ i = [τ φ i , τ θ i , τ ψ i ] T ∈ R 3 .
The thrust force is represented by F T i . The rotation matrix R i from the body-fixed frame to the inertial frame is with the sequence of roll-pitch-yaw, thus, we obtain the translational dynamics as follows Ẍi = (sin ψ i sin φ i + cos ψ i cos φ i sin θ i )

F T i m Ÿi = (cos φ i sin ψ i sin θ i -cos ψ i sin φ i ) F T i m Zi = -g + (cos θ i cos φ i ) F T i m (1)
where m represents the mass of a quadrotor and g represents the gravity.

Let us denote

T i =   1 0 -sin θ i 0 cos φ i cos θ i sin φ i 0 -sin φ i cos θ i cos φ i   and Ti =   tan θ i 0 cos θ i + tan θ i sin θ i 0 -cos θ i 0 sec θ i 0 tan θ i  
We can rewrite the rotational dynamics as follows

  φi θi ψi   =(JT i ) -1 τ i + Ti •   φi θi φi ψi θi ψi   + (JT i ) -1 S T   T i •   φi θi ψi     JT i •   φi θi ψi   (2) 
The dynamics of a quadrotor can be generally divided into two parts, namely, the translational dynamics (1) in outer-loop, and the rotational dynamics (2) in inner-loop respectively.

B. Attitude control

Since the attitude angles and the angular velocities are measurable, the torque vector τ i is given as follows

τ i = JT i τi -JT i Ti   φi θi φi ψi θi ψi   -S T T i • Θi JT i • Θi (3) 
where τi = Θd i - 

k 2Θ i ε ( Θi -Θd i ) - k 1Θ i ε 2 (Θ i -Θ d i ) (4) 
k 2Θ i ε ( Θi -Θd i ) - k 1Θ i ε 2 (Θ i -Θ d i ) (5) 
Then, the attitude angles in Θ i can track Θ d i exponentially. The converging speed is decided by the gain matrices k 1Θ i and k 2Θ i . Let us denote e Θ i = Θ i -Θ d i and ẽΘ i = εe Θ i , then, we can rewrite (5) as follows

ε d dt e Θ i ėΘ i = 0 3×3 I 3 -k 1Θ i -k 2Θ i e Θ i ėΘ i (6) 
If we define dt/dt = 1/ε, then, we have

d εe Θ i ε ėΘ i T dt = d e Θ i ėΘ i T dt
such that the dynamics of the attitude errors in ( 6) can be represented in the time scale t as follows.

d e Θ i (t) ėΘ i (t) T dt = 0 3×3 I 3 -k 1Θ i -k 2Θ i e Θ i (t) ėΘ i (t) (7) 
It is not difficult to verify that the origin of ( 7) is exponentially stable, such that we obtain

e Θ i (t) ėΘ i (t) = exp 0 3×3 I 3 -k 1Θ i -k 2Θ i t e Θ i (t 0 ) ėΘ i (t 0 ) (8) 
The initial value t0 = 0 is defined at t = t k , where t k is an arbitrary time instant in time scale t. Then the new time variable satisfies t = (tt k )/ε. Then we obtain t = t k + ε t.

If ε is sufficiently small, the variable t slowly varies in time scale t. Intuitively, the time variable t is not "sensitive" to the change of t because of the small ε. Since

0 3×3 I 3 -k 1Θ i -k 2Θ i is negative definite, there exists a finite time ta in time scale t such that exp 0 3×3 I 3 -k 1Θ i -k 2Θ i
t converges to a small neighborhood Ω(e Θ i , ėΘ i ) of the equilibrium point e Θ i ėΘ i = 0 6 . This convergence dose not depend on the time instance t k and the translational states X i (t k ). Thus, the equilibrium point of system ( 7) is exponentially stable, uniformly in (t, X i (t),Y i (t)).

We recall that the torques in τ i and the total thrust force F T i are generated by the thrusts of the four propellers of the quadrotor. In practice, the propellers have limit power.

According to [START_REF] Kendoul | Real-time nonlinear embedded control for an autonomous quadrotor helicopter[END_REF], in order to prevent τ i from hitting the input saturation, the terms Θ d i , Θd i and Θd i should be bounded. Additionally, we require that the absolute values of the desired pitch and roll angles are smaller than π/2.

C. Altitude control

In this work, the desired altitude Z d i of each UAV is constant. In other words, the formation takes place in o e x e y e plan. The thrust force is given as follows

F T i = mg + m • u Z i cos θ i cos φ i (9) 
where u Z i represents the altitude controller. Substituting F T i in (1), we obtain

Ẍi = sin ψ i tan φ i cos θ i + cos ψ i tan θ i (u Z i + g) Ÿi = sin ψ i tan θ i -cos ψ i tan φ i cos θ i (u Z i + g) Zi = u Z i (10)
We observe from [START_REF] Hou | Distributed leader-follower formation control for multiple quadrotors with weighted topology[END_REF] that the altitude control is decoupled with the planar translational dynamics (X i and Y i ). Thus, we give the altitude controller as follows

u Z i = σ b (-k 2Z Żi -k 1Z (Z i -Z d i )) (11) 
Function σ b (•) represents a standard saturation function.

σ b (a) = sgn(a) min{b, |a|} (12) 
where "sgn" represents the sign function. We select b = 1. The controller (11) asymptotically stabilizes the altitude. Since the altitude control is decoupled with the planar translational dynamics, the convergence of Z i do not depend on the other states of the quadrotors except Z i and Żi . When the altitude of the quadrotors gets stabilized, u Z i ≈ 0. III. FORMATION CONTROLLER DESIGN Since the planar translational motions are generated by the attitude angles, the formation controller is to obtain the proper desired attitude angles Θ d i . If we design the desired attitude angles as follows

θ d i = arctan u X i g φ d i = arctan -u Y i cos(arctan(u X i /g)) g ψ d i = 0 (13)
where u X i and u Y i represent the formation controllers in direction x e and y e in the inertial frame. Then, the planar translational dynamics of UAV i yields

Ẍi =u X i + δ X i Ÿi =u Y i + δ Y i (14)
The terms δ X i and δ Y i have the following expression.

δ X i = (g + u Z i )• sin ∆ψ i • tan(φ d i + ∆φ i ) cos θ d i + ∆θ i + cos ∆ψ i • tan θ d i + ∆θ i - g g + u Z i tan θ d i δ Y i = (g + u Z i )• -cos ∆ψ i • tan(φ d i + ∆φ i ) cos(θ d i + ∆θ i ) + sin ∆ψ i • tan θ d i + ∆θ i + g g + u Z i tan φ d i cos θ d i
where ∆φ i , ∆θ i and ∆ψ i represent the tracking error of the attitude angles

Θ i -Θ d i = [∆φ i , ∆θ i , ∆ψ i ].
We can observe that δ X i and δ Y i are in terms of u Z i , and

Θ i -Θ d i .
According to (8), the attitude tracking error Θ i -Θ d i is bounded (since Θ d i is bounded) and exponentially converges to the origin. Additionally, |u Z i | ≤ 1 and u Z i → 0 when the altitude is stabilized. Thus, we obtain that δ X i and δ Y i are bounded.

A. Leader-Follower formation of UAVs

In this paper, an L-F formation is considered. The indices of the UAVs compose a set V = {1, 2, . . . , n}, where n is the number of the UAVs in the formation. The subset V L ⊆ V represents the indices of the leaders, therefore, V -V L represents the set of followers.

Firstly, we define the "formation task" for a multiquadrotor system as follows.

Definition 1 (Formation task): A formation task for a multi-quadrotor system with L-F architecture is represented by a desired formation trajectory (given to the leader(s)) and a desired geometric pattern (desired inter-distance and orientation between neighboring quadrotors) for the group of quadrotors.

The formation task describes the desired integral behaviors of the multiple quadrotors. The objective of the formation control is to accomplish the formation task, i.e., the quadrotors keep the desired pattern and track a given trajectory by using the formation controllers.

We consider the planar formation of UAVs. The desired altitude is given constant. We denote by x i = [X i ,Y i ] T and ẋi = [ Ẋi , Ẏi ] T the planar position and velocity vectors for UAV i. Each UAV can obtain the relative positions and velocities with respect to its neighbors, which can be represented by vectors [(x ix j ) T , ( ẋiẋ j ) T ] T , j ∈ N i . If the UAV is a leader, besides the foregoing measurements, it can also obtain the relative position and velocity with respect to the formation trajectory [(x ir(t)) T , ( ẋiṙ(t)) T ] T , where we denote by r(t) = [r X (t), r Y (t)] T the reference formation trajectory (RFT).

The rigid formation of quadrotors are considered in this paper. Thus, the formation controller is designed to guarantee that all the quadrotors track the RFT with some constant biases

d i0 = [d X i0 , d Y i0 ] ∈ R 2
, such that the quadrotors keep a constant formation pattern. Therefore, the desired trajectory for each UAV should satisfy x d i (t)r(t) = d i0 and ẋd i (t)ṙ(t) = 0, then, we obtain

x d i (t) = d i0 + r(t) and ẋd i (t) = ṙ(t)
An example of four UAVs with rigid formation task is shown in Fig. 1. However, the RFT r(t) is not available for the followers, therefore, the desired trajectory x d i (t) for UAV i is not explicitly available. The behavior of each UAV depends on its neighbors states (and r(t), if it is a leader), then, the formation task is finally achieved. The bias with respect to the RFT is attained implicitly by the constant inter-distances between a UAV and its neighbors. Then, the formation problem becomes: how to find the available desired trajectory for UAV i ∈ V.

Let us make a sum of the relative position state vectors. Note that we drop the explicit expression of time in the related terms for the sake of simplicity.

∑ j∈N i (x i -x j -d i j ) if i ∈ V -V L ∑ j∈N i (x i -x j -d i j ) + x i -r -d i0 if i ∈ V L (15) 
The inter-distance is given by d i j = d i0 -d j0 . Then, equations (15) can be rewritten as follows

∑ j∈N i (x i -r -d i0 -(x j -r -d j0 )) if i ∈ V -V L ∑ j∈N i (x i -r -d i0 -(x j -r -d j0 )) + x i -r -d i0 if i ∈ V L
We introduce the available desired trajectory for each UAV as follows

xd i =      1 |N i | ∑ j∈N i (x j + d i j ) if i ∈ V -V L 1 |N i +1| ∑ j∈N i (x j + d i j ) + r + d i0 if i ∈ V L
(16) we then observe that xd i is available for UAV i. We rewrite equation (15) in matrix form for all the quadrotors as follows

   x 1 -xd 1 . . . x n -xd n    = (G ⊗ I 2 )    x 1 -x d 1 . . . x n -x d n    (17) 
where G ∈ R n×n represents the normalized interaction matrix (see [START_REF] Hou | Distributed leader-follower formation control for multiple quadrotors with weighted topology[END_REF]). The symbol ⊗ represents the Kronecker product. The formation task is achieved if G is invertible and for each UAV i ∈ V, x ixd i → 0 asymptotically. According to [START_REF] Hou | Distributed leader-follower formation control for multiple quadrotors with weighted topology[END_REF], G is invertible if the graph of the multi-UAV system is connected and at least one leader exists. In this paper, we assume that this condition is satisfied. In the following subsection, we will investigate the formation controller which stabilizes the formation error x ixd i → 0.

B. Formation control

We firstly consider the nominal model of (14) by setting δ X i and δ Y i null. The dynamics of X i and Y i are similar, thus, we consider the dynamics of X i for example. Note that in the sequel, the superscript "X" is omitted for the sake of simplicity. Then, we have

Ẍi = u i (18) 
Let us denote by e iX = X i -Xd i the formation error in x e direction. Let us define a nonlinear function ρ i : R 2 → R. We propose the formation controller as follows

u i = -M tanh (k 2 ėiX + k 1 e iX ) -M tanh(ρ i (e iX , ėiX )) + Ẍd i ρ i (e iX , ėiX ) = k N ėiX (19)
where M represents a positive constant scalar. k 1 and k 2 are two positive constant gains. The symbol k N represents a positive nonlinear gain. For example, we can select k N as follows

k N = η 1 exp -η 2 e 2 iX ( 20 
)
where η 1 ≥ 0, η 2 > 0. The selection of k N in (20) has a physical meaning. When the formation error e iX is large, the effect of ρ i (e iX , ėiX ) is small. In contrary, when e iX approaches zero, the nonlinear gain k N increases, which can reduce the approaching velocity, such that the overshoot is small. Proposition 1: The formation controller u i (19) is bounded.

Proof: According to (16), the desired trajectory Xd i for UAV i satisfies

Xd i =      1 |N i | ∑ j∈N i (X j + d i j ) if i ∈ V -V L 1 |N i +1| ∑ j∈N i (X j + d i j ) + r X + d i0 if i ∈ V L
where d i j , d i0 ∈ R (recall that the subscript "X" has been omitted here) represent some constant offset scalar. Then,

Ẋd i =      1 |N i | ∑ j∈N i Ẋj if i ∈ V -V L 1 |N i +1| ∑ j∈N i Ẋj + ṙX if i ∈ V L Let us denote by ūi = k 2 ėiX + k 1 e iX . Then, if i ∈ V -V L , Ẍd i = 1 |N i | ∑ j∈N i -M tanh ū j -M tanh ρ j + Ẍd j such that Ẍd i - 1 
|N i | ∑ j∈N i Ẍd j = - 1 |N i | ∑ j∈N i (M tanh ū j + M tanh ρ j ) if i ∈ V L , Ẍd i = 1 |N i + 1| ∑ j∈N i -M tanh ū j -M tanh ρ j + Ẍd j + rX such that Ẍd i - 1 |N i + 1| ∑ j∈N i Ẍd j = - 1 
|N i + 1| ∑ j∈N i (M tanh ū j + M tanh ρ j ) -rX
Without loss of generality, we assume that UAVs 1 ∼ i are leaders, while i + 1 ∼ n are followers. Then, we rewrite the foregoing equations for all the quadrotors in matrix form as follows

   Ẍd 1 . . . Ẍd n    = G -1 •                  -1 |N 1 +1| ∑ j∈N 1 (M tanh ū j + M tanh ρ j ) -rX . . . -1 |N i +1| ∑ j∈N i (M tanh ū j + M tanh ρ j ) -rX -1 |N i+1 | ∑ j∈N i+1 (M tanh ū j + M tanh ρ j ) . . . -1 |N n | ∑ j∈N n (M tanh ū j + M tanh ρ j )                  (21)
The RFT is usually selected such that its derivatives are bounded. Then, we observe that Ẍd i , i ∈ V are bounded, since the function tanh(•) is bounded by 1. Therefore, we conclude that u i , i ∈ V are bounded.

Substituting (19) into the first equation in (18), we obtain

ëiX = -M tanh ūi -M tanh ρ i (22) 
Proposition 2: The origin of ( 22) is globally asymptotically stable, if i) k N is given by (20); ii) the gains in ūi satisfy

k 1 ≥ η 1 k 2 M.
Proof: Let us define a continuously differentiable, radially unbounded positive-definite function as follows

V i = ln cosh(k 2 ėiX + k 1 e iX ) + k 1 2M ė2 iX (23) 
V i = 0, if and only if e iX = 0 and ėiX = 0. Then, the derivative of

V i yields Vi = tanh ūi • ui + k 1 M ėiX ëiX = tanh ūi (k 2 ëiX + k 1 ėiX ) + k 1 M ėiX (-M tanh ūi -M tanh ρ i ) = tanh ūi (k 2 (-M tanh ūi -M tanh ρ i ) + k 1 ėiX ) -k 1 ėiX (tanh ūi + tanh ρ i ) = -k 2 M tanh 2 ūi -k 2 M tanh ūi tanh ρ i -k 1 ėiX tanh ρ i (24) 
Then, we have

Vi ≤ -k 2 M tanh 2 ( ūi ) -k 1 ėiX tanh ρ i + k 2 M| tanh ūi || tanh ρ i |
According to (19), ρ i has the same sign as ėiX . Then, -k 1 ėiX tanh ρ i ≤ 0.

• Case 1:

If |ρ i | ≤ | ūi |, | tanh ρ i | ≤ | tanh ūi |. Then, | tanh ρ i || tanh ūi | ≤ tanh 2 ūi . Therefore, Vi ≤ -k 1 ėiX tanh ρ i ≤ 0 (25) 
We obtain that Vi is semi-definite negative. We then invoke here the LaSalle's invariance principle. Let us compute the largest invariant set where Vi = 0, such that equation (24) equal to zero. We consider the following cases.

-Case a: if ėiX = 0, then, according to (25), Vi < 0, which contradicts Vi = 0. -Case b: if ėiX = 0, then, according to (24), Vi = -k 2 M tanh 2 (k 1 e iX ) = 0, which implies e iX = 0. Therefore, in Case 1, the largest invariant set contains only the origin.

• Case 2: If |ρ i | > | ūi |, |ρ i | > | tanh ūi | ≥ 0. Since k 1 ≥ η 1 k 2 M, then, we have k 2 M| tanh ūi | < k 1 | ėiX |. Thus, Vi ≤ -k 2 M tanh 2 ūi ≤ 0 (26)
We obtain that Vi is semi-definite negative. As mentioned before, we compute the largest invariant set where Vi = 0, such that equation (24) equal to zero. We consider the following cases.

-Case a: if | ūi | = 0, then, according to (26), Vi < 0, which contradicts Vi = 0. -Case b: if | ūi | = 0, then, according to (24), Vi = -k 1 ėiX tanh ρ i = 0, which implies ėiX = 0. Since ūi = 0, we obtain that e iX = 0. Therefore, in Case 2, the largest invariant set contains only the origin. Since the largest invariant set contains only the origin, then, according to the LaSalle theorem, the origin of the system (22) is globally asymptotically stable.

Remark 1: The decoupled property of X and Y dynamics permits us to design the formation controller separately, the design procedure of u Y i is the same as u X i , such that Let us reconsider the terms δ X i and δ Y i in (14) caused by the tracking error of the attitude angles. We introduce our main result in the following theorem.

u Y i = -M tanh(k 2 ėiY + k 1 e iY ) -
Theorem 1: Let G be the interaction matrix of an L-F formation of quadrotors with constant topology. The formation controllers are given in ( 19) and ( 27). The attitude is controlled by [START_REF] Saska | Autonomous deployment of swarms of micro-aerial vehicles in cooperative surveillance[END_REF]. The altitude is controlled by [START_REF] Chen | Composite nonlinear feedback control for linear systems with input saturation: theory and an application[END_REF] where u Z i is given in (11). Then, e iX and e iY converge to zero asymptotically, if i) G is invertible, ii) the initial velocity of each UAV is finite.

Proof: The terms δ iX and δ iY are in terms of the tracking errors of the attitude angles (∆φ i , ∆θ i and ∆ψ i ) and u Z i . According to (21), ( 19), ( 27) and (11), the controllers u X i , u Y i and u Z i are bounded. Then, according to (13), we know that θ d i , φ d i and ψ d i are bounded. The attitude angles are controlled by (3), then, ∆φ i , ∆θ i and ∆ψ i are bounded. Therefore, δ iX and δ iY are bounded.

We take e iX for example. Then, (22

) becomes ëiX = -M tanh ūi -M tanh ρ i + δ iX (28) 
The derivative of the positive semidefinite function V i in (23) yields

Vi = tanh ūi • ui + k 1 M ėiX ëiX = tanh ūi (k 2 ëiX + k 1 ėiX ) - k 1 M ėiX (M tanh ūi + M tanh ρ i -δ iX ) = tanh ūi (k 2 (-M tanh ūi -M tanh ρ i + δ iX ) + k 1 ėiX ) -k 1 ėiX (tanh ūi + tanh ρ i + δ iX M ) = -k 2 M tanh 2 ūi -k 2 M tanh ūi tanh ρ i -k 1 ėiX tanh ρ i + k 2 tanh ūi δ iX - k 1 M ėiX δ iX ≤ -k 2 M tanh 2 ūi -k 2 M tanh ūi tanh ρ i -k 1 ėiX tanh ρ i + (k 2 | tanh ūi | + k 1 M | ėiX |)|δ iX |
Since the states of a linear system will not diverge to infinite within finite time interval with bounded control input, then, if the initial condition is in the compact set {(e iX (t 0 ), ėiX (t 0 ))| ėiX (t 0 ) < ∞}, we obtain that ėiX is bounded in finite time interval [t 0 ,t 1 ), where t 1 < ∞. As analyzed in section II-B, the rotational dynamics of a quadrotor is in the fast time scale t with controller (4). Then, there exists a finite time ta t 1 such that the attitude errors e Θ i enter the neighborhood of the origin, which renders |δ iX (t a )| ≤ ζ , where ζ is a scalar. Then, for t > ta , we have

k 2 | tanh ūi | + k 1 M | ėiX | |δ iX | ≤ |k 2 M tanh 2 ūi + k 2 M tanh ūi tanh ρ i + k 1 ėiX tanh ρ i | (29) 
Then, Vi ≤ 0, when t > ta . Therefore, the semi-global asymptotic stability of the origin of system (28) is derived, when t > ta .

Remark 3: In theorem 1, if the condition (29) is satisfied when ta = t 0 , the semi-global stability of the system (28) is obtained.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Heudiasyc laboratory has developed a PC-based simulatorexperiment framework for controlling a quadrotor and also a flock of quadrotors. The programs (written in C++) running in the UAVs are the same, both in the simulator and in the embedded processors of real UAVs. When we realize the real-time experiment, the PC acts as a ground station, which is responsible for displaying and sending instructions such as taking off and landing. The UAVs are all autonomous. The formations with and without the CNF are shown in Fig. 2 and Fig. 3 respectively. In this test, the formation controllers (19) and ( 27) are simplified by setting Ẍd i = 0 and Ÿ d i = 0. We observe that in both formations, the quadrotors are able to converge to the desired positions with hyperbolic tangent function-based controller. However, after adding CNF, the performance is greatly improved.

The foregoing tests validated by using the simulator are carried out in the real-time experiments. The output curves are shown in Fig. 4. We observe that the formation with the CNF controller (on the right) has small overshoot and rapid response. The corresponding video is available on the site In this paper, the CNF based bounded formation controller is proposed. The hyperbolic tangent function is used to generate a differentiable formation controller. The simulation and the experimental results show that the CNF based formation controller with hyperbolic tangent function have better performance than a controller without CNF and a controller with a standard saturated function.

Fig. 1 .

 1 Fig. 1. Rigid formation task for four UAVs, where UAV 1 is a leader. The objective is to track the trajectory r(t) with biases d 10 = [-1, 1] T , d 20 = [-1, -1] T , d 30 = [1, -1] T and d 40 = [1, 1] T .

Fig. 2 .

 2 Fig. 2. Formation of four quadrotors without CNF

Fig. 3 .

 3 Fig. 3. Formation of four quadrotors with CNF

Fig. 4 .

 4 Fig. 4. Real-time formation of four quadrotors. Left: without CNF; Right: with CNF https://youtu.be/tDBiRAGp6r0 V. CONCLUSION

  M tanh ρ i (e iY , ėiY ) + Ÿ d i (27) Remark 2: The desired attitude angles for each UAV are obtained by substituting (19) and (27) into (13).

	Owing to the
	use of the hyperbolic tangent function, u X i and u Y i are high-order differentiable, such that the derivatives θ d i , θ d i and φ d i , φ d i are bounded.