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Composite Nonlinear Feedback-based Bounded Formation Control of
Multi-quadrotor Systems

Zhicheng HOU and Isabelle FANTONI

Abstract— This paper presents a bounded formation con-
troller for multiple quadrotors (UAVs) system with leader-
follower structure. Considering the actuator saturation of the
quadrotors, the hyperbolic function is used in the forma-
tion controller design. The composite nonlinear feedback is
integrated in the formation controller in order to improve
the formation performance. The simulation and experimental
results show that the formation task is achieved with small
overshoot and rapid response speed.

I. INTRODUCTION

The cooperative control of multi-quadrotor systems has
recently attracted the attention. The manipulation and trans-
portation of large payloads by using multiple UAVs are
investigated in [1] and [2]. The problem of cooperative
surveillance in large outdoor areas by a fleet of micro aerial
vehicles is studied in [3]. The applications such as search
and rescue are covered in [4].

In practice, the inputs of a quadrotor are subject to
actuator saturations. This problem is taken into account in the
quadrotor controller design in the literature. For instance, a
nested saturation controller is proposed in [5]. An algorithm
of feasible trajectories planning is investigated in [6], where
the input constraints of quadrotor are considered.

To the best of our knowledge, the input saturations are
not very much considered in the multi-quadrotor systems
control. In [7], a low gain feedback control is proposed to
avoid the saturation of the system, such that a semi-global
leader-follower consensus of linear multi-agent system is
achieved. In the formation control of multi-UAV systems,
a large formation error can generate a large control output.
This could lead to big attitude angles for the UAVs of the
formation. Although the low gain controller [7] can guarantee
the control output small, the response speed of the closed-
loop system is low.

In this paper, the formation of quadrotors with Leader-
Follower (L-F) structure is investigated. Considering the
input saturation of the quadrotor, a bounded formation
controller is developed. The formation control strategy is
proposed aiming at investigating a bounded differentiable
formation controller and obtaining the closed-loop system
with fast response speed and small overshoot.
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In recent years, authors in [8] [9] have proposed and imple-
mented a “composite nonlinear feedback” (CNF) control to
improve the performance of a system. The objective of this
control method is to reduce the overshoot and meanwhile,
keep a rapid rising response.

In this paper, we are inspired by the CNF control method
to improve the performance of the formation of UAVs.
Considering the input saturation of the quadrotors, a hy-
perbolic tangent function is used instead of a standard
saturated function, which has two non-differentiable points
when the function gets saturated. The high-order derivatives
of the formation controller of each UAV are needed for the
attitude control. Therefore, if we use the standard saturated
function, an infinite derivative will be generated at the non-
differentiable points. In contrary, the hyperbolic tangent
function is always differentiable and has bounded high-order
derivatives.

The paper is organized as follows. The modeling and
control of one quadrotor are presented in section II. The
formation control design and the stability analysis are shown
in section III. Simulation and experimental results are given
in section IV. Finally, conclusions are stated in section V.

II. MODELING AND CONTROL OF ONE UAV

A. Modeling

The dynamics of a quadrotor is modeled as the motion
of a rigid body in 3-D space under a thrust force and three
moments, which are generated by the thrust forces of the
four rotors. The orientation of the quadrotor with respect to
the inertial frame is represented by the rotation matrix Ri ∈
SO(3), where SO(3) represents a special orthogonal group,
and whose determinant is one.

Vector Xi = [Xi,Yi,Zi]
T represents the coordinates of the

center of mass of a quadrotor in the fixed inertial frame
oexeyeze. The Euler angles (roll, pitch and yaw) are rep-
resented by the vector Θi = [φi,θi,ψi]

T . The inertia matrix
J = diag{Ixb , Iyb , Izb} of a quadrotor is diagonal, if Ixb , Iyb and
Izb represent the moments of inertia with respect to the body-
fixed frame xb, yb and zb respectively. The angular velocity
of the quadrotor i in the body-fixed frame is represented
by Ωi ∈ R3. The function S(·) : R3 → R3×3 represents an
operation that transforms a vector in R3 to a skew-symmetric
matrix R3×3.

The roll, pitch and yaw moments are represented by
τi = [τφi ,τθi ,τψi ]

T ∈ R3. The thrust force is represented by
FTi . The rotation matrix Ri from the body-fixed frame to the
inertial frame is with the sequence of roll-pitch-yaw, thus,



we obtain the translational dynamics as follows

Ẍi = (sinψi sinφi + cosψi cosφi sinθi)
FTi
m

Ÿi = (cosφi sinψi sinθi− cosψi sinφi)
FTi
m

Z̈i =−g+(cosθi cosφi)
FTi
m

(1)

where m represents the mass of a quadrotor and g represents
the gravity.

Let us denote

Ti =

1 0 −sinθi
0 cosφi cosθi sinφi
0 −sinφi cosθi cosφi


and

T̃i =

tanθi 0 cosθi + tanθi sinθi
0 −cosθi 0

secθi 0 tanθi


We can rewrite the rotational dynamics as follows φ̈i

θ̈i
ψ̈i

=(JTi)
−1

τi + T̃i ·

 φ̇iθ̇i
φ̇iψ̇i
θ̇iψ̇i


+(JTi)

−1ST

Ti ·

 φ̇i
θ̇i
ψ̇i

JTi ·

 φ̇i
θ̇i
ψ̇i

 (2)

The dynamics of a quadrotor can be generally divided
into two parts, namely, the translational dynamics (1) in
outer-loop, and the rotational dynamics (2) in inner-loop
respectively.

B. Attitude control

Since the attitude angles and the angular velocities are
measurable, the torque vector τi is given as follows

τi = JTiτ̄i− JTiT̃i

 φ̇iθ̇i
φ̇iψ̇i
θ̇iψ̇i

−ST (Ti · Θ̇i
)

JTi · Θ̇i (3)

where

τ̄i = Θ̈
d
i −

k2Θi

ε
(Θ̇i− Θ̇

d
i )−

k1Θi

ε2 (Θi−Θ
d
i ) (4)

Notations k1Θi and k2Θi represent two diagonal positive-
definite gain matrices. Notations Θd

i , Θ̇d
i and Θ̈i

d represent
the desired Euler angles vector and their derivatives. The
scalar ε ∈ (0,1].

Substituting (3) into (2), we obtain

Θ̈i = Θ̈
d
i −

k2Θi

ε
(Θ̇i− Θ̇

d
i )−

k1Θi

ε2 (Θi−Θ
d
i ) (5)

Then, the attitude angles in Θi can track Θd
i exponentially.

The converging speed is decided by the gain matrices k1Θi

and k2Θi . Let us denote eΘi = Θi−Θd
i and ẽΘi = εeΘi , then,

we can rewrite (5) as follows

ε
d
dt

[
eΘi
˙̃eΘi

]
=

[
03×3 I3
−k1Θi −k2Θi

][
eΘi
˙̃eΘi

]
(6)

If we define dt̄/dt = 1/ε , then, we have

d
[
εeΘi ε ˙̃eΘi

]T
dt

=
d
[
eΘi

˙̃eΘi

]T
dt̄

such that the dynamics of the attitude errors in (6) can be
represented in the time scale t̄ as follows.

d
[
eΘi(t̄) ˙̃eΘi(t̄)

]T
dt̄

=

[
03×3 I3
−k1Θi −k2Θi

][
eΘi(t̄)
˙̃eΘi(t̄)

]
(7)

It is not difficult to verify that the origin of (7) is exponen-
tially stable, such that we obtain[

eΘi(t̄)
˙̃eΘi(t̄)

]
= exp

([
03×3 I3
−k1Θi −k2Θi

]
t̄
)[

eΘi(t̄0)
˙̃eΘi(t̄0)

]
(8)

The initial value t̄0 = 0 is defined at t = tk, where tk is an
arbitrary time instant in time scale t. Then the new time
variable satisfies t̄ = (t− tk)/ε . Then we obtain t = tk + ε t̄.
If ε is sufficiently small, the variable t slowly varies in time
scale t̄. Intuitively, the time variable t is not “sensitive” to the

change of t̄ because of the small ε . Since
[

03×3 I3
−k1Θi −k2Θi

]
is negative definite, there exists a finite time t̄a in time

scale t̄ such that exp
([

03×3 I3
−k1Θi −k2Θi

]
t̄
)

converges to a

small neighborhood Ω(eΘi , ˙̃eΘi) of the equilibrium point[
eΘi

˙̃eΘi

]
= 06. This convergence dose not depend on the

time instance tk and the translational states Xi(tk). Thus,
the equilibrium point of system (7) is exponentially stable,
uniformly in (t,Xi(t),Yi(t)).

We recall that the torques in τi and the total thrust force
FTi are generated by the thrusts of the four propellers of the
quadrotor. In practice, the propellers have limit power.

According to (5), in order to prevent τi from hitting
the input saturation, the terms Θd

i , Θ̇d
i and Θ̈d

i should be
bounded. Additionally, we require that the absolute values
of the desired pitch and roll angles are smaller than π/2.

C. Altitude control

In this work, the desired altitude Zd
i of each UAV is

constant. In other words, the formation takes place in oexeye
plan. The thrust force is given as follows

FTi =
mg+m ·uZ

i
cosθi cosφi

(9)

where uZ
i represents the altitude controller.

Substituting FTi in (1), we obtain

Ẍi =
(

sinψi
tanφi
cosθi

+ cosψi tanθi

)
(uZ

i +g)

Ÿi =
(

sinψi tanθi− cosψi
tanφi
cosθi

)
(uZ

i +g)

Z̈i = uZ
i

(10)

We observe from (10) that the altitude control is decoupled
with the planar translational dynamics (Xi and Yi). Thus, we
give the altitude controller as follows

uZ
i = σb(−k2Z Żi− k1Z(Zi−Zd

i )) (11)



Function σb(·) represents a standard saturation function.

σb(a) = sgn(a)min{b, |a|} (12)

where “sgn” represents the sign function. We select b = 1.
The controller (11) asymptotically stabilizes the altitude.

Since the altitude control is decoupled with the planar
translational dynamics, the convergence of Zi do not depend
on the other states of the quadrotors except Zi and Żi. When
the altitude of the quadrotors gets stabilized, uZ

i ≈ 0.

III. FORMATION CONTROLLER DESIGN

Since the planar translational motions are generated by
the attitude angles, the formation controller is to obtain the
proper desired attitude angles Θd

i . If we design the desired
attitude angles as follows

θ d
i = arctan

(
uX

i
g

)
φ d

i = arctan
(
−uY

i cos(arctan(uX
i /g))

g

)
ψd

i = 0

(13)

where uX
i and uY

i represent the formation controllers in
direction xe and ye in the inertial frame. Then, the planar
translational dynamics of UAV i yields

Ẍi =uX
i +δ

X
i

Ÿi =uY
i +δ

Y
i

(14)

The terms δ X
i and δY

i have the following expression.

δ
X
i = (g+uZ

i )·

(
sin∆ψi ·

tan(φ d
i +∆φi)

cos
(
θ d

i +∆θi
)+

cos∆ψi · tan
(

θ
d
i +∆θi

)
− g

g+uZ
i

tanθ
d
i

)
δ

Y
i = (g+uZ

i )·
(
−cos∆ψi ·

tan(φ d
i +∆φi)

cos(θ d
i +∆θi)

+

sin∆ψi · tan
(

θ
d
i +∆θi

)
+

g
g+uZ

i

tanφ d
i

cosθ d
i

)
where ∆φi, ∆θi and ∆ψi represent the tracking error of the
attitude angles Θi−Θd

i = [∆φi,∆θi,∆ψi]. We can observe that
δ X

i and δY
i are in terms of uZ

i , and Θi−Θd
i . According to

(8), the attitude tracking error Θi −Θd
i is bounded (since

Θd
i is bounded) and exponentially converges to the origin.

Additionally, |uZ
i | ≤ 1 and uZ

i → 0 when the altitude is
stabilized. Thus, we obtain that δ X

i and δY
i are bounded.

A. Leader-Follower formation of UAVs

In this paper, an L-F formation is considered. The indices
of the UAVs compose a set V = {1,2, . . . ,n}, where n is
the number of the UAVs in the formation. The subset VL ⊆
V represents the indices of the leaders, therefore, V −VL
represents the set of followers.

Firstly, we define the “formation task” for a multi-
quadrotor system as follows.

Definition 1 (Formation task): A formation task for a
multi-quadrotor system with L-F architecture is represented
by a desired formation trajectory (given to the leader(s))

and a desired geometric pattern (desired inter-distance and
orientation between neighboring quadrotors) for the group of
quadrotors.

The formation task describes the desired integral behaviors
of the multiple quadrotors. The objective of the formation
control is to accomplish the formation task, i.e., the quadro-
tors keep the desired pattern and track a given trajectory by
using the formation controllers.

We consider the planar formation of UAVs. The desired
altitude is given constant. We denote by xi = [Xi,Yi]

T and
ẋi = [Ẋi,Ẏi]

T the planar position and velocity vectors for UAV
i. Each UAV can obtain the relative positions and velocities
with respect to its neighbors, which can be represented
by vectors [(xi − x j)

T ,(ẋi − ẋ j)
T ]T , j ∈ Ni. If the UAV is

a leader, besides the foregoing measurements, it can also
obtain the relative position and velocity with respect to
the formation trajectory [(xi − r(t))T ,(ẋi − ṙ(t))T ]T , where
we denote by r(t) = [rX (t),rY (t)]T the reference formation
trajectory (RFT).

The rigid formation of quadrotors are considered in this
paper. Thus, the formation controller is designed to guarantee
that all the quadrotors track the RFT with some constant
biases di0 = [dX

i0,d
Y
i0] ∈ R2, such that the quadrotors keep a

constant formation pattern. Therefore, the desired trajectory
for each UAV should satisfy xd

i (t)− r(t) = di0 and ẋd
i (t)−

ṙ(t) = 0, then, we obtain

xd
i (t) = di0 + r(t) and ẋd

i (t) = ṙ(t)

An example of four UAVs with rigid formation task is shown
in Fig.1.

Fig. 1. Rigid formation task for four UAVs, where UAV 1 is a leader. The
objective is to track the trajectory r(t) with biases d10 = [−1,1]T , d20 =
[−1,−1]T , d30 = [1,−1]T and d40 = [1,1]T .

However, the RFT r(t) is not available for the followers,
therefore, the desired trajectory xd

i (t) for UAV i is not
explicitly available. The behavior of each UAV depends on
its neighbors states (and r(t), if it is a leader), then, the
formation task is finally achieved. The bias with respect to
the RFT is attained implicitly by the constant inter-distances
between a UAV and its neighbors. Then, the formation
problem becomes: how to find the available desired trajectory
for UAV i ∈ V .

Let us make a sum of the relative position state vectors.
Note that we drop the explicit expression of time in the
related terms for the sake of simplicity.

∑
j∈Ni

(xi− x j−di j) if i ∈ V −VL

∑
j∈Ni

(xi− x j−di j)+ xi− r−di0 if i ∈ VL
(15)



The inter-distance is given by di j = di0−d j0. Then, equations
(15) can be rewritten as follows

∑
j∈Ni

(xi− r−di0− (x j− r−d j0)) if i ∈ V −VL

∑
j∈Ni

(xi− r−di0− (x j− r−d j0))+ xi− r−di0 if i ∈ VL

We introduce the available desired trajectory for each UAV
as follows

x̄d
i =


1
|Ni| ∑

j∈Ni

(x j +di j) if i ∈ V −VL

1
|Ni+1|

(
∑

j∈Ni

(x j +di j)+ r+di0

)
if i ∈ VL

(16)
we then observe that x̄d

i is available for UAV i. We rewrite
equation (15) in matrix form for all the quadrotors as followsx1− x̄d

1
...

xn− x̄d
n

= (G⊗ I2)

x1− xd
1

...
xn− xd

n

 (17)

where G∈Rn×n represents the normalized interaction matrix
(see [10]). The symbol ⊗ represents the Kronecker product.
The formation task is achieved if G is invertible and for each
UAV i ∈ V , xi− x̄d

i → 0 asymptotically. According to [10],
G is invertible if the graph of the multi-UAV system is con-
nected and at least one leader exists. In this paper, we assume
that this condition is satisfied. In the following subsection,
we will investigate the formation controller which stabilizes
the formation error xi− x̄d

i → 0.

B. Formation control

We firstly consider the nominal model of (14) by setting
δ X

i and δY
i null. The dynamics of Xi and Yi are similar, thus,

we consider the dynamics of Xi for example. Note that in
the sequel, the superscript “X” is omitted for the sake of
simplicity. Then, we have

Ẍi = ui (18)

Let us denote by eiX = Xi− X̄d
i the formation error in xe

direction. Let us define a nonlinear function ρi : R2→R. We
propose the formation controller as follows

ui =−M tanh(k2ėiX + k1eiX )−M tanh(ρi(eiX , ėiX ))+ ¨̄Xd
i

ρi(eiX , ėiX ) = kN ėiX
(19)

where M represents a positive constant scalar. k1 and k2
are two positive constant gains. The symbol kN represents
a positive nonlinear gain. For example, we can select kN as
follows

kN = η1 exp−η2e2
iX (20)

where η1 ≥ 0, η2 > 0. The selection of kN in (20) has a
physical meaning. When the formation error eiX is large,
the effect of ρi(eiX , ėiX ) is small. In contrary, when eiX
approaches zero, the nonlinear gain kN increases, which can
reduce the approaching velocity, such that the overshoot is
small.

Proposition 1: The formation controller ui (19) is
bounded.

Proof: According to (16), the desired trajectory X̄d
i for

UAV i satisfies

X̄d
i =


1
|Ni| ∑

j∈Ni

(X j +di j) if i ∈ V −VL

1
|Ni+1|

(
∑

j∈Ni

(X j +di j)+ rX +di0

)
if i ∈ VL

where di j, di0 ∈ R (recall that the subscript “X” has been
omitted here) represent some constant offset scalar. Then,

˙̄Xd
i =


1
|Ni| ∑

j∈Ni

Ẋ j if i ∈ V −VL

1
|Ni+1|

(
∑

j∈Ni

Ẋ j + ṙX

)
if i ∈ VL

Let us denote by ūi = k2ėiX + k1eiX . Then, if i ∈ V −VL,

¨̄Xd
i =

1
|Ni| ∑

j∈Ni

(
−M tanh ū j−M tanhρ j + ¨̄Xd

j

)
such that

¨̄Xd
i −

1
|Ni| ∑

j∈Ni

Ẍd
j =− 1

|Ni| ∑
j∈Ni

(M tanh ū j +M tanhρ j)

if i ∈ VL,

¨̄Xd
i =

1
|Ni +1|

(
∑

j∈Ni

(
−M tanh ū j−M tanhρ j + ¨̄Xd

j

)
+ r̈X

)
such that

¨̄Xd
i −

1
|Ni +1| ∑

j∈Ni

Ẍd
j

=− 1
|Ni +1|

(
∑

j∈Ni

(M tanh ū j +M tanhρ j)− r̈X

)
Without loss of generality, we assume that UAVs 1∼ i are

leaders, while i+1∼ n are followers. Then, we rewrite the
foregoing equations for all the quadrotors in matrix form as
follows


¨̄Xd
1
...
¨̄Xd
n

=G−1 ·



− 1
|N1+1|

(
∑

j∈N1

(M tanh ū j +M tanhρ j)− r̈X

)
...

− 1
|Ni+1|

(
∑

j∈Ni

(M tanh ū j +M tanhρ j)− r̈X

)
− 1
|Ni+1| ∑

j∈Ni+1

(M tanh ū j +M tanhρ j)

...
− 1
|Nn| ∑

j∈Nn

(M tanh ū j +M tanhρ j)


(21)

The RFT is usually selected such that its derivatives are
bounded. Then, we observe that ¨̄Xd

i , i∈V are bounded, since
the function tanh(·) is bounded by 1. Therefore, we conclude
that ui, i ∈ V are bounded.

Substituting (19) into the first equation in (18), we obtain

ëiX =−M tanh ūi−M tanhρi (22)

Proposition 2: The origin of (22) is globally asymptoti-
cally stable, if i) kN is given by (20); ii) the gains in ūi satisfy
k1 ≥ η1k2M.



Proof: Let us define a continuously differentiable,
radially unbounded positive-definite function as follows

Vi = lncosh(k2ėiX + k1eiX )+
k1

2M
ė2

iX (23)

Vi = 0, if and only if eiX = 0 and ėiX = 0.
Then, the derivative of Vi yields

V̇i = tanh ūi · ˙̄ui +
k1

M
ėiX ëiX

= tanh ūi (k2ëiX + k1ėiX )+
k1

M
ėiX (−M tanh ūi−M tanhρi)

= tanh ūi (k2(−M tanh ūi−M tanhρi)+ k1ėiX )

− k1ėiX (tanh ūi + tanhρi)

=− k2M tanh2 ūi− k2M tanh ūi tanhρi− k1ėiX tanhρi
(24)

Then, we have

V̇i ≤−k2M tanh2(ūi)− k1ėiX tanhρi + k2M| tanh ūi|| tanhρi|

According to (19), ρi has the same sign as ėiX . Then,
−k1ėiX tanhρi ≤ 0.
• Case 1: If |ρi| ≤ |ūi|, | tanhρi| ≤ | tanh ūi|. Then,
| tanhρi|| tanh ūi| ≤ tanh2 ūi. Therefore,

V̇i ≤−k1ėiX tanhρi ≤ 0 (25)

We obtain that V̇i is semi-definite negative. We then
invoke here the LaSalle’s invariance principle. Let us
compute the largest invariant set where V̇i = 0, such that
equation (24) equal to zero. We consider the following
cases.

– Case a: if ėiX 6= 0, then, according to (25), V̇i < 0,
which contradicts V̇i = 0.

– Case b: if ėiX = 0, then, according to (24), V̇i =
−k2M tanh2(k1eiX ) = 0, which implies eiX = 0.

Therefore, in Case 1, the largest invariant set contains
only the origin.

• Case 2: If |ρi| > |ūi|, |ρi| > | tanh ūi| ≥ 0. Since k1 ≥
η1k2M, then, we have k2M| tanh ūi|< k1|ėiX |. Thus,

V̇i ≤−k2M tanh2 ūi ≤ 0 (26)

We obtain that V̇i is semi-definite negative. As men-
tioned before, we compute the largest invariant set
where V̇i = 0, such that equation (24) equal to zero.
We consider the following cases.

– Case a: if |ūi| 6= 0, then, according to (26), V̇i < 0,
which contradicts V̇i = 0.

– Case b: if |ūi| = 0, then, according to (24), V̇i =
−k1ėiX tanhρi = 0, which implies ėiX = 0. Since
ūi = 0, we obtain that eiX = 0.

Therefore, in Case 2, the largest invariant set contains
only the origin.

Since the largest invariant set contains only the origin, then,
according to the LaSalle theorem, the origin of the system
(22) is globally asymptotically stable.

Remark 1: The decoupled property of X and Y dynamics
permits us to design the formation controller separately, the
design procedure of uY

i is the same as uX
i , such that

uY
i =−M tanh(k2ėiY + k1eiY )−M tanhρi(eiY , ėiY )+ ¨̄Y d

i (27)
Remark 2: The desired attitude angles for each UAV are

obtained by substituting (19) and (27) into (13). Owing to the
use of the hyperbolic tangent function, uX

i and uY
i are high-

order differentiable, such that the derivatives θ̇ d
i , θ̈ d

i and φ̇ d
i ,

φ̈ d
i are bounded.
Let us reconsider the terms δ X

i and δY
i in (14) caused by

the tracking error of the attitude angles. We introduce our
main result in the following theorem.

Theorem 1: Let G be the interaction matrix of an L-F
formation of quadrotors with constant topology. The forma-
tion controllers are given in (19) and (27). The attitude is
controlled by (3). The altitude is controlled by (9) where
uZ

i is given in (11). Then, eiX and eiY converge to zero
asymptotically, if i) G is invertible, ii) the initial velocity
of each UAV is finite.

Proof: The terms δiX and δiY are in terms of the
tracking errors of the attitude angles (∆φi, ∆θi and ∆ψi) and
uZ

i . According to (21), (19), (27) and (11), the controllers
uX

i , uY
i and uZ

i are bounded. Then, according to (13), we
know that θ d

i , φ d
i and ψd

i are bounded. The attitude angles
are controlled by (3), then, ∆φi, ∆θi and ∆ψi are bounded.
Therefore, δiX and δiY are bounded.

We take eiX for example. Then, (22) becomes

ëiX =−M tanh ūi−M tanhρi +δiX (28)

The derivative of the positive semidefinite function Vi in (23)
yields

V̇i = tanh ūi · ˙̄ui +
k1

M
ėiX ëiX

= tanh ūi (k2ëiX + k1ėiX )−
k1

M
ėiX (M tanh ūi +M tanhρi−δiX )

= tanh ūi (k2(−M tanh ūi−M tanhρi +δiX )+ k1ėiX )

− k1ėiX (tanh ūi + tanhρi +
δiX

M
)

=− k2M tanh2 ūi− k2M tanh ūi tanhρi− k1ėiX tanhρi

+ k2 tanh ūiδiX −
k1

M
ėiX δiX

≤− k2M tanh2 ūi− k2M tanh ūi tanhρi− k1ėiX tanhρi

+(k2| tanh ūi|+
k1

M
|ėiX |)|δiX |

Since the states of a linear system will not diverge to
infinite within finite time interval with bounded control
input, then, if the initial condition is in the compact set
{(eiX (t0), ėiX (t0))|ėiX (t0)<∞}, we obtain that ėiX is bounded
in finite time interval [t0, t1), where t1 < ∞. As analyzed in
section II-B, the rotational dynamics of a quadrotor is in
the fast time scale t̄ with controller (4). Then, there exists
a finite time t̄a � t1 such that the attitude errors eΘi enter
the neighborhood of the origin, which renders |δiX (t̄a)| ≤ ζ ,



where ζ is a scalar. Then, for t > t̄a, we have(
k2| tanh ūi|+

k1

M
|ėiX |

)
|δiX | ≤

|k2M tanh2 ūi + k2M tanh ūi tanhρi + k1ėiX tanhρi|
(29)

Then, V̇i ≤ 0, when t > t̄a. Therefore, the semi-global asymp-
totic stability of the origin of system (28) is derived, when
t > t̄a.

Remark 3: In theorem 1, if the condition (29) is satisfied
when t̄a = t0, the semi-global stability of the system (28) is
obtained.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Heudiasyc laboratory has developed a PC-based simulator-
experiment framework for controlling a quadrotor and also a
flock of quadrotors. The programs (written in C++) running
in the UAVs are the same, both in the simulator and in the
embedded processors of real UAVs. When we realize the
real-time experiment, the PC acts as a ground station, which
is responsible for displaying and sending instructions such
as taking off and landing. The UAVs are all autonomous.
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Fig. 2. Formation of four quadrotors without CNF
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Fig. 3. Formation of four quadrotors with CNF

The formations with and without the CNF are shown
in Fig.2 and Fig.3 respectively. In this test, the formation
controllers (19) and (27) are simplified by setting Ẍd

i =
0 and Ÿ d

i = 0. We observe that in both formations, the
quadrotors are able to converge to the desired positions with
hyperbolic tangent function-based controller. However, after
adding CNF, the performance is greatly improved.

The foregoing tests validated by using the simulator are
carried out in the real-time experiments. The output curves

are shown in Fig.4. We observe that the formation with the
CNF controller (on the right) has small overshoot and rapid
response. The corresponding video is available on the site
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Fig. 4. Real-time formation of four quadrotors. Left: without CNF; Right:
with CNF

https://youtu.be/tDBiRAGp6r0

V. CONCLUSION

In this paper, the CNF based bounded formation controller
is proposed. The hyperbolic tangent function is used to
generate a differentiable formation controller. The simulation
and the experimental results show that the CNF based
formation controller with hyperbolic tangent function have
better performance than a controller without CNF and a
controller with a standard saturated function.
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