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Abstract

We consider a cluster of servers where each incoming job is assigned d servers chosen uniformly at
random, for some fixed d ≥ 2. Jobs are served in parallel and the resource allocation is balanced fairness.
We provide a recursive formula for computing the exact mean service rate of each job. The complexity
is polynomial in the number of servers.

1 Model

We consider a cluster of S servers, each with service rate µ. Jobs arrive according to a Poisson process with
intensity λ. Each incoming job is assigned d servers chosen uniformly at random, for some fixed d ≥ 2. Each
job is processed in parallel by its assigned servers, the overall service capacity being allocated according to
balanced fairness [1].

There are N =
(
S
d

)
classes of jobs, defined by the assigned servers. Let I = {1, . . . , N} be the set of

classes. We denote by Si ⊂ {1, . . . , S} the set of servers assigned to each job of class i and, for each set A ⊂ I
of classes, we denote by S(A) the set of servers assigned to jobs whose class belongs to A. Let x = (xi)i∈I
be the network state, where xi is the number of ongoing class-i jobs. We denote by φi(x) the total service
rate of class-i jobs in state x. The corresponding vector lies in the capacity set:

C =

{
φ ∈ RN+ : ∀A ⊂ I,

∑
i∈A

φi ≤ µ|S(A)|

}
,

where |A| is the cardinal of the set A. The capacity set is a polymatroid, and it follows from [3] that balanced
fairness is Pareto-efficient. Specifically,

∀i ∈ I, φi(x) =

{
Φ(x−ei)

Φ(x) if xi > 0,

0 otherwise,

where the function Φ is defined by the recursion Φ(0) = 1 and, using the notation Ax = {i ∈ I : xi > 0},

∀x ∈ NN \ {0}, Φ(x) =

∑
i∈Ax

Φ(x− ei)
µ|S(Ax)|

. (1)

Under the stability condition λ < Sµ, the stationary distribution of the system state is given by

∀x ∈ NN , π(x) = π(0)Φ(x)

(
λ

N

)|x|
, (2)

where |x| =
∑
i∈I xi is the total number of jobs. This stationary distribution is insensitive to the job size

distribution beyond the mean.

1



2 Performance

We are interested in the mean service rate, defined by

γ =
E(
∑
i∈I φi(X))

E(
∑
i∈I Xi)

,

where X is a random variable distributed according to the stationary distribution π. Observe that, by
symmetry, γ is the mean service rate of any job (whatever its class), and that γ ≤ dµ. Moreover, by work
conservation,

γ =
λ

E(
∑
i∈I Xi)

. (3)

In particular, it follows from Little’s law that 1/γ in the mean job duration.
There is no explicit formula for computing γ with a low complexity. In particular, the recursive formula

of de Veciana and Shah [3] does not apply because the capacity set is not a symmetric polymatroid. We use
the recent results of Gardner et. al. [2] to derive an explicit recursive formula, whose complexity is linear in
SN (thus polynomial in S). We denote the system load by

ρ =
λ

Sµ
.

Proposition 1 We have γ = G/F with

G =

N∑
n=0

S∑
m=0

Gn,m and F =

N∑
n=0

S∑
m=0

Fn,m,

where Gn,m and Fn,m are given by the recursions G0,0 = 1, F0,0 = 0,

Gn,m =
ρS
N

m− nρSN

[(m
d

)
− n+ 1

]
Gn−1,m +

min(d,m)∑
r=1

(
S −m+ r

r

)(
m− r
d− r

)
Gn−1,m−r

 ,

Fn,m =
ρS
N

m− nρSN

[(m
d

)
− n+ 1

]
Fn−1,m +

min(d,m)∑
r=1

(
S −m+ r

r

)(
m− r
d− r

)
Fn−1,m−r

+
1

λ

m

m− nρSN
Gn,m

if d ≤ m ≤ S and
⌈
m
d

⌉
≤ n ≤

(
m
d

)
, Gn,m = Fn,m = 0 otherwise.

Proof. By symmetry, we have for any i ∈ I,

γ =
λ/N

E(Xi)
.

Let
G(λ1, . . . , λN ) =

∑
x∈NN

Φ(x)
∏
i∈I

λxi
i

and

G = G

(
λ

N
, . . . ,

λ

N

)
.

In view of (2), we have γ = G/F , with

F =
∂G

∂λi

(
λ

N
, . . . ,

λ

N

)
.
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We first prove the recursion for computing G. For any A ⊂ I, let

GA(λ1, . . . , λN ) =
∑

x∈NN :Ax=A

Φ(x)
∏
i∈I

λxi
i

and

GA = GA

(
λ

N
, . . . ,

λ

N

)
.

Observe that
G =

∑
A⊂I

GA.

Now let S(A) be the set of servers that can serve jobs of classes in A. Let n = |A| be the number of active
classes and m = |S(A)| be the number of busy servers. In view of (1), we have

GA =

∑
i∈A

λ
NGA\{i}

mµ− n λ
N

. (4)

For all n = 0, 1, . . . , N and m = 0, 1, . . . , S, let

Gn,m =
∑
A⊂I

|A|=n,|S(A)|=m

GA.

Observe that

G =

N∑
n=0

S∑
m=0

Gn,m

Moreover, G0,0 = 1 and Gn,m = 0 unless d ≤ m ≤ S and
⌈
m
d

⌉
≤ n ≤

(
m
d

)
. For such a pair n,m, we deduce

from (4) that

Gn,m =
ρS
N

m− nρSN

∑
A⊂I

|A|=n,|S(A)|=m

∑
i∈A

GA\{i}. (5)

We can rewrite the sum as follows:∑
A⊂I

|A|=n,|S(A)|=m

∑
i∈A

GA\{i} =
∑
i∈I

∑
A⊂I,i∈A,

|A|=n,|S(A)|=m

GA\{i},

=
∑
i∈I

∑
B⊂I,i/∈B,

|B|=n−1,|S(B∪{i})|=m

GB,

=

min(d,m)∑
r=0

∑
B⊂I,
|B|=n−1,
|S(B)|=m−r

∑
i∈I\B,

|S(B∪{i})|=m

GB,

=

[(
m

d

)
− n+ 1

]
Gn−1,m +

min(d,m)∑
r=1

(
S −m+ r

r

)(
m− r
d− r

)
Gn−1,m−r,

which is the announced result.
We now show the recursion for F . For any A ⊂ I and i ∈ I, let

FA =
∂GA
∂λi

(
λ

N
, . . . ,

λ

N

)
.

3



Observe that
F =

∑
A⊂I

FA.

For all n = 0, 1, . . . , N and m = 0, 1, . . . , S, we can define by symmetry,

Fn,m =
∑

A⊂I,i∈A,
|A|=n,|S(A)|=m

FA =
1

N

∑
i∈I

∑
A⊂I,i∈A,

|A|=n,|S(A)|=m

FA

and we have

F =

N∑
n=0

S∑
m=0

Fn,m.

Similarly, F0,0 = 0 and Fn,m = 0 unless d ≤ m ≤ S and
⌈
m
d

⌉
≤ n ≤

(
m
d

)
.

For any i ∈ I and A ⊂ I with |A| = n and |S(A)| = m, we have

FA =
1

µ
(
m− nSρN

)
GA +GA\{i} +

λ

N

∑
j∈A,j 6=i

FA\{j}


so that

Fn,m =
1

N

1

µ
(
m− nρSN

){∑
i∈I

∑
A⊂I,i∈A

|A|=n,|S(A)|=m

GA +
∑
i∈I

∑
A⊂I,i∈A

|A|=n,|S(A)|=m

GA\{i}

+
λ

N

∑
i∈I

∑
A⊂I,i∈A

|A|=n,|S(A)|=m

∑
j∈A,j 6=i

FA\{j}.

}
(6)

The first term of the sum is ∑
A⊂I
|A|=n
|S(A)|=m

∑
i∈A

GA = n
∑
A⊂I
|A|=n
|S(A)|=m

GA = nGn,m.

By equation (5), the second term of the sum is

∑
i∈I

∑
A⊂I,i∈A

|A|=n,|S(A)|=m

GA\{i} =
∑
A⊂I

|A|=n,|S(A)|=m

∑
i∈A

GA\{i} =
m− nSρN

ρS
N

Gn,m.

Thus the first two terms of equation (6) are equal to

nGn,m +
m− nρSN

ρS
N

Gn,m =
mN

ρS
Gn,m.
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Now the third term of (6) is∑
i∈I

∑
A⊂I,i∈A

|A|=n,|S(A)|=m

∑
j∈A,j 6=i

FA\{j},

=
∑
i∈I

∑
j∈I,j 6=i

∑
A⊂I,i,j∈A

|A|=n,|S(A)|=m

FA\{j},

=
∑
i∈I

∑
j∈I,j 6=i

∑
B⊂I,i∈B,j /∈B

|B|=n−1,|S(B∪{j})|=m

FB,

=

min(d,m)∑
r=0

∑
i∈I

∑
B⊂I,i∈B

|B|=n−1,|S(B)|=m−r

∑
j∈I\B,|S(B∪{j})|=m

FB,

=
∑
i∈I

∑
B⊂I,i∈B

|B|=n−1,|S(B)|=m

[(
m

d

)
− n+ 1

]
FB,

+

min(d,m)∑
r=1

∑
i∈I

∑
B⊂I,i∈B

|B|=n−1,|S(B)|=m−r

(
m− r
d− r

)(
S −m+ r

r

)
FB,

= N

[(
m

d

)
− n+ 1

]
Fn−1,m +N

min(d,m)∑
r=1

(
m− r
d− r

)(
S −m+ r

r

)
Fn−1,m−r.

Summing the two parts of equation (6) gives the announced result. �
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