
HAL Id: hal-01306340
https://hal.science/hal-01306340v1

Preprint submitted on 22 Apr 2016 (v1), last revised 2 Apr 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Random Forests
Gérard Biau, Erwan Scornet, Johannes Welbl

To cite this version:

Gérard Biau, Erwan Scornet, Johannes Welbl. Neural Random Forests. 2016. �hal-01306340v1�

https://hal.science/hal-01306340v1
https://hal.archives-ouvertes.fr

Neural Random Forests

Gérard Biau
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
Institut universitaire de France
gerard.biau@upmc.fr

Erwan Scornet
Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
erwan.scornet@upmc.fr

Johannes Welbl
University College London, London, England
J.Welbl@cs.ucl.ac.uk

Abstract

Given an ensemble of randomized regression trees, it is possible to
restructure them as a collection of multilayered neural networks with
particular connection weights. Following this principle, we reformulate
the random forest method of Breiman (2001) into a neural network
setting, and in turn propose two new hybrid procedures that we call
neural random forests. Both predictors exploit prior knowledge of
regression trees for their architecture, have less parameters to tune
than standard networks, and less restrictions on the geometry of the
decision boundaries. Consistency results are proved, and substantial
numerical evidence is provided on both synthetic and real data sets
to assess the excellent performance of our methods in a large variety
of prediction problems.

Index Terms — Random forests, neural networks, ensemble methods,
randomization, sparse networks.

2010 Mathematics Subject Classification: 62G08, 62G20, 68T05.

1 Introduction

Decision tree learning is a popular data-modeling technique that has been
around for over fifty years in the fields of statistics, artificial intelligence,
and machine learning. The approach and its innumerable variants have been

1

mailto:gerard.biau@upmc.fr
mailto:erwan.scornet@upmc.fr
mailto: J.Welbl@cs.ucl.ac.uk

successfully involved in many challenges requiring classification and regres-
sion tasks, and it is no exaggeration to say that many modern predictive
algorithms rely directly or indirectly on tree principles. What has greatly
contributed to this success is the simplicity and transparency of trees, to-
gether with their ability to explain complex data sets. The monographs by
Breiman et al. (1984), Devroye et al. (1996), Rokach and Maimon (2008),
and Hastie et al. (2009) will provide the reader with introductions to the
general subject area, both from a practical and theoretical perspective.

The history of trees goes on today with random forests (Breiman, 2001),
which are on the list of the most successful machine learning algorithms cur-
rently available to handle large-scale and high-dimensional data sets. This
method works according to the simple but effective bagging principle: sam-
ple fractions of the data, grow a predictor (a decision tree in the case of
forests) on each small piece, and then paste the results together. Although
the theory is still incomplete, random forests have been shown to give state-
of-the-art performance on a number of practical problems. They work fast,
generally exhibit a substantial improvement over single tree learners, and
yield generalization error rates that often rank among the best (see, e.g.,
Fernández-Delgado et al., 2014). The surveys by Boulesteix et al. (2012) and
Biau and Scornet (2016), which include practical guidelines and updated
references, are a good starting point for understanding the method.

It is sometimes alluded to that forests have the flavor of deep network archi-
tectures (e.g., Bengio, 2009), insofar as ensemble of trees allow to discriminate
between a very large number of regions. The richness of forest partitioning
results from the fact that the number of intersections of the leaf regions can
be exponential in the number of trees. That being said, the connection be-
tween random forests and neural networks is largely unexamined. On the one
hand, the many parameters of neural networks make them a versatile and
expressively rich tool for complex data modeling. However, their expressive
power comes with the downside of increased overfitting risk, especially on
small data sets. Conversely, random forests have fewer parameters to tune,
but the greedy feature space separation by orthogonal hyperplanes results
in typical stair or box-like decision surfaces, which may be advantageous for
some data but suboptimal for other, particularly for colinear data with cor-
related features (Menze et al., 2011). In this context, the empirical studies
by Welbl (2014) and Richmond et al. (2015) have highlighted the advantage
of casting random forests into a neural network framework, with the inten-
tion to exploit the benefits of both approaches to overcome their respective
shortcomings.

2

In view of the above, the objective of this article is to reformulate the random
forest method into a neural network setting, and in turn propose two new
hybrid procedures that we call neural random forests. In a nutshell, given an
ensemble of random trees, it is possible to restructure them as a collection of
(random) multilayered neural networks, which have sparse connections and
less restrictions on the geometry of the decision boundaries. Their activation
functions are soft nonlinear and differentiable, thus trainable with a gradient-
based optimization algorithm and expected to exhibit better generalization
performance. The idea of constructing a decision tree and using this tree to
obtain a neural network is by no means new—see for example Sethi (1990,
1991), Brent (1991), and Devroye et al. (1996, Chapter 30). Similar work in
the intersection between decision trees and neural networks has been under-
taken by Kontschieder et al. (2015), who learn differentiable split functions
to guide inputs through a tree. The conditional networks from Ioannou et al.
(2016) also use trainable routing functions to perform conditional transfor-
mations on the inputs—they are thus capable of transferring computational
efficiency benefits of decision trees into the domain of convolutional networks.
However, to our best knowledge, no theoretical study has yet been reported
in this domain, and certainly not for random forests.

This paper makes several important contributions. First, in Section 2, we
show that any regression tree can be seen as a particular neural network. In
Section 3, we exploit this equivalence to combine neural networks in a ran-
dom forest style and define the two neural random forest predictors. Both
predictors exploit prior knowledge of regression trees for their initialization.
This provides a major advantage in terms of interpretability (compared to
more “black-box-like” neural network models) and effectively offers the net-
works a warm start at the prediction level of traditional forests. Section 4
is devoted to the derivation of theoretical consistency guarantees of the two
methods. We illustrate in Section 5 the excellent performance of our ap-
proach both on simulated and real data sets, and show that it outperforms
random forests in most situations. For clarity, the most technical proofs are
gathered in Section 6.

2 Trees, forests, and networks

The general framework is nonparametric regression estimation, in which an
input random vector X ∈ [0, 1]d is observed and the goal is to predict the
square integrable random response Y ∈ R by estimating the regression func-
tion r(x) = E[Y |X = x]. With this aim in mind, we assume we are given

3

a training sample Dn = ((X1, Y1), . . . , (Xn, Yn)), n ≥ 2, of independent ran-
dom variables distributed the same as the independent prototype pair (X, Y).
The data set Dn is used to construct an estimate r(· ; Dn) : [0, 1]d → R of the
function r. We abbreviate r(x ; Dn) to rn(x) and say that the regression func-
tion estimate rn is (mean squared error) consistent if E|rn(X)− r(X)|2 → 0
as n→∞ (the expectation is evaluated over X and the sample Dn).

2.1 From one tree to a neural network

A regression tree is a regression function estimate that uses a hierarchical
segmentation of the input space, where each tree node corresponds to one
of the segmentation subsets in [0, 1]d. In the following, we consider ordinary
binary regression trees. In this model, a node has exactly either zero children
(in which case it is called a terminal node or leaf) or two children. If a node
u represents the set A ⊆ [0, 1]d and its children uL, uR (L and R for Left
and Right) represent AL ⊆ [0, 1]d and AR ⊆ [0, 1]d, then we require that
A = AL ∪ AR and AL ∩ AR = ∅. The root represents the entire space [0, 1]d

and the leaves, taken together, form a partition of [0, 1]d. In an ordinary tree,
we pass from A to AL and AR by answering a question on x = (x(1), . . . , x(d))
of the form: “Is x(j) ≥ α”, for some dimension j ∈ {1, . . . , d} and some
α ∈ [0, 1]. Thus, the feature space [0, 1]d is partitioned into hyperrectangles
whose sides are parallel to the coordinate axes. During prediction, the input
is first passed into the tree root node. It is then iteratively transmitted to
the child node that belongs to the subspace in which the input is located;
this is repeated until a leaf node is reached. If a leaf represents region A,
then the natural regression function estimate takes the simple form tn(x) =
(
∑n

i=1 Yi1Xi∈A)/Nn(A), x ∈ A, where Nn(A) is the number of observations
in cell A (where, by convention, 0/0 = 0). In other words, the prediction for
a query point x in leaf node A is the average of the Yi of all training instances
that fall into this region A. An example in dimension d = 2 is depicted in
Figure 1.

The tree structure is usually data-dependent and indeed, it is in the construc-
tion itself that different trees differ. Of interest in the present paper is the
cart program of Breiman et al. (1984), which will be described later on. Let
us assume for now that we have at hand a regression tree tn (whose construc-
tion eventually depends upon the data Dn), which takes constant values on
each of K ≥ 2 terminal nodes. It turns out that this estimate may be reinter-
preted as a three-layer neural network estimate with two hidden layers and
one output layer, as summarized in the following. Let H = {H1, . . . , HK−1}

4

0.1

20

5

7

50

42

Figure 1: Tree partitioning in dimension d = 2, with n = 6 data points.

be the collection of all hyperplanes participating in the construction of tn. We
note that each Hk ∈H is of the form Hk = {x ∈ [0, 1]d : hk(x) = 0}, where
hk(x) = x(jk) − αjk for some (eventually data-dependent) jk ∈ {1, . . . , d}
and αjk ∈ [0, 1]. To reach the leaf of the query point x, we find, for each
hyperplane Hk, the side on which x falls (+1 codes for right and −1 for left).
With this notation, the tree estimate tn is identical to the neural network
described below.

First hidden layer. The first hidden layer of neurons corresponds to K−1
perceptrons (one for each inner tree node), whose activation is defined as

τ(hk(x)) = τ(x(jk) − αjk),

where τ(u) = 21u≥0−1 is a threshold activation function. The weight vector
is merely a single one-hot vector for feature jk, and −αjk is the bias value. So,
for each split in the tree, there is a neuron in layer 1 whose activity encodes
the relative position of an input x with respect to the concerned split. In
total, the first layer outputs the ±1-vector (τ(h1(x)), . . . , τ(hK−1(x))), which
describes all decisions of the inner tree nodes (including nodes off the tree
path of x). The quantity τ(hk(x)) is +1 if x is on one side of the hyperplane
Hk, −1 if x is on the other side of Hk, and by convention +1 if x ∈ Hk. We
again stress that each neuron k of this layer is connected to one, and only
one, input x(jk), and that this connection has weight 1 and offset −αjk . An
example is presented in Figure 2. Given these particular activations of layer
1, layer 2 can then easily reconstruct the precise tree leaf membership (i.e.,
the terminal cell) of x.

Second hidden layer. Layer 1 outputs a (K − 1)-dimensional vector of

5

0

1

3

6

8

2

5

7

9

10

4
0

1

2 3

4 5

6

7 8

9 10

x1

x2

0

1

3

6

8

2

4

5

7

9

10

HInput layer L Output layer

Figure 2: An example of regression tree (top) and the corresponding neural
network (down).

±1-bits that encodes for the precise location of x in the leaves of the tree.
The leaf node identity of x can now be extracted from this vector using a
weighted combination of the bits, together with an appropriate thresholding.

Let L = {L1, . . . , LK} be the collection of all tree leaves, and let L(x) be
the leaf containing x. The second hidden layer has K neurons, one for each
leaf, and assigns a terminal cell to x as explained below. We connect a unit
k from layer 1 to a unit k′ from layer 2 if and only if the hyperplane Hk is
involved in the sequence of splits forming the path from the root to the leaf
Lk′ . The connection has weight +1 if, in that path, the split by Hk is from
a node to a right child, and −1 otherwise. So, if (u1(x), . . . , uK−1(x)) is the
vector of ±1-bits seen at the output of layer 1, the output vk′(x) ∈ {−1, 1}
of neuron k′ is τ(

∑
k→k′ bk,k′uk(x) + b0

k′), where notation k → k′ means that
k is connected to k′ and bk,k′ = ±1 is the corresponding weight. The offset

6

b0
k′ is set to

b0
k′ = −`(k′) +

1

2
, (2.1)

where `(k′) is the length of the path from the root to Lk′ . To understand
the rationale behind the choice (2.1), observe that there are exactly `(k′)
connections starting from the first layer and pointing to k′, and that{ ∑

k→k′ bk,k′uk(x)− `(k′) + 1
2

= 1
2

if x ∈ Lk′∑
k→k′ bk,k′uk(x)− `(k′) + 1

2
≤ −1

2
otherwise.

(2.2)

Thus, with the choice (2.1), the argument of the threshold function is 1/2 if
x ∈ Lk′ and is smaller than −1/2 otherwise. Hence vk′(x) = 1 if and only if
the terminal cell of x is Lk′ . To summarize, the second hidden layer outputs
a vector of ±1-bits (v1(x), . . . , vK(x)) whose components equal −1 except
the one corresponding to the leaf L(x), which is +1.

Output layer. Let (v1(x), . . . , vK(x)) be the output of the second hidden
layer. If vk′(x) = 1, then the output layer computes the average Ȳk′ of the Yi
corresponding to Xi falling in Lk′ . This is equivalent to take

tn(x) =
K∑
k′=1

wk′vk′(x) + bout, (2.3)

where wk′ = 1
2
Ȳk′ for all k′ ∈ {1, . . . , K}, and bout = 1

2

∑K
k′=1 Ȳk′ .

2.2 The cart program

We know from the preceding section that every regression tree may be seen
as a neural network estimate with two hidden layers and threshold activa-
tion functions. Let us now be more precise about the details of the cart
program of Breiman et al. (1984) to induce a regression tree. The core of
their approach is a tree with Kn leaf regions defined by a partition of the
space based on the n data points. When constructing the tree, the so-called
cart-split criterion is applied recursively. This criterion determines which
input direction should be used for the split and where the cut should be
made. Let A be a generic cell and denote by Nn(A) the number of examples
falling in A. Formally, a cut in A is a pair (j, α), where j is a dimension from
{1, . . . , d} and α ∈ [0, 1] is the position of the cut along the j-th coordinate,
within the limits of A. Let CA be the set of all such possible cuts in A. Then,

7

using the notation Xi = (X
(1)
i , . . . ,X

(d)
i), the cart-split criterion takes the

form, for any (j, α) ∈ CA,

Ln(j, α) =
1

Nn(A)

n∑
i=1

(Yi − ȲA)21Xi∈A

− 1

Nn(A)

n∑
i=1

(Yi − ȲAL
1
X

(j)
i <α

− ȲAR
1
X

(j)
i ≥α

)21Xi∈A, (2.4)

where AL = {x ∈ A : x(j) < α}, AR = {x ∈ A : x(j) ≥ α}, and ȲA (resp.,
ȲAL

, ȲAR
) is the average of the Yi belonging to A (resp., AL, AR), with

the convention 0/0 = 0. The quantity (2.4) measures the (renormalized)
difference between the empirical variance in the node before and after a cut
is performed. For each cell A, the best cut (j?n, α

?
n) is selected by maximizing

Ln(j, α) over CA; that is,

(j?n, α
?
n) ∈ arg max

(j,α)∈CA

Ln(j, α). (2.5)

(To remove some of the ties in the argmax, the best cut is always performed
in the middle of two consecutive data points.) So, at each cell, the algorithm
evaluates criterion (2.4) over all possible cuts in the d directions and returns
the best one. This process is applied recursively down the tree, and stops
when the tree contains exactly Kn terminal nodes, where Kn ≥ 2 is an integer
eventually depending on n.

2.3 Random forests

A random forest is a predictor consisting of a collection of M (large) random-
ized cart-type regression trees. For them-th tree in the family, the predicted
value at the query point x is denoted by t(x ; Θm,Dn), where Θ1, . . . ,ΘM are
random variables, distributed the same as a generic random variable Θ. It
is assumed that Θ1, . . . ,ΘM , Θ, and Dn are mutually independent. The
variable Θ, which models the extra randomness introduced in each tree con-
struction, is used to (i) resample the training set prior to the growing of
individual trees, and (ii) select the successive directions for splitting via a
randomized version of the cart criterion—see below. Lastly, the trees are
combined to form the forest estimate

t(x ; Θ1, . . . ,ΘM ,Dn) =
1

M

M∑
m=1

t(x ; Θm,Dn).

8

To lighten notation we write tM,n(x) instead of t(x ; Θ1, . . . ,ΘM ,Dn).

The method works by growing the M randomized trees as follows. Let an ≥ 2
be an integer smaller than or equal to n. Prior to the construction of each
tree, an observations are drawn at random without replacement from the
original data set; then, at each cell of the current tree, a split is performed
by choosing uniformly at random, without replacement, a subset Mtry ⊂
{1, . . . , d} of cardinality mtry := |Mtry|, by evaluating criterion (2.4) over all
possible cuts in the mtry directions, and by returning the best one. In other
words, for each cell A, the best cut (j?n, α

?
n) is selected by maximizing Ln(j, α)

over Mtry and CA; that is,

(j?n, α
?
n) ∈ arg max

j∈Mtry

(j,α)∈CA

Ln(j, α). (2.6)

The essential difference between (2.5) and (2.6) is that (2.6) is evaluated over
a subset Mtry of randomly selected coordinates, not over the whole range
{1, . . . , d}. The parameter mtry, which aims at reducing the computational
burden and creating some diversity between the trees, is independent of n and
often set to d/3. Also, because of the without-replacement sampling, each
tree is constructed on a subset of an examples picked within the initial sample,
not on the whole sample Dn. In accordance with the cart program, the
construction of individual trees is stopped when each tree reaches exactly Kn

terminal nodes (recall that Kn ∈ {2, . . . , an} is a parameter of the algorithm).
We insist on the fact that the number of leaves in each tree equals Kn. There
are variants of the approach in terms of parameter choices and resampling
mode that will not be explored here—see, e.g., the discussion in Biau and
Scornet (2016) and the comments after Theorem 4.1.

Finally, by following the principles of Paragraph 2.1, each random tree es-
timate t(· ; Θm,Dn), 1 ≤ m ≤ M , of the forest can be reinterpreted in the
setting of neural networks. The M resulting networks are different because
they correspond to different random trees. We see in particular that the
m-th network has exactly Kn − 1 neurons in the first hidden layer and Kn

in the second one. We also note that the network architecture (i.e., the way
neurons are connected) and the associated coefficients depend on both Θm

and Dn.

9

3 Neural forests

Consider the m-th tree estimate t(· ; Θm,Dn) of the forest, seen as a neu-
ral network estimate. Conditional on Θm and Dn, the architecture of this
network is fixed, and so are the weights and offsets of the three layers. A
natural idea is then to keep the structure of the network intact and let the
parameters vary in a subsequent network training procedure with backprop-
agation training. In other words, once the connections between the neurons
have been designed by the tree-to-network mapping, we could then learn even
better network parameters by minimizing some empirical mean squared error
for this network over the sample Dn. This additional training can potentially
improve the predictions of the original random forest, and we will see more
about this later in the experiments.

To allow for training based on gradient backpropagation, the activation func-
tions must be differentiable. A natural idea is to replace the original relay-
type activation function τ(u) = 21u≥0 − 1 with a smooth approximation of
it; for this the hyperbolic tangent activation function

σ(u) := tanh(u) =
eu − e−u

eu + e−u
=
e2u − 1

e2u + 1
,

which has a range from −1 to 1 is chosen. More precisely, we use σ1(u) =
σ(γ1u) at every neuron of the first hidden layer and σ2(u) = σ(γ2u) at every
neuron of the second one. Here, γ1 and γ2 are positive hyperparameters
that determine the contrast of the hyperbolic tangent activation: the larger
γ1 and γ2, the sharper the transition from −1 to 1. Of course, as γ1 and
γ2 approach infinity, the continuous functions σ1 and σ2 converge to the
threshold function. Besides eventually providing better generalization, the
hyperbolic tangent activation functions favor smoother decision boundaries
and permit a relaxation of crisp tree node membership. Lastly, they allow
to operate with a smooth approximation of the discontinuous step activation
function. This makes the network loss function differentiable with respect
to the parameters everywhere, and gradients can be backpropagated to train
the network. Similar ideas are developed in the so-called soft tree models
(Jordan and Jacobs, 1994; Olaru and Wehenkel, 2003; Geurts and Wehenkel,
2005; Yildiz and Alpaydin, 2013).

In this sparse setting, the number of parameters is much smaller than in
a fully connected feed-forward network with the same number of neurons.
Recall that the two hidden layers have respectively Kn − 1 and Kn hidden
nodes. Without any information regarding the connections between neurons

10

(fully connected network), fitting such a network would require optimizing a
total of (d+ 1)(Kn − 1) +K2

n +Kn + 1 parameters, which is O(dKn +K2
n).

On the other hand, assuming that the tree generated by the cart algorithm
is roughly balanced, then the average depth of the tree is O(logKn). This
gives, on average, 2(Kn − 1) + O(Kn logKn) + Kn + 1 parameters to fit,
which is O(Kn logKn). For large Kn, this quantity can be much smaller than
O(dKn+K2

n) and, in any case, it is independent of the dimension d—a major
computational advantage in high-dimensional settings. If an unbalanced tree
does occur, then it has at most O(Kn) levels and the total work required is
O(K2

n). Thus, even in this extreme case, our algorithm is independent of d
and should be competitive in high dimensions, when d� Kn.

Remark 3.1. Training a network with sparse connectivity retains some de-
gree of interpretability of its internal representation and may be seen as a
relaxation of original tree structures. But besides these sparse networks, the
relaxation of tree structures can go even further when allowing for full con-
nectivity between layers—in this case, the tree structure is merely used as
initialization for a fully connected network of the same size. In this setting,
all weights belonging to tree structures have a nonzero initialization value,
while the other weights start with 0. During training then, all weights can
be modified so that arbitrary connections between the layers (i.e., also across
trees) can be learned. The initial tree-type parametrization provides a strong
inductive bias, compared to a random initialization, which contains valuable
information and mimics the regression function of a cart-type tree already
before backpropagation training. Compared to a random initialization, this
gives the network an effective warm start. Moreover, the tendency of fully
connected networks to overfit on small data sets can potentially be reduced
with the inductive bias derived from the trees. The effects of using random
forests as warm starts for neural networks will be further explored in the
experimental Section 5.

Thus, the above mechanisms allow to convert the M cart-type trees into
M tree-type neural networks which have different sparse architectures and
smooth activation functions at the nodes. To complete the presentation, it
remains to explain how to combine the M individual networks. This can be
done in at least two different ways which are described below. We call the
two resulting estimates neural forests.

Method 1: Independent training. The parameters of each tree-type
network are fitted network by network, independently of each other. With
this approach, we end up with an ensemble of M “small” neural network

11

estimates r(· ; Θm,Dn), 1 ≤ m ≤ M , which are finally averaged to form the
estimate

r(x ; Θ1, . . . ,ΘM ,Dn) =
1

M

M∑
m=1

r(x ; Θm,Dn) (3.1)

(see the illustration in Figure 3). To lighten notation we write rM,n(x) instead
of the more complicated r(x ; Θ1, . . . ,ΘM ,Dn), keeping in mind that rM,n(x)
depends on both Θ1, . . . ,ΘM and the sample Dn.

The minimization program implemented at each “small” network is described
in Section 4 below, together with the statistical properties of rM,n(x). This
predictor has the flavor of a randomized ensemble (forest) of neural networks.

Method 2: Joint training. In this approach, the individual tree networks
are first concatenated into one single “big” network, as shown in Figure 4.
The parameters of the resulting “big” network are then fitted jointly in one
optimization procedure over the whole network.

Although the hidden layers of the “small” networks are not connected across
the sections belonging to each tree, this algorithm has two main differences
with the previous one:

(i) The output layer, which is shared by all “small” networks, computes a
combination of all outputs of the second-layer neurons.

(ii) The optimization is performed in one single run over the whole “big”
network, and not network by network. Assuming that the trees are bal-
anced, the first method performs, on average, M different optimization
programs in a space of O(Kn logKn) parameters, whereas the second
one accomplishes only one minimization in a space of average dimension
O(MKn logKn).

In the sequel, we let sM,n(x) be the regression function estimate correspond-
ing to the second method. We note that this estimate still depends upon
Θ1, . . . ,ΘM and Dn, but is not of the averaging form (3.1). It will be more
formally described in the next section.

12

x1

x2

0

1

3

6

8

2

4

5

7

9

10

x1

x2

0

1

2

3

7

4

5

6

8

9

10

HInput layer L Output layer

Average

.

.

.

Figure 3: Method 1: Independent training.

13

x1

x2

0

1

3

6

8

2

4

5

7

9

10

0

1

2

3

7

4

5

6

8

9

10

HInput layer L Output layer

.

.

.

Figure 4: Method 2: Joint training.

14

4 Some theory

4.1 Empirical risk minimization

We now describe in full detail the construction of the two regression function
estimates rM,n (independent training) and sM,n (joint training).

Method 1: Independent training. Consider the m-th random tree in
the ensemble and denote by G1 ≡ G1(Θm,Dn) the bipartite graph modeling
the connections between the vector of inputs x = (x(1), . . . , x(d)) and the
Kn − 1 hidden neurons of the first layer. Similarly, let G2 ≡ G2(Θm,Dn) be
the bipartite graph representing the connections between the first layer and
the Kn hidden neurons of the second layer.

Let M(G1) be the set of d× (Kn−1) matrices W1 = (aij) such that aij = 0 if
(i, j) /∈ G1, and let M(G2) be the (Kn−1)×Kn matrices W2 = (bij) such that
bij = 0 if (i, j) /∈ G2. The parameters that specify the first hidden units are
encapsulated in a matrix W1 of M(G1) of weights over the edges of G1 and
by a column vector of biases b1, of size Kn − 1. Similarly, the parameters of
the second hidden units are represented by a matrix W2 of M(G2) of weights
over G2 and by a column vector b2 of offsets, of size Kn. Finally, we let the
output weights and offset be Wout = (w1, . . . , wKn)> ∈ RKn and bout ∈ R,
respectively (> denotes transposition and vectors are in column format).

Thus, the parameters that specify the m-th network are represented by a
“vector”

λ = (W1,b1,W2,b2,Wout, bout)

∈M(G1)×RKn−1 ×M(G2)×RKn ×RKn ×R.

However, in order to obtain consistency we have to restrict the range of
variation for these parameters. For a given matrix M , the notation |M |
means the matrix of absolute values of the entries of M . We assume that
there exists a positive constant C1 such that

‖W2‖∞ + ‖b2‖∞ + ‖Wout‖1 + |bout| ≤ C1Kn, (4.1)

where ‖·‖∞ denotes the supremum norm of matrices and ‖·‖1 is the L1-norm
of vectors. In other words, it is basically assumed that the weights and offsets
(resp., the sum of absolute values of the weights and the offset) absorbed by
the computation units of the second layer (resp., the output layer) are at
most of the magnitude of Kn. We emphasize that this requirement is mild

15

and that it leaves a lot of freedom for optimizing the parameters. We note in
particular that it is satisfied by the original random tree estimates as soon
as Y is almost surely bounded, with the choice C1 = (3

2
+ ‖Y ‖∞) (‖Y ‖∞ is

the essential supremum of Y).

Therefore, letting

Λ(Θm,Dn) =
{
λ = (W1,b1,W2,b2,Wout, bout) : (4.1) is satisfied

}
,

we see that the m-th neural network implements functions of the form

fλ(x) = W>
outσ2

(
W>

2 σ1(W>
1 x + b1) + b2

)
+ bout, x ∈ Rd,

where λ ∈ Λ(Θm,Dn), and σ1 and σ2 are applied element-wise. Our aim is
to adjust the parameter λ using the data Dn such that the function realized
by the obtained network is a good estimate of r. Let

F (Θm,Dn) =
{
fλ : λ ∈ Λ(Θm,Dn)

}
.

For each m ∈ {1, . . . ,M}, our algorithm constructs a regression function
estimate r(· ; Θm,Dn) by minimizing the empirical error

Jn(f) =
1

n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2

over functions f in F (Θm,Dn), that is

Jn
(
r(· ; Θm,Dn)

)
≤ Jn(f) for all f ∈ F (Θm,Dn).

Remark 4.1. Here we assumed the existence of a minimum, though not
necessarily its uniqueness. In cases where a minimum does not exist, the
same analysis can be carried out with functions whose error is arbitrarily close
to the infimum, but for the sake of simplicity we stay with the assumption
of existence throughout the paper. Note also that we do not investigate the
properties of the gradient descent algorithm used in Section 5, and assume
instead that the global minimum (if it exists) can be computed.

By repeating this minimization process for each m ∈ {1, . . . ,M}, we obtain
a collection of (randomized) estimates r(· ; Θ1,Dn), . . . , r(· ; ΘM ,Dn), which
are aggregated to form the estimate

rM,n(x) =
1

M

M∑
m=1

r(x ; Θm,Dn).

16

The estimate rM,n is but a generalization of the random forest estimate tM,n to
the neural network framework, with an additional relaxation of crisp to fuzzy
tree node membership due to the hyperbolic tangent activation functions:
samples not merely fall into one direction per split and one final leaf but
simultaneously into several tree branches and leaves.

Method 2: Joint training. The notation needed to describe the second
approach is a bit burdensome, but the ideas are simple. Following the above,
we denote by G1,1, . . . ,G1,M and G2,1, . . . ,G2,M the bipartite graphs associated
with the M “small” original random trees. We also let W1,1, . . . ,W1,M and
b1,1, . . . ,b1,M be the respective weight matrices and offset vectors of the
first hidden layers of the M “small” networks, with W1,m ∈ M(G1,m) and
b1,m ∈ RKn−1, 1 ≤ m ≤ M . Similarly, we denote by W2,1, . . . ,W2,M and
b2,1, . . . ,b2,M the respective weight matrices and offset vectors of the second
layer, with W2,m ∈M(G2,m) and b2,m ∈ RKn , 1 ≤ m ≤M .

Next, we form the concatenated matrices [W1], [b1], [W2], and [b2], defined
by

[W1] =
(
W1,1 · · · W1,M

)
, [b1] =

 b1,1
...

b1,M

 ,

and

[W2] =

W2,1 0 · · · 0 0

0 W2,2 · · · 0 0
...

...
. . .

...
...

0 0 . . . W2,M−1 0
0 0 · · · 0 W2,M

 , [b2] =

 b2,1
...

b2,M

 .

Notice that [W1], [b1], [W2], and [b2] are of size d×M(Kn−1), M(Kn−1)×1,
M(Kn − 1) ×MKn, and MKn × 1, respectively. Let us finally denote by
Wout ∈ RMKn and bout ∈ R the output weights and offset of the concatenated
network. All in all, the parameters of the network are represented by a
“vector”

[λ] =
(
[W1], [b1], [W2], [b2],Wout, bout

)
,

where [W1], [b1], [W2], and [b2] are defined above. As in the first method,
we restrict the range of variation of these parameters and assume that there
exists a positive constant C2 such that∥∥[W2]

∥∥
∞ +

∥∥[b2]
∥∥
∞ + ‖Wout‖1 + |bout| ≤ C2Kn. (4.2)

17

Therefore, letting

Λ(Θ1, . . . ,ΘM ,Dn)

=
{

[λ] =
(
[W1], [b1], [W2], [b2],Wout, bout

)
: (4.2) is satisfied

}
,

the “big” network implements functions of the form

f[λ](x) = W>
outσ2

(
[W2]>σ1

(
[W1]>x + [b1]

)
+ [b2]

)
+ bout, x ∈ Rd,

where [λ] ∈ Λ(Θ1, . . . ,ΘM ,Dn), and σ1 and σ2 are applied element-wise.
Next, let

F (Θ1, . . . ,ΘM ,Dn) =
{
f[λ] : [λ] ∈ Λ(Θ1, . . . ,ΘM ,Dn)

}
.

Then the final estimate sM,n is obtained by minimizing the empirical error

Jn(f) =
1

n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2

over functions f in F (Θ1, . . . ,ΘM ,Dn), that is

Jn(sM,n) ≤ Jn(f) for all f ∈ F (Θ1, . . . ,ΘM ,Dn).

4.2 Consistency

In order to analyze the consistency properties of the regression function es-
timates rM,n and sM,n, we first need to consider some specific class F of
functions over [0, 1]d. It is defined as follows.

For a hyperrectangle A = [a1, b1] × · · · × [ad, bd] ⊂ [0, 1]d, we let A\j =∏
i 6=j[ai, bi] and dx\j = dx1 . . . dxj−1dxj+1 . . . dxd. Assume we are given a

measurable function f : [0, 1]d → R together with A = [a1, b1]×· · ·×[ad, bd] ⊂
[0, 1]d, and consider the following two statements:

(i) For any j ∈ {1, . . . , d}, the function

xj 7→
∫
A\j

f(x)dx\j

is constant on [aj, bj];

(ii) The function f is constant on A.

18

Definition 4.1. We let F be the class of continuous real functions on [0, 1]d

such that, for any A = [a1, b1]× · · · × [ad, bd] ⊂ [0, 1]d, (i) implies (ii).

Although the membership requirement for F seems at first glance a bit
restrictive, it turns out that F is in fact a rich class of functions. For
example, additive functions of the form

f(x) =
d∑
j=1

fj(x
(j)),

where each fj is continuous, do belong to F . This is also true for polynomial
functions whose coefficients have the same sign. Also, product of continuous
functions of the form

f(x) =
d∏
j=1

fj(x
(j)),

where, for all j ∈ {1, . . . , d}, [fj > 0 or fj < 0], are included in F .

Our main theorem states that the neural forest estimates rM,n and sM,n are
consistent, provided the number Kn of terminal nodes and the parameters
γ1 and γ2 are properly regulated as functions of n.

Theorem 4.1 (Consistency of rM,n and sM,n). Assume that X is uni-
formly distributed in [0, 1]d, ‖Y ‖∞ < ∞, and r ∈ F . Assume, in addition,
that Kn, γ1, γ2 →∞ such that, as n tends to infinity,

K6
n log(γ2K

5
n)

n
→ 0, K2

ne
−2γ2 → 0, and

K4
nγ

2
2 log(γ1)

γ1

→ 0.

Then, as n tends to infinity,

E
∣∣rM,n(X)− r(X)

∣∣2 → 0 and E
∣∣sM,n(X)− r(X)

∣∣2 → 0.

It is interesting to note that Theorem 4.1 still holds when the individual
trees are subsampled and fully grown (that is, when Kn = an, i.e., one single
observation in each leaf) as soon as the assumptions are satisfied with an
instead of Kn. Put differently, we require that the trees of the forest are
either pruned (restriction on Kn) or subsampled (restriction on an). If not,
the assumptions of Theorem 4.1 are violated. So, to obtain a consistent
prediction, it is therefore mandatory to keep the depth of the tree or the
size of subsamples under control. We also note that Theorem 4.1 can be

19

adapted to deal with networks based on bootstrapped and fully grown trees.
In this case, n observations are chosen in Dn with replacement prior to each
tree construction, and only one distinct example is left in the leaves. In this
setting, care must be taken in the analysis to consider only the trees that use
at least Kn distinct data points—we leave the adaptation as a small exercise.

4.3 Proof of Theorem 4.1

Consistency of rM,n. Denote by µ the distribution of X. The consistency
proof of rM,n starts with the observation that

E
∣∣rM,n(X)− r(X)

∣∣2 = E

∣∣∣∣ 1

M

M∑
m=1

r(X ; Θm,Dn)− r(X)

∣∣∣∣2
≤ 1

M

M∑
m=1

E
∣∣r(X ; Θm,Dn)− r(X)

∣∣2
(by Jensen’s inequality)

= E
∣∣r(X ; Θ,Dn)− r(X)

∣∣2.
Therefore, we only need to show that, under the conditions of the theorem,
E|r(X ; Θ,Dn) − r(X)|2 → 0, i.e., that a single random network estimate is
consistent (note that the expectation is taken with respect to X, Θ, and Dn).

We have (see, e.g., Lugosi and Zeger, 1995, or Györfi et al., 2002, Lemma
10.1)

E
∣∣r(X ; Θ,Dn)− r(X)

∣∣2
≤ 2E sup

f∈F (Θ,Dn)

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣
+ E inf

f∈F (Θ,Dn)

∫
[0,1]d

∣∣f(x)− r(x)
∣∣2µ(dx). (4.3)

The first term—the estimation error—is handled in Proposition 4.1 below by
using nonasymptotic uniform deviation inequalities and covering numbers
corresponding to F (Θ,Dn) (proofs are in Section 6).

Proposition 4.1. Assume that Kn, γ2 →∞ such that K6
n log(γ2K

5
n)/n→ 0.

Then

E sup
f∈F (Θ,Dn)

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣→ 0 as n→∞.

20

To deal with the second term of the right-hand side of (4.3)—the approxi-
mation error—, we consider a piecewise constant function (pseudo-estimate)
similar to the original cart-tree tn(. ; Θ,Dn), with only one difference: the
function computes the true conditional expectation E[Y |X ∈ Lk′] in each leaf
Lk′ , not the empirical one Ȳk′ . Put differently, we take (W?

out)k′ = E[Y |X ∈
Lk′]/2 and b?out =

∑an
k′=1 E[Y |X ∈ Lk′]/2 in (2.3). This tree-type pseudo-

estimate has the form

tλ?(x) = W?>
outτ

(
W?>

2 τ(W?>
1 x + b?1) + b?2

)
+ b?out, x ∈ Rd,

(recall that τ(u) = 21u≥0 − 1), for some λ? = (W?
1,b

?
1,W

?
2,b

?
2,W

?
out, b

?
out).

We have

inf
f∈F (Θ,Dn)

∫
[0,1]d

∣∣f(x)− r(x)
∣∣2µ(dx)

= inf
f∈F (Θ,Dn)

∫
[0,1]d

∣∣f(x)− r(x)
∣∣2µ(dx)− 2

∫
[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx)

+ 2

∫
[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx)

≤
∫

[0,1]d

∣∣fλ?(x)− r(x)
∣∣2µ(dx)− 2

∫
[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx)

+ 2

∫
[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx)

≤ 2

∫
[0,1]d

∣∣fλ?(x)− tλ?(x)
∣∣2µ(dx) + 2

∫
[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx).

We prove in Proposition 4.2 that the expectation of the first of the two
terms above tends to zero under appropriate conditions on γ1 and γ2. The
second term is less standard and requires a careful analysis of the asymptotic
geometric behavior of the cells of the tree pseudo-estimate tλ? . This is the
topic of Proposition 4.3. Taken together, inequality (4.3) and Proposition
4.1-4.3 prove the result.

Proposition 4.2. Assume that X is uniformly distributed in [0, 1]d and
‖Y ‖∞ <∞. Assume, in addition, that Kn, γ1, γ2 →∞ such that

K2
ne
−2γ2 → 0 and K4

nγ
2
2 log(γ1)/γ1 → 0.

Then

E
∫

[0,1]d

∣∣fλ?(x)− tλ?(x)
∣∣2µ(dx)→ 0 as n→∞.

21

Proposition 4.3. Assume that X is uniformly distributed in [0, 1]d and
‖Y ‖∞ <∞. If r ∈ F , then

E
∫

[0,1]d

∣∣tλ?(x)− r(x)
∣∣2µ(dx)→ 0 as n→∞.

Consistency of sM,n. The consistency of sM,n is a consequence of the

first statement of Theorem 4.1. Denote by Ŵ1,1, . . . ,Ŵ1,M , b̂1,1, . . . , b̂1,M ,

Ŵ2,1, . . . ,Ŵ2,M , b̂2,1, . . . , b̂2,M , Ŵout,1, . . . ,Ŵout,M , and b̂out,1, . . . , b̂out,M the
set of parameters (weights and offsets) output by the minimization programs
performed at each tree-type network of Method 1. It is then easy to see
that the “big” network fitted with the parameters

[λ̂] =
(
[Ŵ1], [b̂1], [Ŵ2], [b̂2], [Ŵout], b̂out

)
,

where

[Ŵout] =
1

M

 Ŵout,1
...

Ŵout,M

and b̂out = 1

M

∑M
m=1 b̂out,m, exactly computes the function rM,n. This implies

1

n

n∑
i=1

∣∣Yi − sM,n(Xi)
∣∣2 ≤ 1

n

n∑
i=1

∣∣Yi − rM,n(Xi)
∣∣2

≤ 1

M

M∑
m=1

(1

n

n∑
i=1

∣∣Yi − r(Xi ; Θm,Dn)
∣∣2),

by Jensen’s inequality. Denote by EX,Y the expectation with respect to X
and Y only (that is, all the other random variables are kept fixed). Thus,
simple calculations show that

E
∣∣sM,n(X)− r(X)

∣∣2
≤ E

∣∣∣∣∣E∣∣Y − sM,n(X)
∣∣2 − 1

n

n∑
i=1

∣∣Yi − sM,n(Xi)
∣∣2∣∣∣∣∣

+ E

[
1

M

M∑
m=1

∣∣∣ 1
n

n∑
i=1

∣∣Yi − r(Xi ; Θm,Dn)
∣∣2 − EX,Y

∣∣Y − r(X ; Θm,Dn)
∣∣2∣∣∣]

+ E

[
1

M

M∑
m=1

(
EX,Y

∣∣Y − r(X ; Θm,Dn)
∣∣2 − E∣∣Y − r(X)

∣∣2)] . (4.4)

22

Regarding the third term on the right-hand side and under the assumptions
of Theorem 4.1, we have

E

[
1

M

M∑
m=1

(
EX,Y

∣∣Y − r(X ; Θm,Dn)
∣∣2 − E∣∣Y − r(X)

∣∣2)]

= E

[
1

M

M∑
m=1

EX,Y

∣∣r(X)− r(X ; Θm,Dn)
∣∣2]

= E
∣∣r(X)− r(X ; Θm,Dn)

∣∣2
→ 0 as n→∞, (4.5)

since r(X ; Θm,Dn) is consistent by the first statement of Theorem 4.1. Re-
garding the second term in (4.4), according to the proof of Proposition 4.1,

E

[
1

M

M∑
m=1

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − r(Xi ; Θm,Dn)
∣∣2 − EX,Y

∣∣Y − r(X ; Θm,Dn)
∣∣2∣∣∣∣
]

≤ E sup
f∈Fn

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣
→ 0 as n→∞, (4.6)

where the set Fn contains all neural networks, constrained by (4.1). A similar
result can be obtained for the “big” network sM,n, just by replacing Kn (an
upper bound over the number of neurons in the two layers of the “small”
networks) by MKn. Thus, since M is fixed, still under the assumptions of
Theorem 4.1, we may write

E

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − sM,n(Xi)
∣∣2 − E∣∣Y − sM,n(X)

∣∣2∣∣∣∣
≤ E sup

f∈F (Θ1,...,ΘM ,Dn)

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣
→ 0 as n→∞. (4.7)

Therefore, taking expectation on both sides of (4.4), and assembling inequal-
ities (4.5), (4.6), and (4.7), we have

E
∣∣sM,n(X)− r(X)

∣∣2 → 0 as n→∞,

which concludes the proof.

23

5 Experiments

In this section we validate the Neural Random Forest (NRF) models ex-
perimentally (Method 1 and Method 2). We compare them with standard
Random Forests (RF) and Neural Networks (NN) with two hidden layers.

5.1 Training procedure

Overall, the training procedure for the NRF models goes as follows. A ran-
dom forest is first learned using the scikit-learn implementation (Pedregosa
et al., 2011) for random forests. Based on this, the set of all split directions
and split positions are extracted and used to build the neural network initial-
ization parameters. The NRF (and the normal NN) are then trained using
the tensorflow framework (Abadi et al., 2015).

Network optimization. The optimization objective when learning either
of the models is to minimize the mean squared error (MSE) on some train-
ing set. In neural network training, this is typically achieved by employing
an iterative gradient-based optimization algorithm. The algorithm iterates
over the training set, generates predictions, and then propagates the gradient
of the resulting error signal with respect to all individual network parame-
ters back through the network. The network parameters are updated such
that this error is decreased, and slowly the model learns to generate the cor-
rect predictions. In practice, we found that Adam (Kingma and Ba, 2015),
which also includes an adaptive momentum term, performed well as optimiza-
tion algorithm, though any other iterative gradient-based optimization algo-
rithm could be used instead. The results reported here were obtained with
Adam using minibatches of size 32, default hyperparameter values (β1 = 0.9,
β2 = 0.999, ε = 1e − 08), and initial learning rate 0.001 for which a sta-
ble optimization behavior could be observed. In preliminary experiments,
minibatch size did not have a big impact on performance and was thus not
tuned. At the beginning of every new epoch, the training set was shuffled
and minibatches assigned anew so as to avoid overfitting to a specific order
or choice of particular minibatches.

Each neural network (including the NRF networks) was trained for 100
epochs. During training, both training loss and validation loss were mon-
itored every time an epoch was completed. The final parameters chosen are
the ones that gave minimum validation error across all 100 epochs.

24

Neural random forests. The individual networks in Method 1 are trained
just like the larger network in Method 2 for 100 epochs, and the best param-
eters with minimum loss on the validation set during training were picked.
Computed sequentially, training Method 1 takes longer since each “small”
model has to be fitted individually.

We generally found that using a lower value for γ2 than for γ1 (the initial
contrast parameters of the activation functions in the second and first hidden
layer, respectively) is helpful. This is because with a relatively small contrast
γ2, the transition in the activation function from −1 to +1 is smoother and
a stronger gradient signal reaches the first hidden layer in backpropagation
training. Concretely, for our experiments we used γ1 = 100 and γ2 = 1.

In some rare cases the NRF just overfitted during optimization. This is, even
though the training error went down, validation error only increased, i.e., the
model’s ability to generalize actually suffered from network optimization.
Wherever NRF validation loss was actually worse than the RF validation
loss during all epochs, we kept the original RF model predictions. As a
consequence, we can expect the NRF predictions to be at least as good as
the RF predictions, since cases where further optimization is likely to have
lead to overfitting are directly filtered out.

Sparse vs. fully connected optimization. All NRF networks described
in the previous sections have sparse connectivity architecture between the
layers due to the nature of the translated tree structures. However, besides
training sparse NRF networks, a natural modification is to not limit network
training to optimizing a small set of weights, but instead to relax the sparsity
constraint and train a fully connected feed-forward network. With initial
connection weights of 0 between neurons where no connections were described
in the sparse framework, this model still gives the same predictions as the
initial sparsely connected network. However, it can adapt a larger set of
weights for optimizing the objective. During the experiments, we will refer
to this relaxed NRF version as fully connected, in contrast to the sparse
setting, where fewer weights are subject to optimization.

In practice, without a fully differentiable implementation of sparse models,
the fully connected models can be faster to optimize than their sparse coun-
terpart, especially when training on a GPU. We used a dense matrix multipli-
cation, forcing the entries of non-existing connections to 0. We acknowledge
that this is not the most elegant solution and a fully differentiable implemen-
tation of sparse matrix multiplication could accelerate training here, though
we did not pursue this way further.

25

5.2 Benchmark comparison experiments

We now compare the NRF models with standard RF and NN on regression
data sets from UCI Machine Learning Repository (Lichman, 2013). Con-
cretely, we use the Auto MPG, Housing, Communities and Crime (Redmond
and Baveja, 2002), Forest Fires (Cortez and Morais, 2007), Breast Cancer
Wisconsin (Prognostic) and Concrete Compressive Strength (Yeh, 1998) data
sets as testing ground for the models.

To showcase the abilities of the NRF, we picked diverse, but mostly small
regression data sets with few samples. These are the sets where RF often
perform better than NN, since the latter typically require plentiful training
data to perform reasonably well. It is on these small data sets where the
benefits of neural optimization can usually not be exploited, but with the
specific inductive bias of the NRF it becomes possible.

Random forests are trained with 30 trees and maximum depth restriction
of 6. The neural networks trained for comparison are fully connected and
have exactly the same number of layers and neurons as the NRF networks
(Method 2). Their initial parameters were drawn randomly from a standard
Gaussian distribution, and the above training procedure was followed.

Data preparation. We shuffled the observations in each data set randomly
and split it into training, validation, and test part in a ratio of 50/25/25.
Each experiment is repeated 10 times with different randomly assigned train-
ing, validation, and test set.

Data set Number of samples Number of features
Auto MPG 398 7
Housing 506 13
Communities and Crime 1994 101
Forest Fires 517 10
Wisconsin 194 32
Concrete 1030 8

Table 1: Data set characteristics: number of samples and number of features,
after removing observations with missing information or nonnumerical input
features.

Nonnumerical features and samples with missing entries were systematically
removed. Table 1 summarizes the characteristics of the resulting data sets.
In preliminary experiments, data normalisation or rescaling to the unit cube

26

did not have a big impact on the models, so we kept the original values given
in each of the sets.

Results. Table 2 summarizes the results for the different models. The first
important comment is that all NRF models improve over the original RF,
consistently across all data sets. So the NRF are indeed more competitive
than the original random forests which they were derived from. These con-
sistent improvements over the original RF can be observed both for sparse
and fully connected NRF networks.

Data set NN RF NRF1 sparse NRF2 sparse
Auto MPG 3.95 (0.39) 3.44 (0.38) 3.28 (0.41) 3.28 (0.42)
Housing 7.81 (0.71) 4.78 (0.88) 4.59 (0.91) 4.62 (0.88)
Crime 6.78 (0.47) 0.17 (0.01) 0.16 (0.01) 0.16 (0.01)
Forest Fires 54.87 (34.33) 95.47 (43.52) 68.51 (35.56) 82.80 (32.07)
Wisconsin 34.71 (2.36) 45.63 (3.53) 40.70 (2.51) 38.03 (3.95)
Concrete 10.21 (0.68) 8.39 (0.62) 7.42 (0.56) 7.78 (0.56)

NRF1 full NRF2 full
3.20(0.39) 3.35 (0.46)
4.34 (0.85) 4.68 (0.88)
0.16 (0.01) 0.16 (0.01)
54.47 (34.64) 78.60 (28.17)
37.12 (2.89) 41.22 (3.05)
6.28 (0.40) 6.44 (0.37)

Table 2: RMSE test set results (and their standard deviation) for each of the
models across the different data sets. “Sparse” stands for the sparsely con-
nected NRF model, “full” for the fully connected. Best results are displayed
in bold font, second best results in italic.

For most data sets, standard NN do not achieve performance that is on
par with the other models, though in one case they give the best overall
RMSE scores. But still in this case, the NRF models can bridge a large
part of the performance gap between the NN and the RF. The fact that
NN with random initialization can be better than NRF however shows that
the particular inductive bias of these models can also be a disadvantage and
optimization may ends up in a worse local minimum.

Interestingly, NRF Method 1 seems to mostly outperform Method 2 with
few exceptions. In fact, the best overall performance is achieved by the fully
connected NRF with Method 1, i.e., the averaging of individually trained per-
tree networks. So one typically obtains bigger benefits from averaging several

27

independently optimized single-tree networks than from jointly training one
large network for all trees. This means that ensemble averaging (Method 1) is
more advantageous for the NRF model than the co-adaptation of parameters
across trees (Method 2). We conjecture that by separating the optimization
process for the individual networks, some implicit regularisation occurs that
reduces the vulnerability to overfitting when using Method 1.

Training evolution. To illustrate training behavior, the training and val-
idation error for NRF (Method 2, fully connected) as well as for RF and NN
from one of the experiments on the Concrete Compressive Strength data set
are summarized in Figure 5.

0 20 40 60 80
Training Epoch

0

2

4

6

8

10

12

14

16

18

R
M

S
E

RF Validation RMSE
NRF2 Validation RMSE
NRF2 Training RMSE

0 20 40 60 80
Training Epoch

0

2

4

6

8

10

12

14

16

18

R
M

S
E

NRF2 Training RMSE
NRF2 Validation RMSE
NN Training RMSE
NN Validation RMSE

Figure 5: Evolution of training set and validation RMSE for different models.
Left: Validation RMSE for RF (red), along with validation and training set
RMSE for NRF Method 2 (fully connected, green) across training epochs.
Right: Validation and training RMSE (solid and dotted lines, respectively)
for NRF Method 2 (green) and a NN (purple) with same number of layers
and neurons.

Firstly, one can observe in the left plot that validation RMSE clearly drops
below the level of RF RMSE during training. Note that the difference to the
constant red line (RF validation error) represents the relative improvement
over the RF on the validation set. So, in fact, network optimization helps the
NRF to generate better predictions than the RF and this is achieved already
very early in training. The initial RMSE value at epoch 0 is not exactly
the same as for the RF, which is due to using smooth activation functions
instead of sharp step functions (cf. the contrast hyperparameters γ1 and γ2).
In the plot on the right, the same NRF model behavior is shown again, but
contrasted with a standard feed-forward NN of exactly the same size and

28

number of parameters. Clearly, the NRF reaches much lower RMSE than
the NN, both on training and validation set.

5.3 Asymptotic behavior

We also investigate the asymptotic behavior of the NRF model on an artificial
data set created by sampling inputs x uniformly from the d-dimensional
hypercube [0, 1]d and computing outputs y as

y(x) =
d∑
j=1

sin(20x(j) − 10) + ε,

where ε is a zero mean Gaussian noise with variance σ2, which corrupts the
deterministic signal. We choose d = 2 and σ = 0.01, and investigate the
asymptotic behavior as the number of training samples increases. Figure 6
illustrates the RMSE for an increasing number of training samples and shows
that the NRF (Method 2, fully connected) error decreases much faster than
the RF error as sample size increases.

6 Some technical results

6.1 Proof of Proposition 4.1

An easy adaptation of Györfi et al. (2002, Theorem 10.2) shows that we can
always assume that ‖Y ‖∞ <∞. Let Md,Kn−1 (resp., MKn−1,Kn) be the vector
space of d×(Kn−1) (resp., (Kn−1)×Kn) matrices. For a generic parameter

λ = (W1,b1,W2,b2,Wout, bout)

∈Md,Kn−1 ×RKn−1 ×MKn−1,Kn ×RKn ×RKn ×R,

we consider the constraint

‖W2‖∞ + ‖b2‖∞ + ‖Wout‖1 + |bout| ≤ C1Kn, (6.1)

and let

Λ =
{
λ = (W1,b1,W2,b2,Wout, bout) : (6.1) is satisfied

}
.

We finally define
Fn = {fλ : λ ∈ Λ},

29

0 2 4 6 8 10 12 14 16

Data set size in log2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
R

M
S
E

Asymptotic behavior

RF
NRF1 sparse
NRF2 sparse
NRF1 full
NRF2 full

Figure 6: This figure shows the test RMSE for synthetic data with expo-
nentially increasing training set size (x-axis). Solid lines connect the mean
RMSE values obtained across 3 randomly drawn datasets for each dataset
size, whereas error bars show the empirical standard deviation; 30 trees,
maximum depth 6, γ1 = 100, γ2 = 1.

where

fλ(x) = W>
outσ2

(
W>

2 σ1(W>
1 x + b1) + b2

)
+ bout, x ∈ Rd.

The set Fn contains all neural networks—constrained by (6.1)—with inputs
in Rd, two hidden layers of respective size Kn − 1 and Kn, and one output
unit. We note that F (Θ,Dn) ⊂ Fn and that Fn is deterministic, in the
sense that it does not depend neither on Θ nor on Dn, but only on the size
n of the original data set.

Clearly,

E sup
f∈F (Θ,Dn)

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣
≤ E sup

f∈Fn

∣∣∣∣ 1n
n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣∣.
30

According to (6.1), each f ∈ Fn satisfies ‖f‖∞ ≤ C1Kn. Thus, since Y is
assumed to be bounded, using uniformly bounded classes of functions we will
be able to derive a useful exponential inequality.

Let zn1 = (z1, . . . , zn) be a vector of n fixed points in Rd and let H be a set
of functions from Rd → R. For every ε > 0, we let N1(ε,H , zn1) be the L1 ε-
covering number of H with respect to z1, . . . , zn. Recall that N1(ε,H , zn1) is
defined as the smallest integer N such that there exist functions h1, . . . , hN :
Rd → R with the property that for every h ∈ H there is a j = j(h) ∈
{1, . . . , N} such that

1

n

n∑
i=1

∣∣h(zi)− hj(zi)
∣∣ < ε.

Note that if Zn
1 = (Z1, . . . , Zn) is a sequence of i.i.d. random variables, then

N1(ε,H , Zn
1) is a random variable as well.

Now, let Z = (X, Y), Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), and

Hn =
{
h(x, y) := |y − f(x)

∣∣2 :

(x, y) ∈ [0, 1]d × [−‖Y ‖∞, ‖Y ‖∞] and f ∈ Fn

}
.

Note that the functions in Hn satisfy

0 ≤ h(x, y) ≤ 2C2
1K

2
n + 2‖Y ‖2

∞.

In particular,
0 ≤ h(x, y) ≤ 4C2

1K
2
n

if n is large enough such that C1Kn ≥ ‖Y ‖∞ is satisfied, which we assume.

According to an inequality of Pollard (1984) (see also Györfi et al., 2002,
Theorem 9.1), we have, for arbitrary ε > 0,

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ > ε

}
= P

{
sup
h∈Hn

∣∣∣ 1
n

n∑
i=1

h(Zi)− Eh(Z)
∣∣∣ > ε

}
≤ 8EN1

(ε
8
,Hn, Z

n
1

)
e
− nε2

2048C4
1K4

n . (6.2)

31

So, we have to upper bound EN1(ε
8
,Hn, Z

n
1

)
. To begin with, consider two

functions h(x, y) = |y − f(x)|2 and h1(x, y) = |y − f1(x)|2 of Hn. Clearly,

1

n

n∑
i=1

∣∣h(Zi)− h1(Zi)
∣∣

=
1

n

n∑
i=1

∣∣∣∣∣Yi − f(Xi)
∣∣2 − ∣∣Yi − f1(Xi)

∣∣2∣∣∣
=

1

n

n∑
i=1

∣∣f(Xi)− f1(Xi)
∣∣× ∣∣f(Xi) + f1(Xi)− 2Yi

∣∣
≤ 4C1Kn

n

n∑
i=1

∣∣f(Xi)− f1(Xi)
∣∣.

Thus,

N1

(ε
8
,Hn, Z

n
1

)
≤ N1

(ε

64C1Kn

,Fn,X
n
1

)
. (6.3)

The covering number N1(ε
64C1Kn

,Fn,X
n
1) can be upper bounded indepen-

dently of Xn
1 by extending the arguments of Lugosi and Zeger (1995) from

a network with one hidden layer to a network with two hidden layers. In
the arguments below, we repeatedly apply Györfi et al. (2002, Theorem 9.4,
Lemma 16.4, and Lemma 16.5). The neurons of the first hidden layer output
functions that belong to the class

G1 = {σ1(a>x + a0) : a ∈ Rd, a0 ∈ R},

and it is easy to show that, for ε ∈ (0, 1/4),

N1(ε,G1,X
n
1) ≤ 9

(6e

ε

)4d+8

.

Next, letting
G2 =

{
bg : g ∈ G1, |b| ≤ C1Kn

}
,

we get

N1(ε,G2,X
n
1) ≤ 4C1Kn

ε
N1

(ε

2C1Kn

,G1,X
n
1

)
≤
(36eC1Kn

ε

)4d+9

.

The second units compute functions of the collection

G3 =
{
σ2

(Kn−1∑
i=1

gi + b0

)
: gi ∈ G2, |b0| ≤ C1Kn

}
.

32

Note that σ2 satisfies the Lipschitz property |σ2(u) − σ2(v)| ≤ γ2|u − v| for
all (u, v) ∈ R2. Thus,

N1(ε,G3,X
n
1) ≤ 2C1γ2K

2
n

ε
N1

(ε

2γ2Kn

,G2,X
n
1

)Kn−1

≤
(72eC1γ2K

2
n

ε

)(4d+9)Kn+1

.

Also, letting
G4 = {wg : g ∈ G3, |w| ≤ C1Kn},

we see, assuming without loss of generality C1, γ2 ≥ 1, that

N1(ε,G4,X
n
1) ≤ 4C1Kn

ε
N1

(ε

2C1Kn

,G3,X
n
1

)
≤
(144eC2

1γ2K
3
n

ε

)(4d+9)Kn+2

.

Finally, upon noting that

Fn =
{ Kn∑

i=1

gi + bout : gi ∈ G4, |bout| ≤ C1Kn

}
,

we conclude

N1(ε,Fn,X
n
1) ≤ 2C1Kn(Kn + 1)

ε
N1

(ε

Kn + 1
,G4,X

n
1

)Kn

≤
(144eC2

1γ2(Kn + 1)4

ε

)(4d+9)K2
n+2Kn+1

. (6.4)

Combining inequalities (6.2)-(6.4), we obtain

P

{
sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ > ε

}
≤ 8
(9216eC3

1γ2(Kn + 1)5

ε

)(4d+9)K2
n+2Kn+1

e
− nε2

2048C4
1K4

n .

33

Therefore, for any ε ∈ (0, 1/4),

E sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣
≤ ε+ 8

∫ ∞
ε

(9216eC3
1γ2(Kn + 1)5

t

)(4d+9)K2
n+2Kn+1

e
− nt2

2048C4
1K4

n dt

≤ ε+ 8
(9216eC3

1γ2(Kn + 1)5

ε

)(4d+9)K2
n+2Kn+1

×
[
− 2048C4

1K
4
n

nε
e
− nεt

2048C4
1K4

n

]∞
t=ε

≤ ε+ 8
(9216eC3

1γ2(Kn + 1)5

ε

)(4d+9)K2
n+2Kn+1

×
(2048C4

1K
4
n

nε

)
e
− nε2

2048C4
1K4

n

≤ ε+ 8
(2048C4

1K
4
n

nε

)
× exp

[(
(4d+ 9)K2

n + 2Kn + 1
)

log
(9216eC3

1γ2(Kn + 1)5

ε

)
− nε2

2048C4
1K

4
n

]
.

Thus, under the conditions Kn, γ2 →∞ and K6
n log(γ2K

5
n)/n→ 0, for all n

large enough,

E sup
f∈Fn

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ ≤ 2ε

and so,

E sup
f∈F (Θ,Dn)

∣∣∣ 1
n

n∑
i=1

∣∣Yi − f(Xi)
∣∣2 − E∣∣Y − f(X)

∣∣2∣∣∣ ≤ 2ε.

Since ε was arbitrary, the proof is complete.

6.2 Proof of Proposition 4.2

By definition,

tλ?(x) = W?>
outτ

(
W?>

2 τ(W?>
1 x + b?1) + b?2

)
+ b?out

34

and
fλ?(x) = W?>

outσ2

(
W?>

2 σ1(W?>
1 x + b?1) + b?2

)
+ b?out.

We have, for all x ∈ Rd,∣∣fλ?(x)− tλ?(x)
∣∣2

≤ ‖W?
out‖2 ×

∥∥∥σ2

(
W?>

2 σ1(W?>
1 x + b?1) + b?2

)
− τ
(
W?>

2 τ(W?>
1 x + b?1) + b?2

)∥∥∥2

(by the Cauchy-Schwarz inequality)

≤ ‖Y ‖
2
∞Kn

4
×
∥∥∥σ2

(
W?>

2 σ1(W?>
1 x + b?1) + b?2

)
− τ
(
W?>

2 τ(W?>
1 x + b?1) + b?2

)∥∥∥2

.

By the triangle inequality,∥∥∥σ2

(
W?>

2 σ1(W?>
1 x + b?1) + b?2

)
− τ
(
W?>

2 τ(W?>
1 x + b?1) + b?2

)∥∥∥2

≤ 2
∥∥∥σ2

(
W?>

2 τ(W?>
1 x + b?1) + b?2

)
− τ
(
W?>

2 τ(W?>
1 x + b?1) + b?2

)∥∥∥2

+ 2
∥∥∥σ2

(
W?>

2 σ1(W?>
1 x + b?1) + b?2

)
− σ2

(
W?>

2 τ(W?>
1 x + b?1) + b?2

)∥∥∥2

def
= I + II.

Upon noting that, for all u ∈ R, |σ2(u)− τ(u)| ≤ 2e−2γ2|u|, we see that

I ≤ 8
Kn∑
i=1

exp
[
− 4γ2

∣∣(W?>
2 τ(W?>

1 x + b?1) + b?2
)
i

∣∣].
But, by the very definition of (W?

1,b
?
1,W

?
2,b

?
2)—see (2.2)—we have, for every

i, ∣∣(W?>
2 τ(W?>

1 x + b?1) + b?2
)
i

∣∣ ≥ 1/2.

Thus, I ≤ 8Kne
−2γ2 .

For the term II, note that σ2 satisfies the Lipschitz property |σ2(u)−σ2(v)| ≤

35

γ2|u− v| for all (u, v) ∈ R2. Hence,

II ≤ 2
Kn∑
i=1

γ2
2

∣∣∣(W?>
2

(
σ1(W?>

1 x + b?1)− τ(W?>
1 x + b?1)

)
i

∣∣∣2
≤ 2γ2

2K
2
n

∥∥σ1(W?>
1 x + b?1)− τ(W?>

1 x + b?1)
∥∥2

(by the Cauchy-Schwarz inequality and the definition of W?
2)

≤ 8γ2
2K

2
n

Kn−1∑
i=1

e−4γ1|(W?>
1 x+b?

1)i|.

For fixed i and arbitrary ε > 0, we have∫
[0,1]d

e−4γ1|(W?>
1 x+b?

1)i|µ(dx)

=

∫
[0,1]

e−4γ1|x(j
?
n)−α?

n|µ(dx)

(for some j ∈ {1, . . . , d}, depending upon Θ and Dn)

≤ e−4γ1ε + 2ε,

since X is uniformly distributed in [0, 1]d. We see that, for all n large enough,

choosing ε = log(2γ1)
4γ1

,∫
[0,1]d

e−4γ1|(W?>
1 x+b?

1)i|µ(dx) ≤ log(2γ1)

γ1

.

Putting all the pieces together, we conclude that

E
∫

[0,1]d

∣∣fλ?(x)− tλ?(x)
∣∣2µ(dx) ≤ 2‖Y ‖2

∞K
2
n

(
e−2γ2 +

γ2
2K

2
n log(2γ1)

γ1

)
.

The upper bound tends to zero under the conditions of the proposition.

6.3 Proof of Proposition 4.3

The proof of Proposition 4.3 rests upon the following lemma, which is a
multivariate extension of Technical Lemma 1 in Scornet et al. (2015).

Lemma 6.1. Assume that X is uniformly distributed in [0, 1]d, ‖Y ‖∞ <∞,
and r ∈ F . Assume, in addition, that L? ≡ 0 for all cuts in some given
nonempty cell A. Then the regression function r is constant on A.

36

Proof of Lemma 6.1. We start by proving the result in dimension d = 1.
Letting A = [a, b] (0 ≤ a < b ≤ 1), one has

L?(1, z) = V[Y |X ∈ A]− P[a ≤ X ≤ z |X ∈ A]V[Y | a ≤ X ≤ z]

− P[z ≤ X ≤ b |X ∈ A]V[Y | z < X ≤ b]

= − 1

(b− a)2

(∫ b

a

r(t)dt

)2

+
1

(b− a)(z − a)

(∫ z

a

r(t)dt

)2

+
1

(b− a)(b− z)

(∫ b

z

r(t)dt

)2

.

Let C =
∫ b
a
r(t)dt and R(z) =

∫ z
a
r(t)dt. Simple calculations show that

L?(1, z) =
1

(z − a)(b− z)

(
R(z)− C z − a

b− a

)2

.

Thus, since L? ≡ 0 on CA by assumption, we obtain

R(z) = C
z − a
b− a

.

This proves that R(z) is linear in z, and therefore that r is constant on [a, b].

Let us now examine the general multivariate case, where the cell is a hyper-
rectangle A = Πd

i=1[ai, bi] ⊂ [0, 1]d. We recall the notation A\j =
∏

i 6=j[ai, bi]

and dx\j = dx1 . . . dxj−1dxj+1 . . . dxd. From the univariate analysis above,
we know that for all j ∈ {1, . . . , d} there exists a constant Cj such that∫

A\j
r(x)dx\j = Cj.

Since r ∈ F , it is constant on A. This proves the result.

The proof of the next proposition follows the arguments of Proposition 2 in
Scornet et al. (2015), with Lemma 6.1 above in lieu of their Technical Lemma
1. The proof is therefore omitted. We let An(X,Θ) be the cell of the tree
grown with random parameter Θ that contains X.

Proposition 6.1. Assume that X is uniformly distributed in [0, 1]d, ‖Y ‖∞ <
∞, and r ∈ F . Then, for all ρ, ξ > 0, there exists N ∈ N? such that, for all
n > N ,

P

[
sup

z,z′∈An(X,Θ)

∣∣r(z)− r(z′)
∣∣ ≤ ξ

]
≥ 1− ρ.

37

We are now in a position to prove Proposition 4.3. Recall that

tλ?(x) = E[Y |X ∈ An(x,Θ)].

Accordingly,

∣∣tλ?(x)− r(x)
∣∣2 =

∣∣∣∣E[Y |X ∈ An(x,Θ)
]
− r(x)

∣∣∣∣2
=

∣∣∣∣E[r(X) |X ∈ An(x,Θ)
]
− r(x)

∣∣∣∣2
≤ sup

z,z′∈An(x,Θ)

∣∣r(z)− r(z′)
∣∣2,

since r is continuous on [0, 1]d. Taking the expectation on both sides, we
finally obtain

E
∣∣tλ?(X)− r(X)

∣∣2 ≤ E[sup
z,z′∈An(X,Θ)

∣∣r(z)− r(z′)
∣∣2],

which tends to zero as n → ∞, according to Proposition 6.1 (since r is
bounded on [0, 1]d).

References

M. Abadi, A. Agarwal, P. Barham, and E. Brevdo et al. TensorFlow: Large-
scale machine learning on heterogeneous systems. 2015. URL http://

tensorflow.org/.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2:1–127, 2009.

G. Biau and E. Scornet. A random forest guided tour (with comments and
a rejoinder by the authors). TEST, in press, 2016.

A.-L. Boulesteix, S. Janitza, J. Kruppa, and I.R. König. Overview of ran-
dom forest methodology and practical guidance with emphasis on compu-
tational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 2:493–507, 2012.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and
Regression Trees. Chapman & Hall/CRC, Boca Raton, 1984.

38

http://tensorflow.org/
http://tensorflow.org/

R.P. Brent. Fast training algorithms for multi-layer neural nets. IEEE Trans-
actions on Neural Networks, 2:346–354, 1991.

P. Cortez and A. Morais. A data mining approach to predict forest fires using
meteorological data. In J. Neves, M.F. Santos, and J. Machado, editors,
Proceedings of the 13th Portugese Conference on Artificial Intelligence,
pages 512–523, 2007.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer, New York, 1996.

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need
hundreds of classifiers to solve real world classification problems? Journal
of Machine Learning Research, 15:3133–3181, 2014.

P. Geurts and L. Wehenkel. Closed-form dual perturb and combine for tree-
based models. In Proceedings of the 22nd International Conference on
Machine Learning, pages 233–240, New York, 2005. ACM.

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory
of Nonparametric Regression. Springer, New York, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Second Edition. Springer, New York, 2009.

Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown,
and A. Criminisi. Decision forests, convolutional networks and the models
in-between. arXiv:1603.01250, 2016.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6:181–214, 1994.

D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of The International Conference on Learning Representations,
2015.

P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo’. Deep neural
decision forests. In International Conference on Computer Vision, 2015.

M. Lichman. UCI Machine Learning Repository, 2013. URL http://

archive.ics.uci.edu/ml.

G. Lugosi and K. Zeger. Nonparametric estimation via empirical risk mini-
mization. IEEE Transactions on Information Theory, 41:677–687, 1995.

39

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

B.H. Menze, B.M. Kelm, D.N. Splitthoff, U. Koethe, and F.A. Hamprecht.
On oblique random forests. In D. Gunopulos, T. Hofmann, D. Malerba,
and M. Vazirgiannis, editors, Machine Learning and Knowledge Discovery
in Databases, pages 453–469. Springer, Berlin, 2011.

C. Olaru and L. Wehenkel. A complete fuzzy decision tree technique. Fuzzy
Sets and Systems, 138:221–254, 2003.

F. Pedregosa, G. Varoquaux, A. Gramfort, and V. Michel et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

D. Pollard. Convergence of Stochastic Processes. Springer, New York, 1984.

M. Redmond and A. Baveja. A data-driven software tool for enabling coop-
erative information sharing among police departments. European Journal
of Operational Research, 141:660–678, 2002.

D.L. Richmond, D. Kainmueller, M.Y. Yang, E.W. Myers, and C. Rother.
Relating cascaded random forests to deep convolutional neural networks
for semantic segmentation. arXiv:1507.07583, 2015.

L. Rokach and O. Maimon. Data Mining with Decision Trees: Theory and
Applications. World Scientific, Singapore, 2008.

E. Scornet, G. Biau, and J.-P. Vert. Consistency of random forests. The
Annals of Statistics, 43:1716–1741, 2015.

I.K. Sethi. Entropy nets: From decision trees to neural networks. Proceedings
of the IEEE, 78:1605–1613, 1990.

I.K. Sethi. Decision tree performance enhancement using an artificial neural
network interpretation. In I.K. Sethi and A.K. Jain, editors, Artificial
Neural Networks and Statistical Pattern Recognition, volume 6912, pages
71–88. Elsevier, Amsterdam, 1991.

J. Welbl. Casting random forests as artificial neural networks (and profit-
ing from it). In X. Jiang, J. Hornegger, and R. Koch, editors, Pattern
Recognition, pages 765–771. Springer, 2014.

I.-C. Yeh. Modeling of strength of high-performance concrete using artificial
neural networks. Cement and Concrete Research, 28:1797–1808, 1998.

40

O.T. Yildiz and E. Alpaydin. Regularizing soft decision trees. In Information
Sciences and Systems 2013. Proceedings of the 28th International Sympo-
sium on Computer and Information Sciences, pages 15–21, New York,
2013. Springer.

41

	Introduction
	Trees, forests, and networks
	From one tree to a neural network
	The cart program
	Random forests

	Neural forests
	Some theory
	Empirical risk minimization
	Consistency
	Proof of Theorem 4.1

	Experiments
	Training procedure
	Benchmark comparison experiments
	Asymptotic behavior

	Some technical results
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

