Using Entropy to Impute Missing Data in a Classification Task - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Using Entropy to Impute Missing Data in a Classification Task

Thanh Ha Dang
  • Fonction : Auteur
  • PersonId : 843985

Résumé

In real applications, part of the data is usually missing. But most techniques of data analysis and data mining can only deal with complete data. In this paper, a new taxonomy of imputation methods is proposed. Within this taxonomy a new technique, based on entropy measures is introduced. Its behaviour is studied through an empirical comparative analysis.
Fichier non déposé

Dates et versions

hal-01306267 , version 1 (22-04-2016)

Identifiants

Citer

Thomas Delavallade, Thanh Ha Dang. Using Entropy to Impute Missing Data in a Classification Task. IEEE International Conference on Fuzzy Systems (Fuzz-IEEE), Jul 2007, London, United Kingdom. pp.577-582, ⟨10.1109/FUZZY.2007.4295430⟩. ⟨hal-01306267⟩
87 Consultations
0 Téléchargements

Altmetric

Partager

More