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Grasping	versus	Knitting:	a	Geometric	Perspective		

Comment	on	
Hand	synergies:	Integration	of	robotics	and	neuroscience	for	understanding	the	

control	of	biological	and	artificial	hands,	by	M.	Santello	et	al.	
	
Grasping	an	object	is	a	matter	of	first	moving	a	prehensile	organ	at	some	position	in	the	
world,	and	then	managing	the	contact	relationship	between	the	prehensile	organ	and	
the	object.	Once	the	contact	relationship	has	been	established	and	made	stable,	the	
object	is	part	of	the	body	and	it	can	move	in	the	world.	As	any	action,	the	action	of	
grasping	is	ontologically	anchored	in	the	physical	space	while	the	correlative	movement	
originates	in	the	space	of	the	body.	Robots—as	any	living	system—access	the	physical	
space	only	indirectly	through	sensors	and	motors.	Sensors	and	motors	constitute	the	
space	of	the	body	where	homeostasis	takes	place.	Physical	space	and	both	sensor	space	
and	motor	space	constitute	a	triangulation,	which	is	the	locus	of	the	action	embodiment,	
i.e.	the	locus	of	operations	allowing	the	fundamental	inversion	between	world-centered	
and	body-centered	frames.	Referring	to	these	three	fundamental	spaces,	geometry	
appears	as	the	best	abstraction	to	capture	the	nature	of	action-driven	movements.	
Indeed,	a	particular	geometry	is	captured	by	a	particular	group	of	transformations	of	the	
points	of	a	space	such	that	every	point	or	every	direction	in	space	can	be	transformed	by	
an	element	of	the	group	to	every	other	point	or	direction	within	the	group.	Quoting	
mathematician	Poincaré,	the	issue	is	not	find	the	truest	geometry	but	the	most	practical	
one	to	account	for	the	complexity	of	the	world1.	Geometry	is	then	the	language	fostering	
the	dialog	between	neurophysiology	and	engineering	about	natural	and	artificial	
movement	science	and	technology.	Evolution	has	found	amazing	solutions	that	allow	
organisms	to	rapidly	and	efficiently	manage	the	relationship	between	their	body	and	the	
world2.	It	is	then	natural	that	roboticists	consider	taking	inspiration	of	these	natural	
solutions,	while	contributing	to	better	understand	their	origin.		
	
The	recent	European	project	The	Hand	Embodied	is	a	remarkable	application	of	this	
multidisciplinary	research	paradigm3.	
	
The	human	hand	is	certainly	the	most	sophisticated	organ	evolution	has	provided	to	
allow	a	living	system	to	act	on	the	world.	The	hand	is	recognized	as	a	fundamental	
component	of	intelligence.	Its	richness	comes	from	its	extraordinary	capacity	to	perform	
a	large	range	of	dexterous	manipulation	tasks	ranging	from	hammering	to	knitting.		
Hammering	required	maintaining	a	stable	grasp	between	the	handle	and	the	moving	
arm.	How	to	configure	all	the	degrees	of	freedom	of	the	hand	around	the	handle,	and	
what	configurations	obey	the	better	the	physical	constraints	of	hammering	(e.g.	non	
sliding	and	force	resistant	contacts)?	They	are	challenging	questions	even	for	a	simple	
hammering	task.	Knitting	is	a	task	much	more	complicated	that	hammering.	Knitting	
requires	mobile	dexterity.	Finger	movements	have	to	be	coordinated	in	order	to	steer	
the	thread	along	the	needles	while	tuning	its	tension.	With	respect	to	hammering,	
knitting	adds	another	level	of	challenge.	Complexity	arises	both	from	the	dimension	of	

																																																								
1	H.	Poincaré,	L'espace	et	la	géométrie,	Revue	de	métaphysique	et	de	morale,	1895,	vol.	III,	p.	631-646.	
2	A.	Berthoz,	Simplexity:	Simplifying	Principles	for	a	Complex	World,	Yale	Univ.	Press,	2012.	
3	M.	Santello	et	al.	Hand	synergies:	Integration	of	robotics	and	neuroscience	for	understanding	the	control	
of	biological	and	artificial	hands,	Physics	of	Life	Reviews,	2016.		
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the	hand	control	space	and	from	the	dimension	of	the	task	as	defined	in	the	physical	
space.		
	
Grasping	an	object	goes	back	to	establish	and	maintain	a	fixed	relation	between	an	
arbitrary	object	frame	and	an	arbitrary	hand	frame.	Grasping	task	and	its	physical	
constraints	is	then	described	in	the	physical	space	by	the	space	of	hand	placements,	i.e.	a	
space	of	dimension	6.	Considering	the	many	possible	postures	of	the	hand	(i.e.	the	many	
placement	of	the	fingers	around	the	object),	the	question	of	grasping	is	to	select	the	ones	
that	fitful	the	constraints.	The	link	to	be	settled	is	between	a	six	dimensional	space	and	
the	hand	high	dimensional	configuration	space.	Many	hand	postures	might	be	
admissible	and	many	movements	reaching	an	admissible	posture	might	be	feasible.	The	
hand	is	said	to	be	redundant	with	respect	to	grasping	task.	Redundancy	requires	
methods	for	posture	and	movement	selection.	Posture	and	movement	spaces	are	highly	
dimensional	spaces.	Their	dimensions	give	a	measure	of	the	computational	complexity	
of	the	task.	All	current	researches	in	life	science	as	well	as	in	engineering	explore	how	
living	and	artificial	systems	face	such	a	complexity.	Both	understanding	the	computation	
foundations	of	actions	performed	by	a	human	hand,	and	devising	a	human-like	hand	
impose	overcoming	the	famous	curse	of	dimensionality.	This	dual	perspective	is	
supported	by	the	notion	of	synergy.	Synergies	are	a	way	to	reduce	the	dimension	of	
spaces	to	be	explored.	At	first	glance,	we	may	consider	two	types	of	synergies.	Postural	
synergies	reduce	the	dimension	of	the	system	configuration	space.		They	are	the	
consequence	of	physical	links	as	cams,	or	they	are	derived	from	holonomic	differential	
links	that	impose	integrable	constraints	between	the	velocities	of	some	body	parts.	
Motor	synergies	tend	to	reduce	the	scope	of	all	possible	movements	by	orchestrating	all	
elementary	motor	controls	from	a	basis	whose	dimension	is	less	than	the	dimension	of	
entire	motor	control	space.	What	makes	the	outstanding	quality	of	the	Pisa/IIT	SoftHand	
is	exactly	the	clever	combination	of	postural	and	motor	synergies.		
	
It	is	natural	that	roboticists	consider	taking	inspiration	of	evolution.	It	is	not	mandatory.	
Evolution	did	not	invent	the	wheel,	and	aircrafts	do	not	flap	wings,	at	least	at	this	
moment!	To	face	the	world	complexity,	engineering	has	developed	its	own	concepts	
without	reference	to	any	living	system.	For	instance,	the	concept	of	minimalism	refers	to	
the	methodological	approach	to	design	the	least	complex	solutions	for	a	given	class	of	
tasks,	by,	e.g.,	using	the	minimal	number	of	actuators	or	control	variables,	or	the	
simplest	set	of	sensors.		Applied	to	grasping	tasks,	this	perspective	gave	rise	to	clever	
mechanisms	such	as	a	gripper	based	on	the	jamming	of	granular	material4	or	a	general-
purpose	hand	made	of	only	three	rigid	fingers5.	Such	general	principles	percolate	with	
the	concept	of	synergies	or	with	the	so-called	morphological	computation6.	
	
We	have	seen	that	actions	are	defined	in	the	physics	space	while	their	very	origin	takes	
place	in	the	control	space.	The	relationship	between	“action	in	the	real	world”	and	

																																																								
4	E.	Brown,	N.	Rodenberg,	J.	Amend,	A.	Mozeika,	E.	Steltz,	M.	Zakin,	H.	Lipson	and	H.	Jaeger,	Universal	
robotic	gripper	based	on	the	jamming	of	granular	material,	Proceedings	of	the	National	Academy	of	
Sciences,	Vol.	107,	No.	44,	2010.	
5	M.	T.	Mason,	A.	Rodriguez,	S.	Srinivasa,	A.	S.	Vazquez,	Autonomous	Manipulation	with	a	General-Purpose	
Simple	Hand,	The	International	Journal	of	Robotics	Research	(IJRR),	Vol.	31,	No.	5,	April,	2012,	pp.	688-
703.	
6	R.	Pfeifer,	J.	Bongard,	How	the	body	shapes	the	way	we	think:	a	new	view	of	intelligence,	The	MIT	Press,	
2007.	



“movement	generation”	in	the	motor	control	space	is	defined	in	terms	of	geometry.	It	
particularly	derives	from	differential	geometry,	linear	algebra	and	optimality	
principles7,8.	Optimal	control	is	based	on	well-established	mathematical	machinery	
ranging	from	the	analytical	approaches	initiated	by	Pontryagin9	to	the	recent	
developments	in	numerical	analysis10.	It	allows	action-driven	movement	generation.	
Such	mathematical	machinery	can	operate	also	in	a	reverse	perspective	to	elucidate	the	
laws	of	natural	movements	and	to	reveal	motor	synergies.	For	instance,	inverse	optimal	
control	is	a	way	to	model	the	human	motion	in	terms	of	controlled	systems:	given	an	
underlying	hypothesis	of	a	system,	as	well	as	a	set	of	observed	natural	actions	recorded	
from	an	experimental	protocol	performed	on	several	participants,	the	question	is	to	find	
the	cost	function	the	system	is	optimizing.	From	a	mathematical	point	view,	the	inverse	
problem	is	much	more	challenging	than	the	direct	one.	There	are	few	(recent)	results	in	
this	direction	of	research.	They	include	numerical	analysis11,	statistical	analysis12	and	
also	part	of	the	active	area	of	machine	learning13,14.	
	
As	final	comment,	let	us	consider	the	following	issue.	Imagine	a	humanoid	robot	whose	
arms	are	equipped	with	two	Pisa/IIT	SoftHands	as	prehensile	organs.	Is	such	a	robot	
capable	of	knitting?	The	answer	is	no.	The	bottleneck	comes	from	synergies.	We	have	
seen	that	the	advantage	of	synergies	is	to	allow	space	dimensionality	reduction,	and	
then	complexity	reduction.	In	return,	not	all	possible	movements	can	be	generated.	
Knitting	would	require	facing	against	the	synergies	used	for	grasping.	Unraveling	the	
current	synergy	orchestration	would	be	the	first	step	of	a	solution.	The	second	step	
would	be	to	learn	new	synergies	dedicated	to	knitting.	And	that	is	out	of	the	scope	of	
current	know-how	from	robotics	and	life	science.	Now,	another	question	is:	what	is	the	
interest	for	a	robot	to	learn	knitting	whereas	Joseph	Marie	Jacquard	invented	the	
mechanical	loom	in	1801?	As	many	human	know-how	since	the	beginning	of	the	
technology,	[great-]grandmother	knitting	know-how	is	disappearing.	
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Springer,	2006.	
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13	T.	Mitchell,	Machine	Learning,	McGraw	Hill,	1997.	
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