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ABSTRACT

In this paper, we present a method that aims at parcellating the
cortical surface from individual anatomy. The parcellation is
obtained using the Mutual Nearest Neighbor (MNN) criterion
to obtain regions with similar structural connectivity. The
structural connectivity is obtained by applying a probabilis-
tic tractography on the diffusion MRI (dMRI), a non-invasive
modality allowing access to the structural information of the
white matter. The results are compared to some of the atlases
that can be found in the literature. We show that these atlases
have lower similarity of structural connectivity than the pro-
posed algorithm implying that the regions of the atlases may
have lower functional homogeneity.

Index Terms— Parcellation, dMRI, Mutual Nearest
Neighbor.

1. INTRODUCTION

Understanding the human cortex organization is a very chal-
lenging research field. One of the challenges is to find a rela-
tion between anatomical and functional regions. Physiologi-
cally, the brain is organized in functional areas, and structural
connectivity of the cortical region is the primary indicator of
its function [1]. In [2], the author described cortical maps
suggesting a specific organization of the brain functions in re-
lation to the cortical anatomy. Diffusion Magnetic Resonance
Imaging (dMRI) is a non-invasive imaging modality that al-
lows the understanding and exploration of the underlying tis-
sue structure of the human brain.

There have been several methods to label the cortical sur-
face [3, 4, 5, 6, 7] and usually researchers register their sub-
jects to some atlases that can be found in the literature; De-
strieux (DX) [3], Desikin-Killiany (DK) [4], and Mindboggle
(ME) [5], see Fig.1. The registration can be misleading due to
variations in the cortical surface from one subject to another.
Previous methods for dMRI based parcellation use atlases as
a pre-parcellation step to reduce the computational cost and
to obtain sub-regions that have similar structural connectivity
[8, 9]. The method presented in this paper uses the underly-
ing white matter pathways to separate regions. It is similar to
the one presented in [10], but diffusion MRI is used instead
of functional MRI information. This allows us to parcellate

the whole cortical surface and not only an active region of the
brain. We also compare connectivity profiles of the resulting
regions to both atlases and subdivided atlases using k-means.
To the best of our knowledge, no one has yet investigated the
connectivity profiles of the atlases’ regions.

2. METHODOLOGY

2.1. Image acquisition

Structural and diffusion MRI data were taken from 6 healthy
subjects [11], 4 males and 2 females with an average age of
26.83 years. The T1 weighted images of size 256×256×192
were acquired by Siemens 3T Trio with GRAPPA 3D MPRA-
GE sequence (TR = 2250 ms; TE = 2.99 ms; flip-angle = 9◦;
acceleration factor = 2) at 1 mm isotropic resolution. The
diffusion weighted images of size 96×96×68 were collected
by the same scanner at 2 mm isotropic resolution (64 gradient
directions and b-value =1000 s/mm2), with one b0 image.

2.2. Image processing

The white/gray matter interfaces (cortical surface) were ex-
tracted using Freesurfer [12] from T1 images and remeshed
to 104 vertices, then projected from the anatomical to the dif-
fusion space. The projection was obtained by registering lin-
early the brain between the two spaces using FSL [13].

2.3. Cortex parcellation

Connectivity profile of a seed: Each node in the cortical mesh
is considered as a seed. For each seed, we compute the con-
nectivity profile, i.e. its connectivity with every voxel in the
diffusion image space. Connectivity profiles are obtained by
running probabilistic tractography for all seeds. We assume a
model of multiple fiber orientations for each voxel developed
in FSL [14] with 104 samples.
Clustering the cortical surface: The goal of parcellation al-
gorithm is to divide the cortical surface into a set of non over-
lapping and connected regions that have similar connectiv-
ity profiles. In the first step, regions are singletons of seeds
and are possible candidates for merging. The algorithm is
explained in Algorithm 1. CP represents the matrix of the
seeds’ connectivity profiles and MC is the mesh connectivity



Fig. 1: The four views of the atlases obtained from FreeSurfer for Subject 1. From left to right; DX (148 regions), DK (68 regions) and ME
(62 regions). The Thalamus is not included in the labeling.

matrix. NS is the number of seeds. T is a number used to
stop merging big regions and K is the maximum number of
iterations.

Algorithm 1 Cortical parcellation algorithm

1: procedure PARCELLATION(CP,MC, T,K)
2: Initialize:

s← NS
T , Label=1:NS

3: while K > 0 do
4: for Each region do
5: Nr ← Neighbors(MC, r)
6: B(r)← argmaxrk∈Nr

SM(r, rk)
7: end for
8: for Each region do
9: if |r| < s and MNN(r,B(r)) then

10: Label(B(r))← r
11: end if
12: end for
13: if regions unchanged then
14: return Label
15: end if
16: NR← length(unique(Label))
17: K ← K − 1
18: end while
19: return Label
20: end procedure

For every iteration, we obtain the set of neighboring re-
gions Nr to the region r (line 5), and compute the similarity
measure, SM , between region r and Nr (line 6). The vec-
tor B of merging regions candidates contains the labels of the
possible candidates: B(r) is the neighbor of region r that has
the highest SM value. We define the SM between two re-
gions R and S as;

SM(R,S) =
1

|R||S|
∑

(v,w)∈(R×S)

corr(CPv, CPw) (1)

where corr is the Pearson
′
s correlation and |R| is the num-

ber of seeds in R. Region r and B(r) are merged if they

satisfy the Mutual Nearest Neighbor (MNN) condition:{
B(r) = argmaxrk∈Nr

SM(rk, r)
r = argmaxrk∈NB(r)

SM(B(r), rk)

3. RESULTS AND DISCUSSION

The mean of the similarity values (MSV) between all the con-
nectivity profile pairs inside the regions is used to measure
the homogeneity of the parcellation’s regions. High MSV
means that the region has close connectivity profiles. Fig. 2
(a) shows the MSV of the different atlases and subjects. We
applied the cortical surface parcellation algorithm explained
in Section 2.3 to the dMRI data [11]. Fig. 2 (b) shows the
MSV of the resulting parcellation for all subjects and T ∈
{1000, 800, 600, 400, 200}. To compare the MSV of the at-
lases, Fig. 2 (a), and the ones of the proposed parcellation, we
chose T ∈ {148, 62}, Fig. 2 (c). These values give parcella-
tions with close number of regions to the ones of the atlases
(see Fig. 3). Fig. 2 (d) shows the MSV and variance of the
similarity measure values of the regions obtained by subdi-
viding the atlas’ regions using k-means.

Several papers used the atlases as a pre-parcellation step
to reduce the computation time [8, 9]. Each atlas’ region is
parcellated using k-means. This approach is assumed to group
seeds that have similar CP inside the atlas’ region. We use
the eigenvalues of the CP s’ cross-correlation to identify the
number of clusters in each region. Based on the eigengap (dif-
ference between consecutive eigenvalues), we sort the eigen-
values, αi for i ∈ {1, 2, ..., |r|}, of the cross-correlation ma-
trix in decreasing order and pick the number of clusters, k, as:
k = argmaxi(αi − αi+1). The resulting number of regions
for the six subjects is shown in Table 1.

As shown in Fig. 2 (a), the MSV of the DX atlas is higher
than the others and is followed by DK and ME atlases for all
subjects. This follows the decreasing order of the number of
regions of the atlases, see Fig. 1.

In average and as expected, the MSV is proportional to
T due to including more dissimilar connectivity profiles for
low T values. We observe also that the order is homoge-
neous across subjects, see Fig. 2 (b). For all subjects in Fig. 2
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Fig. 2: The MSV and variance of the cross-correlation of the CP over regions of (a) different atlases and subjects, (b) the resulting parcellation
for different subjects and T values, (c) parcellations with T ∈ {148, 62} and (d) the regions obtained by subdividing the atlases using k-means.

Atlas S1 S2 S3 S4 S5 S6
Mindboggle 138 157 168 152 190 168
Desikan-Killiany 155 174 170 167 203 222
Destrieux 380 392 379 406 409 412

Table 1: Number of parcels for different subjects and atlases ob-
tained from k-means parcellation on the atlases.

(c), the parcellations of the proposed method provided regions
with higher MSV when compared to the atlases (Fig. 2 (a)).
This is due to merging only regions with the highest simi-
larity measure due to the MNN condition. In Fig. 3, which
represents the result of the parcellations for T = 62, we can
distinguish several classical regions like Fusiform gyrus, Su-
perior Frontal, Occipital and others.

Even if the MSV is increased after applying the k-means
on the atlases, Fig. 2 (d), but it still less than the MSV of the
proposed parcellation with bigger regions (T ∈ {148, 62}),
Fig. 2 (c). This implies that the atlas’ regions have low homo-
geneity of the structural connectivity because they do not in-
clude the structural information, which implies that they have
lower functional homogeneity.

Table 2 shows the mean and the standard deviation of the
Dice coefficients vector (D). The Dice coefficient measures
the extent of spatial overlap between regions. Let Ai be a
region in the parcellation A (n regions) and Bj be a region in
the parcellation B (m regions). D is a vector of n elements
that compares the regions of A to B:

D(i) = max
2(Ai∩Bj)
|Ai|+|Bj | for j = 1, ..,m.

The mean of D between the atlases and the proposed par-
cellation is low for all subjects, see the first four rows in Table
2. Atlases and parcellations based on MNN condition do not
only differ in the MSV but also have low spatial overlapping.
The MSV for ME and DK are close, Fig. 2 (a), this can be
explained by their high spatial overlapping (90 %), last two
rows in Table 2. This is why we do not compare the Dice
coefficient between the parcellation with T = 68 and the DK

S1 S2 S3 S4 S5 S6
T= 148, DX 38/15 38/16 39/14 35/17 34/16 37/16
DX, T = 148 40/12 41/13 39/13 40/13 39/12 40/14
T= 62, ME 36/14 33/14 35/12 34/12 34/13 34/13
ME, T = 62 38/13 33/13 35/11 35/11 35/12 35/11

ME, DX 49/12 54/12 50/13 48/13 50/11 49/12
DX, ME 33/17 35/19 34/17 33/17 34/17 34/16
DK, DX 49/14 52/13 49/13 48/13 49/12 48/14
DX, DK 34/17 34/19 35/17 33/17 34/17 34/17

DK, ME 83/23 82/23 82/23 83/23 83/23 83/24
ME, DK 90/08 89/08 89/09 90/08 90/09 90/09

Table 2: The Dice coefficient (mean/standard deviation in %) be-
tween the different parcellations (T ∈ {148, 62}) and atlases.

atlas. DX has low spatial overlapping with DK and ME, see
row five to eight in Table 2, this is because DX has more re-
gions than DK and ME.

We used Pearson’s correlation in Equation.1 because it
was used successfully in different papers like in Anwander et
al. [8]. Other similarity measures like Tanimoto measure
can be used and should be tested in this framework to see
the effect of the similarity measure on the resulting parcella-
tion. The implementation of the algorithm will be available
for comparison studies.

4. CONCLUSION

We have presented algorithm to subdivide the human cere-
bral cortex into neuro-anatomical parcels that have similar
connectivity profiles. The results show that the algorithm
provides regions with higher similarity between the CP with
compared to atlases even after subdividing them. These at-
lases have low structural homogeneity because they do not
include any structural information. The algorithm may pro-
vide valuable tool for research studies involving group and
functional studies. Even though and as expected the parcella-
tion using MNN gives regions with higher MSV, it needs to



Fig. 3: The Resulting parcellation of six subjects on the inflated cortical surfaces with T = 62. Each panel correspond to four views of one
subject. . The Thalamus is not included in the parcellation. We obtain number of regions for the different subjects between 60 and 66.

be validated using functional data.
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