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L’approche SDN implique une séparation entre le plan de données et le plan de contrôle centralisé. Pour des raisons
de passage à l’échelle et de fiabilité ce plan de contrôle centralisé doit être physiquement distribué dans le cas de
déploiements de grande envergure. Dans cet article nous abordons la question de la minimisation de la surcharge de
trafic que l’utilisation d’un plan de contrôle distribué implique. Nous résolvons ce problème de manière optimal pour de
petites instances grâce à l’utilisation de technique d’optimisation linéaire et introduisons un algorithme glouton capable
d’obtenir des résultats proches de 3% de l’optimal en un temps moindre et sur des topologies bien plus grandes.
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1 Introduction
The Software Defined Network paradigm advocates for a logically centralized control plane. When a

physically centralized control plane is not feasible, for instance because of scalability and/or resiliency
issues, physically distributed controllers needing to act like a logically centralized control plane are used.
This means sharing information among themselves in order to keep a global consistent view of the network.
The implication is that a lot of data is exchanged over the control plane. While this might not be an issue
in a data center network, where bandwidth is cheap, in large scale WANs the issue of control overhead may
become predominant, especially in constrained networks [ea14].

In this paper we focus on SDN controller placement and control plane topology adaptation so as to
minimize control overhead. We first model the problem as a Mixed Integer Program (MIP), in order to
get the optimal controller placement and the optimal spanning tree topology formed by active controllers.
Such model is used as reference point because of its optimality. But it uses too much time and computation
resources to be used on large topologies. We then introduce a greedy algorithm able to compute quasi-
optimal placement and control plane topology in a very short time, with a less than 3% margin from the
optimal computed via the time consuming MIP approach.

The controller placement problem in distributed SDN architectures has been studied mostly by trying
to minimize switch-controller delay [ea12], which is a very important metric in an architecture where
switches sometimes need to buffer flows while waiting for the controller reply. Other extensions of the
problem have tried to address the reliability issue with different placement mechanism and related me-
trics [eaa] [eab]. Differently from the above-mentioned proposals, our work focuses on the problem of
efficiently sharing relevant network information between controllers and how their placement can impact
the overhead on the control plane. This scheme includes the controller placement but also the minimum
spanning tree among controllers. The latter is a major difference from other publications where all inter-
controller distance is considered. This is especially relevant in locally controlled SDN architectures [ea13]
and when using constrained control links [ea14].

The rest of the paper is structured as follows. Sec. 2 introduces our model,the MIP and the greedy algo-
rithm. Both models are then compared in Sec. 3. Sec. 4 concludes the paper.
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FIGURE 1: Flow requests and installations in distributed SDN networks.

2 Mixed Integer Program Model and Greedy heuristic
Hereafter we first provide the general network model and then define the cost function used to formally

quantify the control overhead. We then present our greedy heuristic that aims at minimizing overhead.

2.1 Network Model

The network graph is G = (S,E) : composed by SDN-enabled switches S and the physical links between
them E. Controllers can be placed on C⊆ S. We introduce the following binary decision variables : xi = 1 if
controller i is active. The network can be seen as split in different control domains, each domain representing
the set of network elements controlled by the same controller, represented by yi,m = 1 if switch i is assigned
to controller m. Since most of the data sent by a controller has to be sent to all the other controllers, the
most efficient way to share information over the overlay is a spanning tree, modeled as follows : um,h = 1
if the distance in the spanning tree between m and the root is equal to h. If n is the predecessor of m in the
spanning tree then pm,n = 1.

Whenever a packet arrives at a switch, if the packet does not match any entry in the flow table, a
packet_in is sent to the controller of this switch and the flow is buffered until a rule is installed. The
number of packet_in sent to the controller highly depends on the way the network is operated and what
is the flows traffic matrix. We indicate by T = Ti, j the flows traffic matrix (in flow/s). Where Ti,i is the
number of flows without a match coming from the hosts connected on switch i, while Ti, j is the number of
flows without a match coming from switch i to switch j.

2.2 MIP

We shall define the overhead traffic as composed by all the traffic in the control plane, that is all switch-
controller communications and controller-controller communications. It is composed by (in order of appea-
rance in the long sum for the MIP problem) :
Data collection cost :SDN switches make available a number of statistics, the controller has to periodically
(with fdc bit-rate) ask switches to send the relevant data.
Cost of route request and route installation : A number of different control plane communications need
to happen when a new flow is generated to install the right rules on all the switches where the flow will
transit, those communications are represented in Fig.1. When a new flow coming from an host arrives at a
switch, a packet_in (size fp) is generated and sent to the controller of this switch. When a flow arrives
from another domain, the controller discovers this flow, so the same process has to be applied. Finally the
controller needs to install rules on all the switches in its domain via a flow_mod (size f f m) packet.
Synchronization cost : The data collected by a controller m (with fsyn bit-rate) that needs to be sent to all
the other controllers is proportional to the number of switches inside the domain of m and to the size of the
spanning tree between all controllers.
We obtain the following MIP problem :

Minimize : F = fdc ∑m∈C ∑i∈S di,myi,m + fp ∑m∈C ∑i∈S Ti,idimyi,m +
fp ∑i∈S ∑ j∈S ∑m∈C ∑n∈C,m 6=n Tj,iyi,my j,ndi,m + f f ,m ∑i∈S ∑ j∈S ∑m∈C Tj,idi,myi,m + fsynN ∑m∈C ∑n∈C pm,ndm,n
with the following constraints :
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∑
m∈C

yi,m = 1 ∀i ∈ S Every switch is controlled by one controller exactly

yi,m <= xm ∀i ∈ Sm ∈C Switch i is controlled by m only if m is active
xi,mdelayi,m <= δ ∀i ∈ Sm ∈C Maximum switch-controller distance is less than δ

H

∑
l=1

um,l = xi ∀m ∈C Single loop free path from each controller to root

∑
m∈C

um,0 = 1 Root uniqueness

∑
m∈C

pm,n = x j−u j,0 ∀n ∈C Active controllers have one predecessor except for root

pm,n <= 1−u j,l +ui,l−1 ∀n ∈Cm ∈Cl = 0..L m predecessor of n if his distance to root is 1 less

Where di,m is the distance (in hops) between node i and node m, fp is the packet size (in bytes) of the
packet_in, f f m is the average size (in bytes) of a flow_mod packet.

2.3 Algorithm
To solve the problem formalized in the previous paragraph, we propose to use a greedy heuristic. The

algorithm starts with all possible controllers activated, on each iteration it tries to turn off one of the control-
lers and computes the associated overhead cost. The first step of this calculation is choosing controller do-
mains : each switch is controlled by the closest (in term of delay) activated controller. Each time a switch
is associated with an active controller, the algorithm checks that the switch-controller delay is less than the
maximum delay tolerated by the model. If it is true costs calculations can continue, the configuration is
skipped otherwise. The cost of data collection and route requests and installation can be computed. The
minimum spanning tree between controllers is calculated using Prim’s algorithm and the cost of synchro-
nization can also be computed [ead]. If the calculated cost is less than the previous minimum this new
configuration is saved. The algorithm tries to shut down each possible controller on every iteration and uses
the configuration with the minimum cost as a starting point for next iteration. The algorithm stops when
stopping any controller causes the cost of overhead to grow.

3 Evaluation
3.1 Implementation and Experimental Setup

In order to compute cost function defined in our model, we need realistic cost weights for as well as a
realistic topology and the related traffic matrix. fp and f f m are openflow packets with size 80 bytes. The
data collection cost highly depends on how much monitoring controllers need to react quickly to have
a responsive network we used 40 KB/s in this simulation. The synchronization traffic includes reachabi-
lity information, heart beat messages for failure detection [eac] and route quality information. The syn-
chronization traffic sent by a controller to all the other controllers is an aggregation of the collected data
fsyn = fdc/10 = 4KB/s. We used the GEANT [ea06] topology as the network topology, assuming that each
router is replaced by a SDN switch, there is one new flow every 100 000 KB exchanged, and C = S.

3.2 Evaluation Results
The baseline costs we chose are an example of a realistic setup, but can widely change according to

network applications running on the controllers. To show the influence of those costs we evaluated the
variation of the costs and of the optimal number of controllers according to those parameters.

Fig. 2a shows the impact of data collection cost Fdc on the overall cost. When the data collection cost
grows because of a higher weight fdc, the impact of switch-controller distance is stronger and the optimal
placement needs controllers close to the switches, which causes the optimal number of controllers in the
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(a) Effect of a data collection cost (b) Effect of synchronization cost (c) Effect of flow installation cost

FIGURE 2: Effect of a flow installation cost on the overhead cost and the number of controllers on the
GEANT topology

network to grow. On the contrary, when the cost of synchronization Fsyn grows, the size of the spanning
tree between controllers becomes the predominant factor in the total overhead cost, thus, the number of
controllers has to be reduced, as shown in Fig. 2b. The cost of flow requests and installation grows like the
cost of data collection, with the exception that instead of having a fixed per-switch cost, the cost depends of
the traffic coming from other domains and hosts directly connected to the switch. When the traffic generates
more new flows, the switch-controller distance has greater impact and has to be smaller, hence, the number
of controllers higher.

To test the effect of the network size on the overhead cost and optimal number of controllers, we ge-
nerated random graphs using the Barabasi Algorithm [Bea02]. In all experiments, results showed that our
greedy algorithm is very close to the optimal for the number of nodes tested, with a deviation from the
optimal of less than 3% for all evaluated topology and at least 10 times quicker. Results are not available
for topology bigger than 60 nodes because the CPLEX solver ran out of it’s 4GB allowed memory. Our
algorithm provides a near-optimal solution in less than a minute even for topologies of a hundred nodes.

4 Conclusions and perspectives
In this paper we tackle the issue of minimizing communication overhead in the control plane of distri-

buted SDN networks Such goal is achieved by control plane topology adaptation (i.e., carefully placing the
controllers) including a building minimal spanning tree between controllers. We developed a MIP based
linear formulation that can be used to find the optimal solution on topologies with a moderate size. We
also presented an heuristic based on a greedy algorithm to find a near optimal controller placement and its
associated spanning tree topology. We showed numerically that this algorithm gives results very close the
optimal in a reasonable time on real world as well as random topologies of different sizes.
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