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Abstract. Let X be a variety over a field k and let X∞ be its space of arcs.
Let PE be the stable point of X∞ defined by a divisorial valuation νE on X.
Assuming char k = 0, if X is smooth at the center of PE , we make a study of the
graded algebra associated to νE and define a finite set whose elements generate a
localization of the graded algebra modulo étale covering. This provides an explicit
description of a minimal system of generators of the local ring OX∞,PE

. If X is
singular, we obtain generators of PE / P 2

E and conclude that embdimO(X∞)red,PE
=

embdim ÔX∞,PE
≤ k̂E +1 where k̂E is the Mather discrepancy of X with respect

to νE .
1

1. Introduction

The space of arcs X∞ of a reduced separated scheme of finite type X over a
perfect field k has finiteness properties when we localize at its stable points. The
stable points of X∞ were introduced in [Re1], its definition is based on the sta-
bility property of the family of truncated arcs {jn(X∞)}n in Denef and Loeser’s
fundational article [DL]. Stable points are those fat points P of X∞ for which the
truncations of its zero set Z(P ) determine trivial fribrations of fiber Ad

k over an
open set, being X equidimensional of dimension d. Equivalently, stable points of
X∞ are defined on an open subset of X∞ by the radical of a finitely generated
ideal, i.e. they are the generic points of the irreducible cylinders (see [EM], sec. 5).
It was proved in [Re1] that the ideal of definition of a stable point of X∞ on an
open subset of X∞, with the reduced structure, is finitely generated (see 2.4). This

implies that the complete ring ÔX∞,P , P being stable, is a Notherian ring, which
is the basis of a useful Curve Selection Lemma centered at the stable points ([Re1],
corol. 4.8).

To compute the dimension of OX∞,P , P being stable, is an important problem.
One upper bound of dimOX∞,P is the codimension as a cylinder of Z(P ) (see prop.
2.3). But the inequality is in general strict ([IR], ex. 2.8). Another approach we have

followed in some concrete examples ([Re2], 5.6, 5.16) is to describe the ring ÔX∞,P

by generators and relations. The main purpose of this work is to provide coordi-

nates in ÔX∞,P .

Divisorial valuations are closely related to stable points : the valuation νP asso-
ciated to a stable point P of X∞ is divisorial ([Re2], (vii) in prop. 3.7). On the other
hand, every divisorial valuation νE defines a stable point PE on X∞ and moreover,
if we consider a multiple e νE of νE , we also have a stable point PeE which contains
PE (see 2.7). A study of the graded algebra associated to the divisorial valuation

1. Keywords : Space of arcs, divisorial valuation, graded algebra.
MSC : 13A02, 13A18, 14B05, 14B25, 14E15, 14J17, 32S05.
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νE will be crucial in our study.

If X is smooth at the center P0 of a stable point P of X∞, then we prove (prop.
2.6) that the local ring OX∞,P is regular and essentially of finite type over some
field and dimOX∞,P equals the dimension as a cylinder of Z(P ). Hence, applying
the Change of Variables in the Motivic Integration ([DL], lemma 3.4), it follows
that dimOX∞,PeE = e(kE + 1) where kE is the discrepancy of X with respect to
E. Assuming that char k = 0, in this paper we recover this equality, and moreover,
we give an explicit description of a minimal set of generators of PeE , i.e. we give a
regular system of parameters of OX∞,PeE

.

If X is not smooth at P0 then, if X → Ad
k is a general projection, we have that a

set of generators of the image of PeE in (Ad)∞ provides a set of generators of PeE

([Re2], prop. 4.5). From this it follows that the embedding dimension of the ring
̂OX∞,PeE is bounded from above by e(k̂E +1), where k̂E is the Mather discrepancy

of X with respect to E. A further work will be done to determine whether this
defines a minimal system of coordinates of (X∞, PeE).

One of the main ideas in our proof is to define some “approximate roots” in
grνE

OAd,P0
, being X → Ad a general projection. In fact, if X is a curve then we

have that embdim ÔX∞,PE
= k̂E + 1, which in this case is equal to mult X + 1

([Re2], corol. 5.7). We follow the same line as in the proof for the case of curves,
being the more subtle part to define these approximate roots {qj,r}(j,r)∈J (defini-
tion 3.4). Although they do not generate grνE

OAd,P0
in general (grνE

OAd,P0
is not

in general finitely generated for d ≥ 3), they generate a localization of grνE
OAd,P0

modulo étale covering (theorem 3.8). This is done in section 3. In section 4 we

describe minimal coordinates of (Ad)∞ at the image PAd

eE of PeE in (Ad)∞ from
the qj,r’s. From this we obtain a regular system of parameters of OX∞,PeE

if X is
smooth at P0 (theorem 4.8), and a system of coordinates of (X∞, PeE) for general
X (corally 4.10).

2. Preliminaries

2.1. Let k be a perfect field. For any scheme over k, let X∞ denote the space of
arcs of X. It is a (not of finite type) k-scheme whose K-rational points are the K-
arcs on X (i.e. the k-morphisms Spec K[[t]] → X), for any field extension k ⊆ K.
More precisely, X∞ := lim←Xn where, for n ∈ N, Xn is the k-scheme of finite
type whose K-rational points are the K-arcs of order n on X (i.e. the k-morphisms
Spec K[[t]]/(t)n+1 → X). In fact, the projective limit is a k-scheme because the
natural morphisms Xn′ → Xn, for n′ ≥ n, are affine morphisms. We denote by
jn : X∞ → Xn, n ≥ 0, the natural projections.

Given P ∈ X∞, with residue field κ(P ), we denote by hP : Spec κ(P )[[t]] → X
the induced κ(P )-arc on X. The image in X of the closed point of Spec κ(P )[[t]],
or equivalently, the image P0 of P by j0 : X∞ → X = X0 is called the center of P .

Then, hP induces a morphism of k-algebras h♯
P : OX,j0(P ) → κ(P )[[t]] ; we denote

by νP the function ordth
♯
P : OX,j0(P ) → N ∪ {∞}.

The space of arcs of AN
k = Spec k[x1, . . . , xN ] is (AN

k )∞ = Spec k[X0, . . . , Xn, . . .]
where for n ≥ 0, Xn = (X1;n, . . . , XN ;n) is an N -uple of variables. For any
f ∈ k[x1, . . . , xN ], let

∑∞
n=0 Fn tn be the Taylor expansion of f(

∑
n Xn tn), hence
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Fn ∈ k[X0, . . . , Xn]. If X ⊆ AN
k is affine, and IX ⊂ k[x1, . . . , xN ] is the ideal defi-

ning X in AN
k , then we have X∞ = Spec k[X0, . . . , Xn, . . .] / ({Fn}n≥0,f∈IX ).

2.2. For r,m ∈ N, 0 ≤ r ≤ m, let Ar,m
k := k[[x1, . . . , xr]][xr+1, . . . , xm] and let

X ⊆ Spec Ar,m
k be an affine irreducible k-scheme. A point P of X∞ is stable if there

exist G ∈ OX∞ \P , such that, for n >> 0, the map Xn+1 −→ Xn induces a trivial
fibration

jn+1(Z(P )) ∩ (Xn+1)G −→ jn(Z(P )) ∩ (Xn)G

with fiber Ad
k, where d = dimX, Z(P ) is the set of zeros of P in X∞, jn(Z(P ))

is the closure of jn(Z(P )) in Xn and (Xn)G is the open subset Xn \ Z(G) of Xn.
This definition is extended to any element X in Xk, being Xk the subcategory of
the category of k-schemes defined by all separated k-schemes which are locally of
finite type over some Noetherian complete local ring R0 with residue field k ([Re2]
def. 3.3). Note that Xk contains the separated k-schemes of finite type and it also

contains the k-schemes Spec R̂, being R̂ the completion of a local ring R which is
a k-algebra of finite type. In [Re1] and [Re2] a theory of stable points of X∞ is
developed. One important property of these points is the following :

Proposition 2.3. ([Re2], prop. 3.7 (iv)) Let P be a stable point of X∞. For n ≥ 0,

let Pn be the prime ideal P ∩ O
jn(X∞)

, where jn(X∞) is the closure of jn(X∞) in

Xn, with the reduced structure. Then we have that dimO
jn(X∞),Pn

is constant for

n >> 0, and since

dimOX∞,P ≤ supn dimO
jn(X∞),Pn

it implies that dimOX∞,P < ∞.

And the main result in the theory of stable points is :

2.4. Finiteness property of the stable points ([Re1] th. 4.1, [Re2] 3.10).

Let P be a stable point of X∞, then the formal completion ̂O(X∞)red,P of the local
ring of (X∞)red at P is a Noetherian ring.

Moreover, if X is affine, then there exists G ∈ OX∞ \ P such that the ideal
P
(
O(X∞)red

)
G
is a finitely generated ideal of

(
O(X∞)red

)
G
. In particular PO(X∞)red,P

is finitely generated.

Besides we have ÔX∞,P
∼= ̂O(X∞)red,P ([Re2] th. 3.13). Hence, from 2.4 it follows

that the maximal ideal of ÔX∞,P is P ÔX∞,P , and even more, P̂n = PnÔX∞,P for
every n > 0 (see [Bo] chap. III, sec. 2, no. 12, corol. 2). Therefore, if P is a stable
point of X∞ then

embdim ÔX∞,P = embdim O(X∞)red,P .

Though this article we will consider étale morphisms. The following holds :

Proposition 2.5. Let X,Z ∈ Xk and let σ : X → Z be an étale k-morphism. Then
we have

X∞ ∼= Z∞ ×Z X

in particular, X∞ is étale over Z∞. Therefore, the morphism σ∞ : X∞ → Z∞
induces a map

{stable points of X∞} → {stable points of Z∞}
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and, if Q is a stable point of X∞ and P its image by the previous map, then
OZ∞,P → OX∞,Q is étale and

(1) ÔX∞,Q
∼= ÔZ∞,P ⊗κ(P ) κ(Q).

Proof : We may suppose that Z = Spec A, X = Spec B where B = (A[x]/(f))g,
f, g ∈ A[x] and the class of f ′(x) in B is a unit ([Ra], chap. V, th. 1). Then the
stability property in [DL] (see also [Re2] (8) in 3.4) implies that

X∞ = Spec (A∞[X0] / (F0))G0

where A∞ = OZ∞ . From this it follows that X∞ ∼= Z∞×Z X. Moreover, for n ≥ 0,
we have

Xn = Spec (An[X0] / (F0))G0

that is, Xn
∼= Zn ×Z X. From this, the stability property [DL], lemma 4.1, and the

definition of stable point, it follows that, if Q is a stable point of X∞ then its image
P by σ∞ is a stable point of Z∞.

For the last assertion note that, if X̂ := Spec ÔX,Q0
, being Q0 the center of Q

in X, then Q induces a stable point Q̂ in X̂∞ because hQ : Spec κ(Q)[[t]] → X

factorizes through X̂, and we have

(2) ÔX∞,Q
∼= ÔX̂∞,Q̂.

Analogously, ÔZ∞,P
∼= ÔẐ∞,P̂ , where Ẑ := Spec ÔZ,P0 and P̂ is the stable point of

Ẑ∞ induced by P . Therefore, in order to prove (1) we may suppose that Z = Spec A,
X = Spec B where A and B are complete local rings and X → Z is local étale,
hence B ∼= A ⊗κ(P0) κ(Q0) ([Ra] VIII corol. to lemme 2 and [Ha] III exer. 10.4).
Now, X∞ ∼= Z∞ ×Z X, therefore

B∞ ∼= A∞ ⊗κ(P0) κ(Q0) and (B∞)Q ∼= (A∞)P ⊗κ(P0) κ(Q0).

Thus (A∞)P → (B∞)Q is étale and hence ̂(A∞)P → ̂(B∞)Q is also étale, and from

[Ra], VIII corol. to lemme 2, it follows that ̂(B∞)Q ∼= ̂(A∞)P ⊗κ(P ) κ(Q), therefore
(1) holds.

The inequality in prop. 2.3 may be strict (see [IR] example 2.8). However, if X
is nonsingular at P0, then we will next show that equality holds.

Proposition 2.6. Let P be a stable point of X∞. If X is nonsingular at the center
P0 of P , then the ring OX∞,P is regular and essentially of finite type over a field,
and we have

dimOX∞,P = supn dimO
jn(X∞),(P )n

.

Proof : The first statement is prop. 4.2 in [Re2]. The second one also follows from
the proof of [Re2], prop. 4.2. In fact, by prop. 2.5 and since there exists an étale

morphism from a neighborhood of P0 to a subset of Ar,d−r
k , where d = dimX, we

may suppose that X ⊆ Ar,d−r
k . In this case we have

OX∞ = OX [X1, . . . , Xn, . . .] and OXn = OX [X1, . . . , Xn], n ≥ 0

where Xn = (X1;n, . . . , Xd;n), n ≥ 1. By 2.4, there exist a finite number of polyno-
mials G1, . . . , Gs, G ∈ OX∞ such that P = ((G1, . . . , Gs) : G

∞) If n0 ∈ N is such
that O

jn0 (X∞)
contains G1, . . . , Gs, G, then k(Xn0+1, . . . , Xn, . . .) ⊂ OX∞,P . This

implies that

OX∞,P
∼= k(Xn0+1, . . . , Xn, . . .)⊗k O

jn0 (X∞),Pn0
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hence we conclude the result.

2.7. Let X be a reduced separated k-scheme of finite type and let ν be a divi-
sorial valuation on X, i.e. ν is a divisorial valuation on an irreducible component
of X. Then there exists a proper and birational morphism π : Y → X, with Y
normal, such that the center of ν on Y is a divisor E of Y . We also denote by νE
the valuation ν. Let π∞ : Y∞ → X∞ be the morphism on the spaces of arcs indu-

ced by π. Let Y
Ereg
∞ be the inverse image of E ∩ Reg(Y ) by the natural projection

jY0 : Y∞ → Y , which is an irreducible subset of Y∞, and let NE be the closure of

π∞(Y
Ereg
∞ ). Then NE is an irreducible subset of X∞, let PE be the generic point of

NE . More generally, for every e ≥ 1, let Y
eEreg
∞ := {Q ∈ Y∞ / νQ(IE) = e}, where

IE is the ideal defining E in an open affine subset of Reg(Y ) (the set Y
eEreg
∞ will

be also denoted by Y eE
∞ if Y is nonsingular). Then Y

eEreg
∞ is an irreducible subset

of Y∞, let NeE be the closure of π∞(Y
eEreg
∞ ) and PeE (also denoted by PX

eE) be
the generic point of NeE . Note that PeE only depends on e and on the divisorial
valuation ν = νE , more precisely, if π′ : Y ′ → X is another proper and birational
morphism, with Y ′ normal, such that the center E′ of ν on Y ′ is a divisor, then the
point PeE′ defined by e and E′ coincides with PeE . We have that PeE is a stable
point of X∞ ([Re2], prop. 4.1, see also [Re1], prop. 3.8).

2.8. With the notation in 2.7, the image of the canonical homomorphism dπ :
π∗(∧dΩX) → ∧dΩY is an invertible sheaf at the generic point of E. That is, there

exists a nonnegative integer k̂E such that the fibre at E of the sheaf dπ(π∗(∧dΩX))

is isomorphic to the fibre at E of OY (−k̂EE). We call k̂E the Mather discrepancy

of X with respect to the prime divisor E. Note that k̂E ̸= 0 if and only if π is an

isomorphism at the generic point of E, and that k̂E only depends on the divisorial
valuation ν = νE . We have :

(3) supn dimO
jn(X∞),(PeE)n

= e (k̂E + 1)

([DL], lemma 3.4, [FEI], theorem 3.9). Hence by prop. 2.3 we have

dimOX∞,PeE
≤ e (k̂E + 1).

Moreover, let P be a stable point of X∞ and let P0 be its center. If P0 is the
generic point of X then νP is trivial. Otherwise, νP is a divisorial valuation ([Re2],
(vii) in prop. 3.7 and prop. 3.8), i.e. there exists π : Y → X birational and proper
such that the center of νP on Y is a divisor E and there exists e ∈ N such that
νP = eνE . There exists a stable point PY ∈ Y∞ whose image by π∞ is P ([Re2],
prop. 4.1). Therefore PY ⊇ PY

eE and P ⊇ PeE . Now, assume that X is nonsingular

at P0, and recall that in this nonsingular case we have k̂E = kE , where kE is the
discrepancy of X with respect to E, which is defined to be the coefficient of E in the
divisor KY/X with exceptional support which is linearly equivalent to KY −π∗(KX)
([EM], appendix). Applying prop. 2.6 and lemma 4.3 in [DL] we conclude

Corollary 2.9. Let P be a stable point of X∞. Suppose that X is nonsingular at
the center P0 of P , and that P0 is not the generic point of X and νP = eνE. Then
OX∞,P is a regular ring of dimension

dimOX∞,P = ekE + dimOY∞,PY .

In particular

dimOX∞,PeE
= e(kE + 1).
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The following question is open :

Question 2.10. Let P be a stable point of X∞ and suppose that the local ring
OX∞,P is regular. Is X nonsingular at the center P0 of P ?

3. On the graded algebra of the local ring of a smooth scheme
associated to a divisorial valuation

From now on, let k be a field of characteristic 0. Through this article, we will
denote by k < y1, . . . , yr > the henselization of the local ring k[y1, . . . , yr](y1,...,yr),
being y1, . . . , yr indeterminacies (see [Ra] for more details on henselization).

Let η : Y → Ad
k be a k-morphism dominant and generically finite, where Y is a

nonsingular k-scheme, let E be a divisor on Y and let P0 be the center on Ad
k of the

valuation defined by E. In this section we will define elements {qj,r}(j,r)∈J in the
fraction field of OAd,P0

(prop. 3.3) whose initial forms generate a localization of the
graded algebra grνEOAd,P0

modulo étale covering. In section 4 we will prove that

they have the property of determining a basis of PAd

eE /(PAd

eE )2, being PAd

eE the image
by η∞ of the generic point of Y eE

∞ (see 2.7). From this and applying prop. 2.5, we
will conclude analogous results for a smooth surface X and a divisorial valuation
on X (theorems 3.8 and 4.8).

Let us apply the description of the morphism η appearing in [Re2], proof of prop.
4.5 (see (4) below). First, we may suppose that Y is an affine k-scheme. In fact,
we may replace Y by an open affine subset which contains the generic point ξE of
E. Let u ∈ OU , U being an open subset of Y that contains ξE , such that u defines
a local equation of E. Since η is dominant and generically finite, there exist local
coordinates x1, . . . , xd in an open subset of Ad that contains η(ξE) such that the
image of x1 in OY,ξE is g um1 , where m1 > 0 and g is a unit in OY,ξE . By restricting

U and adding a m1-th root of g, we can define an étale morphism φ : Ũ → U such
that the image of x1 in OŨ is um1

1 where u1 is a local equation of the strict transform

Ẽ of E in Ũ . Moreover, since char k = 0, and ΩAd ⊗K(Y ) ∼= ΩY ⊗K(Y ), we may

restrict Ũ and U and define {u1, . . . , ud} ⊂ OŨ , {x1, . . . , xd} ⊂ OV , where V is an
open subset of X, determining respective regular systems of parameters in a closed

point y0 ∈ Ẽ and in η ◦ φ(y0), and such that, if we identify x1, . . . , xd with their
images by η♯ : OV,η(y0) → OŨ,y0

, then

(4)

x1 = um1
1

x2 =
∑

1≤i≤m2
λ2,i u

i
1 + um2

1 u2

x3 =
∑

1≤i≤m3
λ3,i(u2) u

i
1 + um3

1 u3

. . . . . . . . .
xδ =

∑
1≤i≤mδ

λδ,i(u2, . . . , uδ−1) u
i
1 + umδ

1 uδ

xδ+1 = uδ+1

. . . . . . . . .
xd = ud

where δ = codimAd η(ξE),

m1 ≤ ordu1
xj = min{i / λj,i ̸= 0} for 2 ≤ j ≤ d,

0 < m1 ≤ m2 ≤ . . . ≤ md,

λj,i(u2, . . . , uj−1) ∈ k[[u2, . . . , uj−1]], for 2 ≤ j ≤ δ, 0 ≤ i ≤ mj , and, given j′ < j,
if i < mj′ then λj,i ∈ k[[u2, . . . , uj′−1]]. Moreover, since xj − u

mj

1 uj belongs to
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k[[u1, . . . , uj−1]] and is integral over k[u1, . . . , ud](u1,...,ud), it is also integral over
k[u1, . . . , uj−1](u1,...,uj−1). Therefore, after a possible replacement of y0 by another

point in an open subset of Ũ ∩ Ẽ, we may suppose that, for 2 ≤ j ≤ δ and
0 ≤ i ≤ mj , λj,i(u2, . . . , uj−1) belongs to the henselization k < u2, . . . , uj−1 > of
the local ring k[u2, . . . , uj−1](u2,...uj−1), and, if i < mj′ , j

′ < j, then λj,i belongs to
k < u2, . . . , uj′−1 >.

Besides, from the expression (4) it follows that there exists an open neighborhood

of y0 in Ẽ whose closed points y′0 satisfy the same property, i.e. there exists a regular
system of parameters of y′0 and of η ◦ φ(y′0) for which (4) holds. In fact, replace ui

by u′i = ui + ci mod u1, for 2 ≤ i ≤ d, where (ci)i lies in an open subset of kd−1.
Hence, we may suppose with no loss of generality that

(5)

λj,i(u2, . . . , uj−1) ∈ k < u2, . . . , uj−1 > for 2 ≤ j ≤ δ, 0 ≤ i ≤ mj

if i < mj′ , j
′ < j, then λj,i ∈ k < u2, . . . , uj′−1 >

if λj,i(u2, . . . , uj−1) ̸= 0 then it is a unit in k < u2, . . . , uj−1 >
λj,mj (u2, . . . , uj−1) is a unit, for 2 ≤ j ≤ d.

Note that Ũ is nonsingular. Note also that ∧dΩV is an invertible sheaf, hence
the image of dη : η∗(∧dΩV ) → ∧dΩU is an invertible sheaf. The order aE in E

of the corresponding divisor is equal to the order in Ẽ of the image of d(η ◦ φ) :

(η ◦ φ)∗(∧dΩV ) → ∧dΩŨ . So, from now on, after a possible replacement of Y by Ũ

and of η : Y → Ad by η ◦ φ : Ũ → V , we will suppose that (4) is a local expression
of η. Besides, from (4) it follows that :

(6) aE = m1 + . . .+mδ − 1.

Lemma 3.1. Let A be a finitely generated k-algebra and let θ : Y → Spec A[x, y]
be a k-morphism, where x, y are indeterminacies. Let j, 2 ≤ j ≤ d+1 and suppose
that there exists a multiplicative system Sj−1 of A[x] and there exist elements

lj′ ∈ S−1j−1A[x] for 2 ≤ j′ ≤ j − 1

such that, if we set vj′ := θ♯(lj′) for 2 ≤ j′ ≤ j−1, then {u1, v2, . . . , vj−1, uj , . . . , ud}
is a regular system of parameters of OY,y0 . Suppose that the images of x, y by θ♯

are given by x 7→ um1
1 and

(7) y 7→
∑

m1≤i≤m

λi(v2, . . . , vj−1) u
i
1 + um

1 ϱ mod (u1)
m+1

where m ≥ m1, ϱ ∈ OY,y0 and λi(v2, . . . , vj−1) ∈ k < v2, . . . , vj−1 > Set

(8)

e := g.c.d.({m1} ∪ {i / λi ̸= 0}), β0 := m1, e0 := β0

βr+1 := min {i / λi ̸= 0 and g.c.d.{β0, . . . , βr, i} < er } and
er+1 := g.c.d.{β0, . . . , βr+1} for 1 ≤ r ≤ g − 1, being g such that eg = e
βg+1 := m.

Let n0 = 1 and nr := er−1

er
for 1 ≤ r ≤ g and let β0 = β0 and βr, 1 ≤ r ≤ g + 1 be

defined by

(9) βr − nr−1βr−1 = βr − βr−1,

hence we have

(10)
βr > nr−1 βr−1 for 1 ≤ r ≤ g, and βg+1 ≥ ng βg;

nrβr belongs to the semigroup generated by β0, . . . , βr−1, 1 ≤ r ≤ g + 1.
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Then, there exist an open subset U of Y containing ξE and a sequence of integers
{is}Ns=1 such that

(i) i1 < i2 < . . . < iN = βg+1 and {is}Ns=1 ⊂ {β0} ∪ ∪g+1
r=1(nr−1βr−1, βr],

(ii) {βr}
g+1
r=1 is contained in {i1, . . . , iN}, that is, there exist s1 < s2 < . . . <

sg+1 := N such that isr = βr for 1 ≤ r ≤ g + 1,
(iii) for each closed point y′0 in U ∩E there exist a regular system of parameters

{u1, v
′
2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} of OY,y′

0
, where v′i = vi + ci, u

′
i = ui + ci, (ci)i ∈

kd−1, and there exist {h1 = y, h2, . . . , hN} satisfying : given s, let r, 1 ≤ r ≤
g + 1, be such that nr−1βr−1 < is ≤ βr (or r = 1 if s = 1 and i1 = β0), then

(a) hs ∈ T−1r−1 . . . T
−1
0 S−1j−1A[x, y], where Tr′ is the multiplicative part ge-

nerated by qr′ := hsr′ (resp. q0 := x1) for 1 ≤ r′ ≤ r − 1 (resp. r′ = 0),
(b) the image of hs in K(OY,y′

0
) belongs to OY,y′

0
, and if we identify hs with

its image in OY,y′
0
then

(11)
hs =

∑
is≤i≤m(r) λs,i(v

′
2, . . . , v

′
j−1) u

i
1 + γs,m(r)(v′2, . . . , v

′
j−1) u

m(r)

1 ϱ

mod (u1)
m(r)+1

where λs,i, γs,m(r) ∈ k < v′2, . . . v
′
j−1 >, λs,is ̸= 0 for 1 ≤ s < N , γs,m(r)

is a unit and m(r) := m+ (n1 − 1)β1 + . . .+ (nr−1 − 1)βr−1. Moreover,

for r ≤ r′ ≤ g, let β
(r)
r′ := βr′ + (n1 − 1)β1 + . . .+ (nr−1 − 1)βr−1then we

have

(12) min
{
i / λs,i ̸= 0 and g.c.d.{er−1, β(r)

r , . . . , β
(r)
r′−1, i} < er′−1

}
= β

(r)
r′

and λ
s,β

(r)

r′
is a unit.

(c) For s ≥ 2, if s = sr−1 + 1 (resp. sr−1 + 1 < s), then

hs := q
bs0
0 · · · qb

s
ρ

ρ Ps

(
µsh

q
bs0
0 · · · qb

s
ρ

ρ

, l2, . . . , lj−1

)
where h = (qr−1)

nr−1 (resp. h = hs−1), ρ = r − 2 (resp. ρ = r − 1), the
integers {bsr′}

ρ
r′=0 are the unique nonnegative integers satisfying bsr′ <

nr′ , 1 ≤ r′ ≤ ρ, and nr−1βr−1 =
∑

0≤r′≤r−2 b
s
r′βr′ (resp. ij,s−1 =∑

0≤r′≤r−1 b
s
j,r′βj,r′), µs = (λs1,β1

)b
s
1 · · · (λsρ,βρ

)b
s
ρ is a unit, and Ps ∈

k[z, v′2, . . . , v
′
j−1] is such that

(13) Ps(λ, v
′
2, . . . , v

′
j−1) = 0,

∂Ps

∂z
(λ, v′2, . . . , v

′
j−1) is a unit in k < v′2, . . . , v

′
j−1 >,

where λ = (λs−1,is−1
)nr−1 (resp. λ = λj,s−1,ij,s−1

).

Proof : First note that (10) follows from (8) and (9) (see [Za] 2.2.1 in the Ap-
pendix). Note also that there exists an open neighborhood of y0 in E such that
if y′0 is a closed point on it and {u1, v

′
2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} is a regular system

of parameters of OY,y′
0
, where v′i = v + ci, u

′
i = ui + ci, (ci)i ∈ kd−1, then the

integers defined by (8) and (9) for the expression of the image of y in terms of
{u1, v

′
2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} are the same as the ones defined for the expression in

(7). Thus, to prove the lemma, it suffices to show that, after a possible replacement
of y0 in an open subset U ∩E of E, there exist {is}Ns=1 and {hs}Ns=1 satisfying (i),
(ii) and (a), (b) for the image of hs in K(OY,y0) (hence v′2 = v2, . . . , v

′
j−1 = vj−1 in

(11)) and (c).

We will define {is}Ns=1 and {hs}Ns=1 by induction on s. First, after a possible
replacement of y0 in an open subset of E, we may suppose that, for every i such
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that λi ̸= 0 in (7), λi is a unit in the ring

Rj−1 := k < v2, . . . , vj−1 > .

Then, for s = 1, let i1 := min{i / λi(v2, . . . , vj−1) ̸= 0}and h1 := y. It is clear

that β0 ≤ i1 ≤ β1 and that (a) and (b) hold for s = 1. Now, let s ≥ 2 and
suppose that i1 < . . . < is−1 and h1, . . . , hs−1 are defined and satisfy the requi-
red conditions. If is−1 = βg+1 then set N := s − 1. If not, then is−1 < βg+1.

Thus, there exist r, 1 ≤ r ≤ g + 1 such that is−1 ∈ {βr−1} ∪ (nr−1βr−1, βr). Let

s1 < s2 < . . . < sr−1 ≤ s − 1 be such that isr′ = βr′ for 1 ≤ r′ ≤ r − 1 and let
q0 := x, qr′ := hsr′ for 1 ≤ r′ ≤ r − 1.

If is−1 = βr−1, recall that λs−1,βr−1
(v2, . . . , vj−1) ∈ Rj−1\{0}, thus (λs−1,βr−1

)nr

belongs to Rj−1 \ {0} and hence there exists an irreducible monic polynomial
Ps ∈ k[z, v2, . . . , vj−1] such that

Ps((λs−1,βr−1
)nr , v2, . . . , vj−1) = 0 and

∂Ps

∂z
((λs−1,βr−1

)nr , v2, . . . , vj−1) ̸= 0

Moreover, after a possible replacement of y0 in an open subset of E, we may suppose
that

(14)

Ps((λs−1,βr−1
)nr , v2, . . . , vj−1) = 0 and

∂Ps

∂z
((λs−1,βr−1

)nr , . . . , vj−1) is a unit in Rj−1.

Analogously, if is−1 ∈ (nr−1βr−1, βr), then after a possible replacement of y0 in an
open subset of E, we may suppose that there exists an irreducible monic polynomial
Ps ∈ k[z, v2, . . . , vj−1] such that

(15) Ps(λs−1,is−1 , v2, . . . , vj−1) = 0,
∂Ps

∂z
(λs−1,is−1 , . . . , vj−1) is a unit in Rj−1.

If is−1 = βr−1, let b
s
r′ = br−1,r′ , 0 ≤ r′ ≤ r−2, be the unique nonnegative integers

satisfying br−1,r′ < nr′ for 1 ≤ r′ ≤ r − 2, and nr−1βr−1 =
∑

0≤r′≤r−2 br−1,r′βr′ ,

and let µs := (λs1,β1
)b

s
1 · · · (λsr−2,βr−2

)b
s
r−2 , which is a unit in Rj−1, such that the

image of q
bs0
0 · · · qb

s
r−2

r−2 by θ♯ is equal to µsu
nr−1βr−1

1 mod (u1)
nr−1βr−1+1. Set

(16) hs := q
br−10

0 · · · qbr−1r−2

r−2 P ′s

(
µs (qr−1)

nr−1

q
br−10

0 · · · qbr−1r−2

r−2
, l2, . . . , lj−1

)
and is := (nr−1 − 1)βr−1 + min

{
i / i > βr−1, λs−1,i ̸= 0

}
, unless we have

λs−1,i = 0 for all i > βr−1, which implies r−1 = g, then set is := βg+1. From (14),
(16) and Taylor’s development for Ps it follows that, if s < N (resp. s = N) then the
νE-value of the image θ♯(hs) of hs in OY,y0 is is > nr−1βr−1 (resp. is ≥ iN = βg+1),

and the exponents of u1 in θ♯(hs) with nonzero coefficient (see the left hand side
of (11)) are determined by the ones in θ♯(hs−1) by adding (nr−1 − 1)βr−1, there-

fore nr−1βr−1 < is ≤ βr and (11) and (13) hold for s. Moreover, for r ≤ r′ ≤ g,

the coefficient λ
s,β

(r)

r′
in u

β
(r)

r′
1 of θ♯(hs) is equal, modulo product by a unit, to

(λs−1,βr−1
)nr−1−1 λ

s−1,β(r−1)

r′
, therefore it is a unit, and (b) is satisfied. Besides,

hs ∈ T−1r−2 . . . T
−1
0 S−1j−1A[x, y], hence (a) also holds.

If nr−1βr−1 < is−1 < βr then er−1 divides is−1 (by (b) applied to s − 1)

and there exist unique nonnegative integers {bsr′}
r−1
r′=0 satisfying bsr′ < nr′ for 1 ≤
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r′ ≤ r − 1 and is−1 =
∑

0≤r′≤r−1 b
s
r′βr′ (because nr−1βr−1 ≤ is−1). Then, let

µs := (λs1,β1
)b

s
1 · · · (λsr−1,βr−1

)b
s
r−1 , which is a unit in Rj−1, such that the image of

q
bs0
0 · · · qb

s
r−1

r−1 by θ♯ is equal to µsu
is−1

1 mod (u1)
is−1+1, and set

(17) hs := q
bs0
0 · · · qb

s
r−1

r−1 Ps

(
µs hs−1

q
bs0
0 · · · qb

s
r−1

r−1

, l2, . . . , lj−1

)

and is := min {i / i > is−1, λs,i ̸= 0}, unless we have λs−1,i = 0 for all i > βr−1,

which implies r − 1 = g and then we set is := βg+1. It is clear that (a) holds and,
from (15) and (17), it follows that, if s < N (resp. s = N), then the νE-value of the
image θ♯(hs) of hs in OY,y0

is is > is−1 > nr−1βr−1 (resp. ≥ iN = βg+1 > ngβg),

and the exponents of u1 in θ♯(hs) with nonzero coefficient are the same as the ones
for by θ♯(hs−1), hence nr−1βr < is ≤ βr and (11) and (13) hold for s. Moreover,

for r ≤ r′ ≤ g, the coefficient λ
s,β

(r)

r′
in u

β
(r)

r′
1 of θ♯(hs) is the same, modulo product

by a unit, as the coefficient λ
s−1,β(r)

r′
of θ♯(hs−1), therefore it is a unit, and (b) is

satisfied. Besides note that β
(r)
r = βr for 1 ≤ r ≤ g + 1, hence from the previous

construction it follows that {βr}
g+1
r=1 ⊂ {is}Ns=1, hence the result is proved.

Corollary 3.2. Let j, 2 ≤ j ≤ δ. Set A := k[x2, . . . , xj−1], x = x1, y = xj, and
let θ : Y → Spec A[x1, xj ] be the composition of η : Y → Ad with the projection
Ad → Spec A[x1, xj ]. Suppose that the hypothesis in lemma 3.1 holds and let the
image by η♯ of xj be given by

(18) xj =
∑

m1≤i≤mj

λ′j,i(v2, . . . , vj−1) u
i
1 + u

mj

1 uj mod (u1)
mj+1.

where λ′j,i(v2, . . . , vj−1) ∈ Rj−1 = k < v2, . . . , vj−1 >. Let {βj,r}
gj+1
r=0 , {ej,r}

gj
r=0,

{nj,r}
gj
r=0 and {βj,r}

gj+1
r=0 be the integers defined by (8) and (9). Then there exist an

open subset U of Y and, for each point y′0 in U ∩E, a regular system of parameters
{u1, v

′
2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} of OY,y′

0
, where v′i = v + ci, u

′
i = ui + ci, (ci)i ∈ kd−1,

and there exist elements {qj,0 = x1, qj,1, . . . , qj,gj+1} where

qj,r ∈ T−1r−1 · · ·T
−1
0 S−1j−1[x1, x2, . . . , xj−1, xj ]

being Tr′ the multiplicative part generated by qj,r′ , such that the images of {qj,r}
gj+1
r=0

in OY,y′
0
are given by

(19)
qj,r = µj,r(v

′
2, . . . , v

′
j−1) u

βj,r

1 mod (u1)
βj,r+1 for 0 ≤ r ≤ gj

qj,gj+1 = µj,gj+1(v
′
2, . . . , v

′
j−1) u

βj,gj+1

1 uj mod (u1)
βj,g1+1+1

where µj,r(v
′
2, . . . , v

′
j−1) is a unit in k < v′2, . . . , v

′
j−1 > for 0 ≤ r ≤ gj + 1.

Proof : This is consequence of lemma 3.1. In fact, after a possible replacement
of y0 in an open subset of E, we may suppose that there exist {is}Ns=1 and {hs}Ns=1

satisfying (i), (ii) and (a), (b) in lemma 3.1. Let qj,0 := x1, qj,1 := hs1 , . . . , qj,gj :=

hsgj
. If λsgj+1,βg+1

= 0 in the expression (11) for η♯(hsgj+1) then let qj,gj+1 :=

hsgj+1 . Otherwise, after a possible replacement of y0 in an open subset of E, we may

suppose that there exists an irreducible monic polynomial P ∈ k[z, v2, . . . , vj−1]

such that P (λsgj+1,βj,gj+1
, v2, . . . , vj−1) = 0 and ∂P

∂z (λsgj+1,βgj+1
) is a unit in Rj−1.
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Then we proceed as in (17), that is we set

qj,gj+1 := q
bj,0
j,0 · · · q

bj,gj
j,gj

P

 µ hsgj+1

q
bj,0
j,0 · · · q

bj,gj
j,gj

, l2, . . . , lj−1


where bj,0, . . . , bj,gj are nonnegative integers satisfying bj,r < nj,r, 1 ≤ r ≤ gj , and

βj,gj+1 =
∑

0≤r≤gj bj,rβj,r, and µ = (λs1,βj,1
)bj,1 · · · (λsgj ,βj,1

)bj,gj . Then {qj,r}
gj+1
r=0

satisfy the required condition.

Proposition 3.3. There exist a point y0 ∈ E, a regular system of parameters
{u, v2, . . . , vd} of OY,y0 and a regular system of parameters {x1, . . . , xd} of OAd,η(y0)

such that the following holds :
(i) If we identify x1, . . . , xd with their images in OY,y0 then

x1 = um1

xj =
∑

m1≤i≤mj
λj,i(v2, . . . , vj−1) u

i + umj vj mod (u)mj+1, for 2 ≤ j ≤ δ

xr = vr for δ + 1 ≤ r ≤ d.

where 0 < m1 ≤ m2 ≤ . . . ≤ md and, for 2 ≤ j ≤ δ, if we set Rj−1 :=
k < v2, . . . , vj−1 >, then λj,i(v2, . . . , vj−1) ∈ Rj−1, λj,i ̸= 0 implies that it is
a unit in Rj−1, and λj,mj (v2, . . . , vj−1) is a unit in Rj−1 and

(20) if i < mj′ , j
′ < j, then λj,i ∈ Rj′−1.

(ii) For 2 ≤ j ≤ δ, let Bj := Rj−1[x1, xj ](x1,xj), let νj be the restriction of νE
to Bj, let βj,0 = m1, βj,1, . . . , βj,gj be a minimal system of generators of the

semigroup νj(Bj\{0}) and βj,gj+1 = νj(Ij), being Ij the complete ideal defined
by the restriction of νj to a general fibre of Spec Bj → Spec Rj−1. Set

J ∗ := {(1, 0)}∪{(j, r) / 2 ≤ j ≤ δ, 1 ≤ r ≤ gj}, J := J ∗∪{(j, gj+1) / 2 ≤ j ≤ δ}

let us consider the lexicographic order in J and, for (j, r) ∈ J , let

J ∗j,r := {(j′, r′) ∈ J ∗ / (j′, r′) < (j, r)}, Jj,r := {(j′, r′) ∈ J / (j′, r′) < (j, r)} .

Then, there exist elements {qj,r}(j,r)∈J in k(x1, . . . , xj), more precisely,

(21) qj,r ∈
∏

(j′,r′)∈J ∗
j,r

T−1j′,r′ k[x1, . . . , xj ]

where, for (j′r′) ∈ J ∗j,r, Tj′,r′ is the multiplicative system generated by qj′,r′ ,
such that :

(a.2) q1,0 := x1 and, for 2 ≤ j ≤ δ, 0 ≤ r ≤ gj +1, the image of qj,r in the
fraction field K(OY,y0) of OY,y0 belongs to OY,y0 and, if we identify qj,r
with its image, then

(22)
qj,r = µj,r(v2, . . . , vj−1) u

βj,r mod (u)βj,r+1 for 1 ≤ r ≤ gj

qj,gj+1 = µj,gj+1(v2, . . . , vj−1) u
βj,gj+1 vj mod (u)

βj,gj+1+1

where µj,r(v2, . . . , vj−1) is a unit in Rj−1 for 1 ≤ r ≤ gj + 1.
(b.2) For 2 ≤ j ≤ δ, set qj,0 := q1,0 = x1, ej,r := g.c.d.{βj,0, . . . , βj,r},

nj,r :=
ej,r−1

ej,r
for 1 ≤ r ≤ gj, and let bj,0, . . . , bj,gj be the unique nonne-

gative integers satisfying

(23) bj,r < nj,r for 1 ≤ r ≤ gj and βj,gj+1 =
∑

0≤i≤gj

bj,rβj,r,
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then, identifying qj,r with its image in OY,y0 , we have
qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

= vj ∈ OY,y0 .

(iii) Even more, for 2 ≤ j ≤ δ, there exist nonnegative integers Nj and sj,1 <

sj,2 < . . . < sj,gj+1 = Nj, and elements {hj,s}
Nj

s=1, such that qj,r = hj,sj,r for
1 ≤ r ≤ gj + 1, and besides the following holds : given s, let r, 1 ≤ r ≤ gj + 1
be such that sj,r−1 < s ≤ sj,r (resp. r = 1 if s ≤ sj,1), then we have :

(a.3) hj,s ∈
∏

(j′,r′)∈J ∗
j,r

T−1j′,r′ k[x1, . . . , xj ]

(b.3) the image of hj,s in K(OY,y0
) belongs to OY,y0

and, if we identify hj,s

with its image in OY,y0 then

hj,s =
∑

ij,s≤i≤m(r)
j

λj,s,i(v2, . . . , vj−1) u
i+γ

j,s,m
(r)
j

(v2, . . . , vj−1)u
m

(r)
j uj mod (u)m

(r)
j +1

where nj,r−1βj,r−1 < ij,s ≤ βj,r, ij,s−1 < ij,s, ij,s = βj,r iff s = sr,

λj,s,i, γj,s,m(r)
j

∈ Rj−1, λj,s,ij,s , γj,s,m(r)
j

is a unit, and m
(r)
j := mj +

(nj,1 − 1)βj,1 + . . .+ (nj,r−1 − 1)βj,r−1.
(c.3) If s = sj,r−1 + 1 (resp. sr−1 + 1 < s), then hj,s is equal to

q
bsj,0
j,0 · · · qb

s
j,ρ

j,ρ Pj,s

 µj,sh

q
bsj,0
j,0 · · · qb

s
j,ρ

j,ρ

,
q2,g2+1

q
b2,0
2,0 . . . q

b2,g2
2,g2

, . . . ,
qj−1,gj−1+1

q
bj−1,0

j−1,0 . . . q
bj−1,gj−1

j−1,gj−1


where h = q

nj,r−1

j,r−1 (resp. h = hj,s−1), ρ = r − 2 (resp. ρ = r − 1), the

integers {bsj,r′}
ρ
r′=0 satisfy bsj,r′ < nj,r′ , 1 ≤ r′ ≤ ρ, and nj,r−1βj,r−1 =∑

0≤r′≤r−2 b
s
j,r′βj,r′ (resp. ij,s−1 =

∑
r′≤r−1 b

s
j,r′βj,r′), µj,s = µ

bsj,0
j,0 · · ·µbsj,ρ

j,ρ

is a unit, and Pj,s ∈ k[z, v2, . . . , vj−1] is irreducible and satisfies

(24) Pj,s(λ, v2, . . . , vj−1) = 0,
∂Pj,s

∂z
(λ, v2, . . . , vj−1) is a unit in Rj−1;

being λ = (λj,s−1,ij,s−1)
nj,r−1 (resp. λ = λj,s−1,ij,s−1).

Proof : The result is a consequence of lemma 3.1 and its corollary 3.2. First note

that, given j, 2 ≤ j ≤ δ, if there exist {qj,r}
gj+1
r=1 in k(x1, . . . , xj) satisfying (22) and

we define

(25) lj :=
qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

∈ k(x1, . . . , xj)

where qj,0 = x1 and {bj,r}
gj
r=0 satisfy (23), and vj to be the image of lj , then vj

belongs to OY,y0 and besides

(26) vj = γj uj mod (u) where γj is a unit in Rj−1.

In fact, with the notation in (22) we may take γj =
µj,g1+1

µ
bj,1
j,1 ...µ

bj,gj
j,gj

.

Note also that, fixed j, 2 ≤ j ≤ δ, if (26) holds for every j′ ≤ j − 1, then the
image of xj in OY,y0 is given by

xj =
∑

m1≤i≤mj

λj,i(v2, . . . , vj−1) u
i
1 + u

mj

1 uj mod (u1)
mj+1

where λj,i ∈ Rj−1, mj is the integer in (4), λj,i ̸= 0 implies that it is a unit in Rj−1,
λj,mj is a unit in Rj−1 and (20) holds (recall the conditions in (5)). Moreover, the

integers {βj,r}
gj
r=0 (resp. βj,gj+1) defined in (8) and (9) for the image of xj are a
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minimal system of generators of the semigroup νj(Bj \ 0) (resp. equal to νj(Ij)).
From this, and setting u := u1 and vr to be the image of xr for δ + 1 ≤ r ≤ d (i.e.
vr = ur, δ + 1 ≤ r ≤ d, with the notation in (4)), (i) would follow.

Hence, in order to prove (i) and (ii), it suffices to show that, for 2 ≤ j ≤ δ,

there exist {qj,r}
gj+1
r=1 satisfying (21) and (22), where Rj−1 is defined taking vj′ to

be the image of lj′ for 2 ≤ j′ ≤ j − 1 (see (25)). We argue by induction on j.
For j = 2 the hypothesis in corol. 3.2 is clearly satisfied (we may take S1 = {1}).
Thus, by corol. 3.2, there exist {q2,r}g2+1

r=1 satisfying (21) and (22). Now, let j,

2 ≤ j ≤ δ and suppose that, for 2 ≤ j′ ≤ j − 1, there exist {qj′,r}
gj′+1

r=0 satisfying
(21) and (22). Since vj′ is defined to be the image of lj′ , 2 ≤ j′ ≤ j − 1, the hy-
pothesis of corol. 3.2 is satisfied. In fact, there exists a multiplicative part Sj−1 of

k[x1, . . . , xj−1] such that
∏

(j′,r′)∈J ∗
j,1

T−1j′,r′ k[x1, . . . , xj−1] ∼= S−1j−1k[x1, . . . , xj−1],

hence lj′ ∈ S−1j−1k[x1, . . . , xj−1] for 2 ≤ j′ ≤ j − 1. Thus, corol. 3.2 assures the

existence of {qj,r}
gj+1
r=1 satisfying (21) and (22). From this, we conclude (i) and (ii).

Besides, from the proof of corol. 3.2 (see the proof of lemma 3.1), (iii) follows.

Definition 3.4. The local expression in prop.3.3 (i) (or in (4) at the beginning
of this section) will be called a general transverse expression of η : Y → Ad

k with
respect to E. The elements {qj,r}(j,r)∈J obtained in prop. 3.3 (ii) will be called a

system of transverse generators for η : Y → Ad
k with respect to E.

Remark 3.5. For j = 2, B2 = k[x1, x2](x1,x2) is a two-dimensional regular local
ring. Then q2,0, q2,1, . . . , q2,g2 , q2,g2+1 ∈ B2 is a minimal generating sequence for ν2
([Sp], theorem 8.6). In fact, since R1 = k, if we apply lemma 3.1 to y = x2 then all
the λs,i’s in (11) belong to k, hence we can take Ps(z) = z − (λs−1,is−1)

nr (resp.
Ps(z) = z − λs−1,is−1) in (13). Hence q2,r ∈ k[x1, x2] for 0 ≤ r ≤ g2 + 1, moreover

we have q2,0 = x1, q2,1 = x2 −
∑

i<β2,1
λ2,i q

i
β2,0

2,0 and, for 1 ≤ r ≤ g2,

q2,r+1 = q
n2,r

2,r − c2,r q
b2,r,0
2,0 . . . q

b2,r,r−1

2,r−1 −
∑

γ=(γ0,...,γr)

c2,γ qγ0

2,0 . . . q
γr

2,r

b2,r,i’s are the unique nonnegative integers satisfying b2,r,i < n2,i for 1 ≤ i ≤ r− 1,

and n2,rβ2,r =
∑

0≤i<r b2,r,iβ2,i, the γ’s are nonnegative integers satisfying γi < n2,i

for 1 ≤ i ≤ r and n2,rβ2,r <
∑

i γiβ2,i, and c2,r, c2,γ ∈ k, c2,r ̸= 0 and c2,γ ̸= 0
only for a finite number of γ’s.

Remark 3.6. Let j, 2 ≤ j ≤ δ. Set A := k[v2, . . . , vj−1], x = x1, y = xj

and let θ : Y → Spec A[x1, xj ] be defined by the morphism of k-algebras given
by vj′ 7→ vj′ , 2 ≤ j′ ≤ j − 1, xi 7→ η♯(xi), i = 1, j (see (18)). Setting lj′ = vj′ ,
2 ≤ j′ ≤ j − 1, and Sj−1 = {1}, the hypothesis in lemma 3.1 is satisfied. Let us

apply lemma 3.1, then the integers defined in (8) and (9) are {βj,r}
gj+1
r=0 , {ej,r}

gj
r=0,

{nj,r}
gj
r=0 and {βj,r}

gj+1
r=0 (see prop. 3.3 or corol. 3.2). We denote by {q′j,r}

gj+1
r=0 the

elements {qr = hsr}
gj+1
r=0 in 3.1 (iii).(a), hence satisfying

q′j,r ∈ T ′
−1
j,r−1 · · ·T ′

−1
j,0k[v2, . . . , vj−1, x1, xj ]

being T ′j,r′ the multiplicative part generated by q′j,r′ , and such that the images by θ♯

of {q′j,r}
gj+1
r=0 are {η♯(qj,r)}

gj+1
r=0 , thus given in (19). In fact, note that qj,r is obtained

from q′j,r by replacing vi by
qi,gi+1

q
bi,0
i,0 ...q

bi,gi
i,gi

, for 1 ≤ i ≤ j − 1.
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On the other hand, for 2 ≤ j ≤ δ, there exists a domain Bj−1 which is an étale
extension of k[v2, . . . , vj−1] and contains λj,i(v2, . . . , vj−1), m1 ≤ i ≤ mj (see (i)
in prop. 3.3). Let ν̃j be the valuation on Bj−1[x1, xj ] extending νj and such that
ν̃j(ℓ) = 0 for all ℓ ∈ Bj−1 (see (ii) in prop. 3.3). Let q̃j,1, . . . , q̃j,gj+1 ∈ Bj−1[x1, xj ] be
a minimal generating sequence for ν̃j defined as in remark 3.4, i.e. q̃j,0 = x1, q̃j,1 =

xj −
∑

i<βj,1
λ′j,i (q̃j,0)

i
βj,0 and, for 1 ≤ r ≤ gj ,

(27) q̃j,r+1 = q̃
nj,r

j,r − c̃j,r q̃
bj,r,0
j,0 . . . q̃

bj,r,r−1

j,r−1 −
∑

γ=(γ0,...,γr)

c̃j,γ q̃γ0

j,0 . . . q̃
γr

j,r, 1 ≤ r ≤ gj

where bj,r,i = b
sj,r+1
j,i , 1 ≤ i ≤ r−1, i.e. bj,r,i < nj,i and nj,rβj,r =

∑
0≤i<r bj,r,iβj,i,

we have ν̃j−1(q̃
γ0

j,0 . . . q̃
γr

j,r) > nj,rβj,r for each sequence γ of nonnegative integers in
the right hand side, and c̃j,r, c̃j,γ ∈ Bj−1, c̃j,r ̸= 0 and c̃j,γ ̸= 0 only for a finite
number of γ’s.

Note that, for 1 ≤ r ≤ gj + 1, in the ring
∏r−1

r′=0 T
′−1
j,r′Bj−1[x1, xj ] we have

(28) q′j,r = q̃j,r · ℓ̃+ h̃

where ℓ̃, h̃ ∈
∏r−1

s=0 T
′−1
j,sBj−1[x1, xj ], ℓ̃ is a unit and ν̃(h̃) > βj,r.

3.7. Now, let X be a smooth k-scheme and let ν be a divisorial valuation on an
irreducible component X0 of X. Let P0 be the center of ν on X and let R := OX,P0 .
We consider the graded algebra associated with ν, that is, grνR := ⊗n∈Φ+℘n/℘

+
n

where Φ+ := ν(R \ {0}) is the semigroup of the valuation and, for n ∈ Φ+,

℘n = {h ∈ R / ν(h) ≥ n}, ℘+
n = {h ∈ R / ν(h) > n}.

Let π : Y → X0 be a proper and birational morphism such that the center of ν
on Y is a divisor E, and let η : Y → Ad

k be the composition of π with an étale
morphism X0 → Ad

k, where d = dimX0. Let us consider the notation introduced
in this section for the morphism η, in particular, let {qj,r}(j,r)∈J be a system of

transverse generators for η : Y → Ad
k with respect to E, (prop. 3.3 (ii)). Recall that

the center of ν on Ad
k is (x1, . . . , xδ) and let S := k[x1, . . . , xd](x1,...,xδ).

There exists a proper and birational morphism Z → Ad
k with Z smooth such

that the center of ν on Z is a divisor F . Since OZ,F is the valuation ring of the
restriction of ν to K(S), we have that OZ,F ≺ OY,E , i.e. OY,E dominates OZ,F ,
hence, after restricting to some open subset of Y , we may suppose that Y dominates
Z, let σ : Y → Z denote the corresponding morphism. Note that we have

qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

∈ OZ,F for 2 ≤ j ≤ δ.

because these elements belong to K(S) and have ν-value equal to 0 ; we also denote

by vj the element
qj,gj+1

q
bj,0
j,0 ...q

bj,gj
j,gj

of OZ,F (see prop. 3.3 (ii)). Besides, the ramification

index e of OY,E over OZ,F is equal to g.c.d.({βj′,r′}(j′,r′)∈J ∗). Thus there exist
{aj,r}(j,r)∈J ∗ , aj,r ∈ Z, such that

(29) z :=
∏

(j′,r′)∈J ∗

q
aj,r

j,r ∈ OZ,F and ν (z) =
∑

(j′,r′)∈J ∗

aj,rβj,r = e.

Then,

ν(σ∗(dz ∧ dv2 ∧ . . . ∧ dvd)) = e− 1
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and hence, if kF (Ad) denotes the discrepancy of Ad with respect ro F , we have

(30) aE = ekF (Ad) + e− 1

Since S ≺ R, the initial forms of the elements of k[x1, . . . , xd] are well defined
elements in grνR, and since q1,0 = x1, applying (21) in prop. 3.3, by recurrence on
(j, r) we can define the initial form qj,r of qj,r for every (j, r) ∈ J . We have

qj,r ∈
∏

(j′,r′)∈J ∗
j,r

T−1j′,r′ (grνR)

where, for (j′, r′) ∈ J ∗j,r, Tj′,r′ is the multiplicative system generated by qj,r. Let
k[{qj,r}(j,r)∈J ] be the k-subalgebra of the fraction field K(grνR) of grνR genera-
ted by the qj,r’s and, for δ + 1 ≤ j ≤ d, let xj be the initial form of xj . With this
notation, the following holds :

Theorem 3.8. The system of transverse generators {qj,r}(j,r)∈J satisfy the follo-
wing properties :

(i) We have an isomorphism of graded rings

G :=
∏

(j,r)∈J ∗

T−1j,r k
[
{qj,r}(j,r)∈J , xδ+1, . . . ,xd

] Φ∼= A[ue,u−e]

where deg(u) = 1, and A is a k-algebra which is étale over the polynomial ring
in d− 1 variables k[v2, . . . ,vd], being deg(vj) = 0, 2 ≤ j ≤ d.

(ii) We have an isomorphism∏
(j,r)∈J ∗

T−1j,r grνR ∼= B[ue,u−e]

whose restriction to G is Φ, where A⊗k κ(P0) ⊆ B and the extension is étale.
Besides, the fraction field K(B) of B is κ(E).

(iii) For 2 ≤ j ≤ δ, the isomorphism Φ in (i) restricts to

Gj :=
∏

(j,r)∈J ∗
j,gj+1

T−1j,r k
[
{qj′,r′}(j′,r′)∈Jj,gj+1∪{(j,gj+1)}

] Φ∼= Aj−1[vj ][u
ej ,u−ej ]

where ej := g.c.d.{βj′,r′ / (j′, r′) ∈ J ∗j,gj+1}, A1 = k and Aj−1 is étale over

k[v2, . . . ,vj−1] for 2 < j ≤ δ.
(iv) For 2 ≤ j ≤ δ, there exists a domain Bj−1 étale over Aj−1 such that

Bj−1

[
{q1,0} ∪ {qj,r}

gj+1
r=1

]
∼= Bj−1

[
y1,0, yj,2 . . . , yj,gj+1

]
/ Jj

where the yj,r’s are indeterminacies and Jj is a prime ideal which is generated

by {ynj,r

j,r − c̃j,r y
bj,r,0
1,0 · ybj,r,1j,1 . . . y

bj,rr−1

j,r−1 }gjr=1, being c̃j,r ∈ Bj−1. In particular,
the previous ring is a domain which is a complete intersection over Bj−1.

Moreover, for any domain C, any ideal in C[y1,0, yj,2 . . . , yj,gj+1] generated

by {ynj,r

j,r − cj,r y
bj,r,0
1,0 · ybj,r,1j,1 . . . y

bj,rr−1

j,r−1 }gjr=1, cj,r ∈ C, is a prime ideal.

Proof : First, we have that R = OX,P0 ⊇ k[x1, . . . , xd](x1,...,xδ) =: S is étale,

hence R̂ ∼= Ŝ⊗k κ(P0) where we denote by R̂ (resp. Ŝ) the completion with respect
to the maximal ideal. Since the valuation ν on R (resp. on S) can be extended to

a valuation ν̂ on R̂ (resp. on Ŝ) and we have grνR = grν̂R̂ (resp. grνS = grν̂ Ŝ)
we conclude that grνR ∼= grνS ⊗k κ(P0). Therefore, in (ii) we may suppose that
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X = Ad
k, i.e. R = S.

Keep the notation in prop. 3.3. The morphism S ↪→ OZ,F induces an inclusion

Φ : grνS ↪→ grνOZ,F
∼= κ(F ) [ue]

where κ(F ) is the residue field of F on Y , which contains k(v2, . . . ,vd), and
u,v2, . . . ,vd are indeterminacies, vj , 2 ≤ j ≤ d (resp. u) is the initial form of
vj (resp. u), hence deg(vj) = 0, deg(u) = 1. We have

g2∏
r′=0

T−12,r′ k [{q1,0} ∪ {q2,r′}g2r′=1]
Φ∼= k[ue2,g2 ,u−e2,g2 ]

and hence G2

Φ∼= k[v2][u
e2,g2 ,u−e2,g2 ]. More precisely, the image of the ring in the

left hand side in the fraction field K(grνOZ,F ) of grνOZ,F is in fact in grνOZ,F

and is equal to the ring in the hand side. Arguing by recurrence on j, 2 ≤ j ≤ δ, it
follows that ∏

(j′,r′)∈J ∗
j,gj+1

T−1j′,r′ k
[
{qj′,r′}(j′,r′)∈Jj,gj+1

] Φ∼= Aj−1[u
ej ,u−ej ]

where ej := g.c.d.{e2,g2 , . . . , ej,gj} = g.c.d.{βj′,r′ / (j′, r′) ∈ J ∗j,gj+1} and Aj−1
is the minimal subring of κ(F ) containing k[v2, . . . ,vj−1] and µj′,r′(v2, . . . ,vj′−1),
µj′,r′(v2, . . . ,vj′−1)

−1 for (j′, r′) ∈ J ∗j,gj+1, hence Aj−1 is étale over k[v2, . . . ,vj−1].

Therefore

Gj

Φ∼= Aj−1[vj ][u
ej ,u−ej ] and G = Gδ ⊗k k[xδ+1, . . . , xd]

Φ∼= A[ueδ ,u−eδ ]

where A = Aδ−1[vδ, . . . ,vd], hence (i) and (iii) hold.

In order to prove (ii), letB be the minimal subring of κ(F ) containing k[v2, . . .vd]
and {λj,i(v2, . . . ,vj−1)}2≤j≤d,m1≤i≤mj . From the construction of the hj,s’s in prop.
3.3 (iii) (see the proof of (iii) in lemma 3.1) it follows that, for every (j, i), 2 ≤ j ≤
d,m1 ≤ i ≤ mj , there exists h ∈

∏
(j,r)∈J ∗ T

−1
j,r S such that the initial form of h is

λj,i(v2, . . . ,vd)u
e. Now, let h ∈ S = k[x1, . . . , xδ](x1,...,xδ) and let a := ν(h). Then

eδ divides a and the image of h in OY,y0 is equal to λ(v2, . . . , vδ)u
a modulo ua+1,

where λ(v2, . . . ,vδ) ∈ B. Hence the initial form of h belongs to B[ueδ ]. Besides,
it follows that the set of elements of K(S) of degree 0 is precisely K(B), that is,
κ(F ) = K(B). From this (ii) follows.

For (iv), recall that, given n ∈ N, a field F containing a primitive n-th root of
unity ξ and an element b ∈ F ∗ = F \ {0}, if the class of b in F ∗/F ∗n has order
m, then there exists d ∈ F such that Xm − d is an irreducible polynomial in F [X]

and moreover Xn − b =
∏n/m

i=0 (Xm − ξid) is the decomposition in F [x] of Xn − b
in irreducible factors (see for instance prop. 9.6 in [Mo]). In particular, if A is a
domain containing a primitive nth root of unity and b ∈ A is such that

(31) b
1
n′ ̸∈ A for every n′ > 1, n′|n, then Xn − b is irreducible in A[x].

For j = 2, with the notation in remark 3.5, let J2 is the ideal of k [y1,0, y2,1, . . . y2,g2 ]

generated by {yn2,r

2,r − c2,r y
b2,r,0
1,0 y

b2,r,1
2,1 . . . y

b2,r,r−1

2,r−1 }g2r=1, where the y2,r’s are indeter-
minacies. Let B1 = A1 = k and let us consider the morphism of k-algebras

k[y1,0, y2,1, . . . , y2,g2+1] / J2 → k[{q1,0} ∪ {q2,r}g2+1
r=1 ]
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sending y2,r, 1 ≤ r ≤ g2 + 1 (resp. y1,0) to q2,r (resp. q1,0). Since k[{q1,0} ∪
{q2,r}g2+1

r=1 ] is a 2-dimensional domain, to prove the isomorphism it suffices to show

that for 1 ≤ r ≤ g2 the element y
n2,r

2,r − c2,r y
b2,r,0
1,0 y

b2,r,1
2,1 . . . y

b2,r,r−1

2,r−1 is irreducible in(
k [y1,0, . . . , y2,r−1] /

(
{yn2,r′

2,r′ − c2,r′ y
b2,r′,0
1,0 . . . y

b2,r′,r′−1

2,r′−1 }r−1r′=1

))
[y2,r]

i.e. y
b2,r,0
1,0 . . . y

b2,rr−1

2,r−1 does not have a n′-root for any n′ > 1 dividing n2,r. In fact,
suppose that

(32)
y
b2,r,0
1,0 . . . y

b2,r,r−1

2,r−1 =

 ∑
a∈Zr

≥0

λa ya0
1,0 . . . y

ar−1

2,r−1

n′

mod
(
{yn2,r′

2,r′ − c2,r′ y
b2,r′,0
1,0 . . . y

b2,r′,r′−1

2,r′−1 }r−1r′=1

)
where n′|n2,r, λa ∈ k, the sum in the right hand side term is finite, then we may
suppose that (32) is homogeneous with respect to the degree, that is, for each a in

(32), we have n′
(∑r−1

i=0 ai β2,i

)
= n2,r β2,r. Since there exists at least one a in

(32) and we have n2,r =
e2,r−1

e2,r
where e2,l = g.c.d.(β1,0, . . . , β2,i), i = r− 1, r, and

n′|n2,r, we conclude that n′e2,r divides β2,r and also e2,r−1, hence n′e2,r divides
e2,r, that is n

′ = 1.

Now, let j, 2 < j ≤ δ. Let us consider the notation in remark 3.6. We have

Bj−1

[
{q1,0} ∪ {qj,r}

gj+1
r=1

]
∼= Bj−1

[
{q′1,0} ∪ {q′j,r}

gj+1
r=1

]
. Besides, from (28) it fol-

lows that, for 1 ≤ r ≤ gj+1, the initial form q′j,r of q
′
j,r belongs to grν̃j

(Bj−1[x1, xj ]),

although q′j,r ∈
∏r−1

r′=0 T
′−1
j,r′Bj−1[x1, xj ]. It also follows that

Bj−1

[
{q′1,0} ∪ {q′j,r}

gj+1
r=1

]
∼= Bj−1

[
y1,0, yj,1, . . . , yj,gj+1

]
/ Jj

where Jj is the ideal generated by {ynj,r

j,r − c̃j,r y
bj,r,0
1,0 . . . y

bj,r,r−1

j,r−1 }gjr=1. In fact, from

the same argument as in before it follows that, for 1 ≤ r ≤ gj and for any n′

dividing nj,r, c̃j,ry
bj,r,0
1,0 · · · ybj,r,r−2

j,r−2 does not have a n′-root in the ring

Bj−1 [y1,0, . . . , yj,r−2] /
(
{ynj,r′

j,r′ − c̃j,r′ y
bj,r′,0
1,0 . . . y

bj,r′,r′−1

j,r′−1 }r−1r′=1

)
More precisely, (bj,r,0, . . . , bj,r,r−2) ̸= (0, . . . , 0) and y

bj,r,0
1,0 · · · ybj,r,r−2

j,r−2 does not have

a n′-root in any ring of the form

C [y1,0, . . . , yj,r−2] /
(
{ynj,r′

j,r′ − cj,r′ y
bj,r′,0
1,0 . . . y

bj,r′,r′−1

j,r′−1 }r−1r′=1

)
where C is a domain and the cj,r′ ’s are in C. Hence Jj is a prime ideal and (iv)
holds. This concludes the proof.

Remark 3.9. Similar ideas to the ones in (ii) in thorem 3.8 appear in [Pi], proof
of th. 1.3.8.

Restricting to dimension 3, but considering any valuation ν of rational rank 1
and dimension 3, i.e. ν centered in a regular 3-dimensional ring R, in [Ka] an (in-
finite) generating sequence {qn}n∈N of ν in R is constructed. Our construction in
prop. 3.3 is different to the one in [Ka] and we do not reach a generating sequence.
Generating sequences in higher dimensional complete local rings are considered in
[LMSS].
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4. Defining coordinates at stable of the space of arcs

Let η : Y → Ad
k be a k-morphism dominant and generically finite, where Y is a

nonsingular k-scheme, let E be a divisor on Y and e ≥ 1, and keep the notation in
section 3.

Let PY
eE be the generic point of Y eE

∞ (see 2.7), and let PAd

eE be the image by
η∞ of PY

eE , which is a stable point of (Ad)∞ ([Re2] prop. 4.5). We will first prove
(prop. 4.5) that a system of transverse generators for η with respect to E induces
a regular system of parameters of O

(Ad)∞,PAd
eE

. Then we will conclude theorem 4.8

and corollary 4.10.

Given a finitely generated k-algebraA, let us denote byA∞ the ring of (Spec A)∞.
Given l ∈ A, we denote by

∑∞
n=0 Ln tn the image of l by the morphism of k-algebras

A → A∞[[t]].

Lemma 4.1. ([Re2] proof of prop. 4.1 (iii)) Let A ⊆ B be finitely generated k-
algebras and let θ : Spec B → Spec A be the induced dominant morphism. Let P ′

be a stable point of Spec B∞ and let P be its image by θ∞ in Spec A∞. Let h ∈ B
belonging to the fraction field K(A) of A, h = l/q where l, q ∈ A. Then, there exist
{Hn}n≥0 in (A∞)P such that

(33) Hn ≡ Hn mod P ′

(recall that Hn ∈ B∞ for n ≥ 0). Even more, there exists c ∈ N such that
Q0, . . . , Qc−1 ∈ P , Qc ̸∈ P and there exist polynomials Sn on 2(n + 1) indeter-
minacies with coefficients in k, for n ≥ 0, such that,

Hn :=
Sn(Lc, . . . , Ln+c, Qc, . . . , Qn+c)

(Qc)n+1
∈ (A∞)P

satisfies (33).

Proof : First note that P is a stable point of Spec A∞ ([Re2] prop. 4.5), hence
the existence of c such that Q0, . . . , Qc−1 ∈ P , Qc ̸∈ P ([Re2], th. 3.7 (i)). Then,
the result follows from the following observation : given h = l/q, l, q ∈ A, if
Q0, . . . , Qc−1 ∈ P , Qc ̸∈ P , then we have

QcHn + . . .+Qn+cH0 ≡ Ln+c mod P ′ for n ≥ 0.

([Re2] proof of prop. 4.1).

Lemma 4.2. Suppose that the assumptions in lemma 3.1 hold and suppose besides

that θ : Y → Spec A[x, y] is dominant. Let P = P
A[x,y]
eE be the image of PY

eE by
θ∞, which is a stable point of Spec A[x, y]∞. Let y0, the regular system of parame-
ters {u, v2, . . . , vd} of OY,y0 and {h1 = y, h2, . . . , hN} satisfy (a) to (c) in 3.1. For

2 ≤ j′ ≤ j − 1, let {Lj′;n}n≥0 in (A[x, y]∞)P be such that Lj′;n ≡ Lj′;n mod PY
eE

(see lemma 4.1). Then, there exists a multiplicative system Sj−1 of A[x]∞ such

that Lj′;n ∈ S
−1
j−1A[x]∞ for 2 ≤ j′ ≤ j − 1, n ≥ 0 and there exist elements

{Hs;n}1≤s≤N,n≥0 in (A[x, y]∞)P , n ≥ 0, satisfying :

(i) Hs;n ≡ Hs;n mod PY
eE, therefore

Hs;n ∈ P (A[x, y]∞)P for 0 ≤ n ≤ eis − 1 and Hs;eis ̸∈ P (A[x, y]∞)P .

(ii) Let r, 1 ≤ r ≤ g + 1 be such that nr−1βr−1 < is ≤ βr (resp. r = 1 if s = 1

and i1 = β0). Set Q0;n := Xn for n ≥ 0, Qr′;n := Hsr′ ;n, for 1 ≤ r′ < r, n ≥ 0
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and let T r′ is the multiplicative part generated by Qr′;eβr′
, 0 ≤ r′ < r. Then,

for n ≥ e(βr − βr), we have :

Hs;n ∈ T
−1
r−1 . . . T

−1
0 S

−1
j−1A∞[X0, X1, . . . , Xn, . . . , Y0, Y1, . . . , Yn−e(βr−βr)

].

(iii) If s = 1 then H1;n = Yn for n ≥ 0. If s > 1 then

Hs;n ∈ ({Qr′;n} r′≤r−1

n<eβr′

∪ {Hs−1;n}n<eis−1) for 0 ≤ n < max {enr−1βr−1, eis−1}

Hs;n = us,n Yn−(βr − βr)
+ ρs,n for n > max {enr−1βr−1, eis−1}

where us,n, ρs,n ∈ Br
∞[Yeβr−1+1, . . . , Yn−e(βr−βj,r)−1] and us,n is a unit.

(iv) Suppose that s > 1. If is−1 = βr−1 (resp. is−1 ∈ (nr−1βr−1, βr)) then

Hs;enr−1βr−1
(resp. Hs;eis−1) is equal to

Q
bs0
0;eβ0

· · ·Qbsρ

ρ;eβρ

· Ps

 cs H

Q
bs0
0;eβ0

· · ·Qbsρ

ρ;eβρ

, L2;0, . . . , Lj−1;0


where H = (Qr−1;eβr−1

)nr−1 (resp. H = Hs−1;eis−1), cs ∈ k \ {0} and ρ,

{bsr′}
ρ
r′=0 and Ps are as in (c) in 3.1.

(v) Fixed r, 1 ≤ r ≤ g+1, the following ideals in T
−1
r−1 . . . T

−1
0 S

−1
j−1A[x, y]∞ are

equal :(
{Qr′;n} 0≤r′≤r

0≤n≤eβr′−1

)
=

(
{Qr′;n} 0≤r′≤1

0≤n≤eβr′−1
∪ {Qr′;n} 2≤r′≤r

enr′−1βr′−1≤n≤eβr′−1

)
and also the ideal generated by

{Q0;n}
em1−1
n=0 ∪ {H1;n}ei1−1n=0 ∪

(
∪s1
s=2{Hs;n}eis−1e is−1

)
∪

∪r
r′=2

(
{Hsr′−1+1;n}

eis
r′−1

+1−1

n=enr′−1βr′−1

∪
(
∪s′r
s=sr′−1+2{Hs;n}eis−1n=eis−1

))
.

Proof : The existence of Sj−1 follows from lemma 4.1 ; in fact, it suffices to ask

Sj−1 to contain the elementsQc where q ∈ Sj−1 and c is such thatQ0, . . . , Qc−1 ∈ P

and Qc ̸∈ P . Now, let us define the elements {Hs;n}n≥0, 1 ≤ s ≤ N , by induction

on s. For s = 1, h1 = y ∈ A[x, y], so H1;n ∈ A[x, y]∞ for n ≥ 0. We set H1;n :=
H1;n = Yn ∈ A[x, y]∞ for n ≥ 0. It is clear that (i) to (iii) are satisfied. Now, let

s, 2 ≤ s ≤ N , and suppose that Hs′;n ∈ (A[x, y]∞)P are defined, for 1 ≤ s′ < s,
n ≥ 0, and satisfy the conditions. Let r, 1 ≤ r ≤ gj + 1 be such that is−1 ∈
{βr−1} ∪ (nr−1βr−1, βr). Therefore {Qr′;n}0≤r′<r,n≥0 in (A[x, y]∞)P are defined,
and satisfy :

Qr′;n ∈ P (A[x, y]∞)P for 0 ≤ n ≤ eβr′ − 1 and Qr′;eβr′
̸∈ P (A[x, y]∞)P .

Hence, for every l in the k-algebra k[{qr′}0≤r′<r ∪ {hs−1}] generated by qr′ ,

0 ≤ r′ < r, and hs−1, and for every n ≥ 0, there exists a polynomial function Ln

on {Qr′;n}r′<r,n≥eβj′,r′
∪{Hs−1;n}n≥eij,s−1 such that Ln ≡ Ln mod PY

eE . Moreover,

given

(34) h =
l

q
∈ OY,y0 where l ∈ k[{qr′}0≤r′<r ∪ {hs−1}], q =

∏
0≤r′<r

q
ar′
r′

being ar′ ∈ N ∪ {0}, let c =
∑

0≤r′<r ar′eβr′ , so that Q0, . . . , Qc−1 ∈ P , Qc ̸∈ P
and set

Hn :=
Sn(Lc, Lc+1, . . . , Ln+c, Qc, Qc+1, . . . , Qn+c)

(Qc)
n+1

∈ (A[x, y]∞)P
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where Sn is the polynomial in lemma 4.1 ; then Hn ≡ Hn mod PY
eE . From this and

(c) in lemma 3.1, which expresses hs as a polynomial in elements of the form (34),
the definition of {Hs;n}n≥0 ⊂ (A[x, y]∞)P follows. They satisfy (i) and, from the
expression in 3.1 (c) and the induction hypothesis, it follows that (ii) holds and
that the first statement in (iii) and also (iv) are satisfied. In (iv), cs is the class
of µs ∈ Rj−1, hence cs ̸= 0. The second statement in (iii) is obtained from the
expression in 3.1 (c) and the induction hypothesis, applying also (13) in lemma 3.1.
Finally, (v) can also be proved by induction, applying the same argument as before.

Let A1,0
∞ := k and, for 2 ≤ j ≤ δ, let

Aj,1
∞ := k[Xj−1

0 , . . . Xj−1
n , . . .], Aj,r

∞ := Aj,1
∞ [Xj;0, . . . , Xj,eβj,r−1 ] , 2 ≤ r ≤ gj + 1,

where Xj−1
n := (X1;n, . . . , Xj−1;n). Let {qj,r}(j,r)∈J be a system of transverse ge-

nerators for η : Y → Ad
k with respect to E, as in 3.3 (ii). Even more, for 2 ≤ j ≤ δ,

let us consider the elements {hj,s}
Nj

s=1 in 3.3 (iii) and set h1,0 := q1,0 = x1 ∈ A. Let

I := {(1, 0)} ∪ {(j, s) / 2 ≤ j ≤ δ, 1 ≤ s ≤ Nj}.
Then we have :

Lemma 4.3. There exist elements {Hj,s;n}(j,s)∈I,n≥0 in O
(Ad)∞,PAd

eE

, n ≥ 0, satis-

fying :

(i) Hj,s;n ≡ Hj,s;n mod PY
eE, therefore Hj,s;n ∈ PAd

eE for 0 ≤ n ≤ eij,s − 1 and

Hj,s;eij,s ̸∈ PAd

eE

(ii) We have H1,0;n = X1;n for n ≥ 0. For 2 ≤ j ≤ δ, let r, 1 ≤ r ≤ gj + 1

be such that nj,r−1βj,r−1 < ij,s ≤ βj,r (resp. r = 1 if s = 1 and ij,1 = βj,0).

For (j′, r′) ∈ Jj,r, set Qj′,r′;n := Hj′,sr′ ;n, n ≥ 0 and, for (j′, r′) ∈ J ∗j,r, let
T j′,r′ be the multiplicative system generated by Qj′,r′;eβj′,r′

. Then, for n ≥
e(βj,r − βj,r) we have :

Hj,s;n ∈
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j,r
∞ [Xj;eβj,r−1+1, . . . , Xj;n−e(βj,r−βj,r)

]

(if r = 1, replace Xj;eβj,r−1+1 by Xj;0 in the previous equality).

(iii) For 2 ≤ j ≤ δ, if s = 1 then Hj,s;n = Xj;n for n ≥ 0. If s > 1 then :

Hj,s;n ∈

(
{Qj,r′;n} r′≤r−1

n<eβr′

∪ {Hj,s−1;n}n<eis−1

)
for 0 ≤ n < max {enj,r−1βj,r−1, eij,s−1} and

Hj,s;n = uj,s,n Xj;n−e(βj,r − βj,r)
+ ρj,s,n for n > max {enj,r−1βj,r−1, eij,s−1}

where uj,s,n, ρj,s,n ∈
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j,r
∞ [Xj,eβj,r−1+1, . . . Xj;n−e(βj,r−βj,r)−1]

and uj,s,n is a unit.

(iv) Suppose that j, s ≥ 2. If ij,s−1 = βj,r−1 (resp. ij,s−1 ∈ (nj,r−1βj,r−1, βj,r))

then Hj,s;enj,r−1βj,r−1
(resp. Hj,s;eij,s−1) is equal to

Q
bsj,0

1,0;eβj,0

·Qbsj,1

j,1;eβj,1

· · ·Qbsj,ρ

j,ρ;eβj,ρ

·

·Pj,s

 cj,sH

Q
bsj,0

1,0;eβj,0

· · ·Qbsj,ρ

j,ρ;eβj,ρ

, . . . ,
Qj−1,gj−1+1;eβj−1,gj−1+1

Q
bj−1,0

1,0;eβj−1,0
. . . Q

bj−1,gj−1

j−1,gj−1;eβj−1,gj−1
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where H = (Qj,r−1;eβj,r−1
)nj,r−1 (resp. H = Hj,s−1;eij,s−1), cj,s ∈ k \ {0} and

ρ, {bsj,r′}
ρ
r′=0 and Ps are as in (c.3) in 3.3.

(v) Set G1,0 := {H1,0;n / 0 ≤ n ≤ e m1 − 1} and, for 2 ≤ j ≤ δ,

Gj,1 := {Hj,1;n / 0 ≤ n ≤ e ij,1 − 1} ∪ ∪s1
s=2{Hj,s;n / e ij,s−1 ≤ n ≤ e ij,s − 1}

Gj,r := {Hj,sr−1+1;n / e nj,r−1βj,r−1 ≤ n ≤ e ij,sr−1+1 − 1} ∪
∪sr
s=sr−1+2{Hj,s;n / e ij,s−1 ≤ n ≤ e ij,s − 1} for 2 ≤ r ≤ gj + 1.

then, for 2 ≤ j ≤ δ and 1 ≤ r ≤ g1 + 1, we have(
{Qj,r′;n} 0≤r′≤1

0≤n≤eβr′−1
∪ {Qj,r′;n} 2≤r′≤r

enj,r′−1β
j,r′−1

≤n≤eβ
r′−1

) ∏
(j′,r′)∈J ∗

j,r

T
−1
j′,r′ A

j+1,1
∞ =

= (G1,0 ∪ Gj,1 ∪ . . .Gj,r)
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j+1,1
∞ .

Proof : Let us prove, by induction on j, 1 ≤ j ≤ δ, the existence of {Hj,s;n}(j,s)∈I
n≥0

satisfying the required conditions. For j = 1, (j, s) = (1, 0), h1,0 := q1,0 = x1 ∈
OAd,η(y0), so, if we set H1,0;n := H1,0;n = X1;n ∈ O

(Ad)∞,P Ad
eE

for n ≥ 0 then it

is clear that (i) to (iii) are satisfied. Now, let j, 2 ≤ j ≤ δ, and suppose that
Hj′,s′;n ∈ O

(Ad)∞,PAd
eE

are defined, for j′ < j, (j′, s′) ∈ I, n ≥ 0, and satisfy the

conditions. Then the result follows applying lemma 4.2 to Y → Spec A[x1, xj ],
where A = k[x2, . . . , xj−1], and the following remark : since

lj′ =
qj′,gj′+1

q
bj′,0
1,0 q

bj′,1
1,1 . . . q

bj′,g
j′

j′,gj′

for 2 ≤ j′ ≤ j − 1

we may take Sj−1 = {Qj′,r′;eβj′,r′
}(j′,r′)∈J ∗

j−1,gj−1+1
and

Lj′;0 =
Qj′,gj′+1;eβj′,g

j′+1

Q
bj′,0

1,0;eβj′,0
·Qbj′,1

j′,1;eβj′,1
· · ·Q

bj′,g
j′

j′,gj′ ;eβj′,g
j′

.

From this, (i) to (iv) follow for j. This concludes the proof.

Remark 4.4. Let j, 2 ≤ j ≤ δ. Let {q̃j,r}
gj+1
r=0 in Bj−1[x1, xj ] be as in remark

3.6, and Q̃j,r;n ∈ Bj−1[x1, xj ]∞, n ≥ 0, as in the beginning of this section. Arguing
by recurrence and applying (27), we obtain that, for 1 ≤ r ≤ gj + 1,

(35) Q̃j,r;n ∈

(
{Q̃j′,r′;n} 0≤r′≤r−1

0≤n≤βj′,r′−1

)2

Bj−1[x1, xj ]∞

for 0 ≤ n < e
(
(nr−1 − 1)βr−1 + . . .+ (n1 − 1)β1

)
= e(βj,r − βj,r). Set ϵ(q̃j,r) :=

e(βj,r − βj,r).

Analogously, for {q′j,r}
gj+1
r=0 , q′j,r ∈ T

′−1

j,r−1 · · ·T
′−1

j,0 k[v2, . . . , vj−1, x1, xj ] (see re-

mark 3.6), let {Q′j,r;n}n≥0 in
∏

0≤s≤r−1 T
′−1
j,sk[v2, . . . , vj−1, x1, xj ]∞ be obtained

applying lemma 4.2. Given r, 0 ≤ r ≤ gj + 1, let {as}0≤s≤r−1 be nonnegative
integers such that

z′j,r := q′j,r ·
∏

0≤s≤r−1

q′j,s
as ∈ k[v2, . . . , vj−1, x1, xj ].
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and let Z ′j,r;n ∈ k[v2, . . . , vj−1, x1, xj ]∞[[t]], n ≥ 0, as before. Arguing by recurrence
and applying (c) in lemma 3.1 it follows that

(36) Z ′j,r;n ∈

(
{Q′j,s;n} 0≤s≤r−1

0≤n≤βj,s−1

)2 ∏
0≤s≤r−1

T ′
−1
j,s k[v2, . . . , vj−1, x1, xj ]∞

for 0 ≤ n < ϵ(z′j,r) := e
(
ν(z′j,r)− βj,r

)
.

Now, with the assumptions and notation in lemma 4.3, given (j, r) ∈ J , let
{aj′,r′(j, r)}(j′,r′)∈J ∗

j,r
be any sequence of nonnegative integers such that

zj,r := qj,r ·
∏

(j′,r′)∈J ∗
j,r

q
aj′,r′ (j,r)

j′,r′ ∈ k[x1, . . . , xj ]

and let αj,r := ν(zj,r) and let Zj,r;n ∈ k[x1, . . . , xj ]∞, n ≥ 0, as before. Then we
have (

{Zj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eαj′,r′−1

) ∏
(j′,r′)∈J ∗

j,r

S−1j′,r′ k[x1, . . . , xj ]∞ =

=

{Qj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eβj′,r′−1

 ∏
(j′,r′)∈J ∗

j,r

T−1j′,r′ k[x1, . . . , xj ]∞

where Sj′,r′ is the multiplicative part generated by Zj′,r′;eαj′,r′ . Moreover, arguing

by recurrence and applying (c.2) in prop. 3.3 and also the condition (20), it follows
that

(37) Zj,r;n ∈

(
{Zj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eαj′,r′−1

)2 ∏
(j′,r′)∈J ∗

j,r

S−1j′,r′ k[x1, . . . , xj ]∞

for 0 ≤ n < ϵ(zj,r) := e (ν(zj,r)− βj,r). In fact, the proof is based on the one for
(36), taking into account condition (20).

Let G := ∪(j,r)∈J Gj,r where the Gj,r’s are defined in lemma 4.3 (v). Note that
the cardinal of G1,1 is em1 and, for 2 ≤ j ≤ δ,

♯
(∪gj+1

r=1 Gj,r

)
= e βj,1 + (e βj,2 − e nj,1βj,1) + . . .+ (e βj,gj+1 − e nj,gjβj,gj )

= e
(
βj,1 + ( βj,2 − βj,1) + . . .+ (βj,gj+1 − βj,gj )

)
= e βj,gj+1 = e mj .

Hence, applying (6) and (30) we obtain

♯G = e (aE + 1) = e e (kF (Ad) + 1).

Proposition 4.5. We have

PAd

eE O
(Ad)∞,PAd

eE

= (G) O
(Ad)∞,PAd

eE

moreover, there exists L ∈ O(Ad)∞\PAd

eE such that PAd

eE (O(Ad)∞)L = (G) (O(Ad)∞)L.

Besides, the images of the elements of G in PAd

eE/(PAd

eE )2 O
(Ad)∞,PAd

eE

are inde-

pendent, hence define a basis as κ(PAd

eE )-vector space. In particular, we obtain
dimO

(Ad)∞,PAd
eE

= ♯G = e (aE + 1).
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Proof : First note that, by (i) in lemma 4.3, we have G ⊂ PAd

eE . Let us prove that
(G) O

(Ad)∞,PAd
eE

is a prime ideal. By (ii) in lemma 4.3, for (j, r) ∈ J , we have

Gj,r ⊂
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j,r
∞ [Xj;eβj,r−1+1, . . . , Xj;eβj,r−1]

(if r = 0 or 1, replace Xj;eβj,r−1+1 by Xj;0 and set β1,0 := m1). Then, for each j,
2 ≤ j ≤ δ, there exists Mj ∈ N such that

Qj′,r′ ∈
∏

(j′′,r′′)∈J ∗
j′,r′

T
−1
j′′,r′′ k[X

j
0, . . . , X

j
Mj

] for every (j′, r′) ∈ J ∗j,gj+1

and, if we set

Bj
∞ :=

∏
(j′,r′)∈J ∗

j,gj+1

T
−1
j′,r′ k[X

j
0, . . . , X

j
Mj

]

then

Gj :=
∪

(j′,r′)∈Jj,gj+1∪{(j,gj+1)}

Gj′,r′ ⊂ Bj
∞

(in fact, Mj can be taken to be equal to emj). Set Pj := Bj
∞ ∩ PAd

eE . We will
prove, by induction on j, 2 ≤ j ≤ δ, that there exists Lj ∈ Bj

∞ \ Pj such that
the ring (Bj

∞)Lj/(Gj) is a domain. For j = 2, we have h1,0 = x1, thus G1,0 =

{X1;0, . . . , X1;em1−1} and, applying remark 3.5 and (iii) in lemma 4.3 to Q2,r;n,

enj,r−1β2,r−1 < n < eβ2,r and (iv) in lemma 4.3 to Q2,r;eβ2,r
, we obtain that

B2
∞ / (G2) is isomorphic to(

S−12 k [y2,0, y2,2 . . . , y2,g2+1] / J2
)
[{X1;n}em1<n≤M2 ∪ {X2;n}eβ2,g2+1<n≤M2 ]

where the image of y2,r, 1 ≤ r ≤ g2 + 1 (resp. y2,0) is Q2,r;eβ2,r
(resp. X1,em1), J2

is the ideal in th. 3.8 (iv) and S2 is the multiplicative part generated by {y2,r}g2r=0,
therefore B2

∞/(G2) is a domain by th. 3.8.

Let j, 3 ≤ j ≤ δ, and suppose that the result holds for j − 1. Applying (iii)
in lemma 4.3 to Hj,s;n, for eij,s−1 < n ≤ eij,s − 1 (resp. enj,r−1βj,r−1 < n ≤
eij,sr−1+1 − 1) if sr−1 + 2 ≤ s ≤ sr (resp. s = sr−1 + 1) and applying (iv) in 4.3 to

Hj,s;eij,s−1 (resp. Hj,s;enj,r−1βj,r−1
), we obtain that there exists an étale extension

B̃j
∞ of Bj

∞ containing the image of PY
eE , i.e. the contraction of PY

eE to B̃j
∞ is a

prime ideal P̃j ̸= B̃j
∞, and such that B̃j

∞/(Gj)B̃
j
∞ is isomorphic to a localization of(

S−1j D̃j−1[yj,1, . . . , yj,gj+1] / Jj

) [
{Xj;n}eβj,gj+1<n≤Mj

]
where D̃j−1 is a domain which is an étale extension of Bj−1

∞ /(Gj−1), Sj is the mul-
tiplicative part generated by {yj,r}

gj
r=1 and Jj is an ideal generated by {ynj,r

j,r −
c̃j,r y

bj,r,0
1,0 · ybj,r,1j,1 . . . y

bj,rr−1

j,r−1 }gjr=1, being c̃j,r ∈ D̃j−1 and y1,0 = X1,em1 ∈ D̃j−1. Here

yj,r is identified with Qj,r;eβj,r
. Applying th. 3.8 (iv) we conclude that B̃j

∞/(Gj) is a

domain. Since the morphism (Bj
∞)Pj

/(Gj) → (B̃j
∞)P̃j

/(Gj)B̃
j
∞ is local étale, hence

an inclusion of local rings, we conclude that (Bj
∞)Pj/(Gj) is a domain. Therefore,

there exists Lj ∈ Bj
∞ \ Pj such that (Bj

∞)Lj/(Gj) is a domain (recall that Bj
∞ is

the localization of a finitely generated k-algebra).

In particular, it follows that there exists Lδ ∈ Bδ
∞ \ Pδ ⊂ O(Ad)∞ \ PAd

eE such

that the ideal generated by G in (
∏

(j,r)∈J ∗ T
−1
j,rO(Ad)∞)Lδ

is a prime ideal. From
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this it follows that there exists L ∈ O(Ad)∞ \PAd

eE such that (G) (O(Ad)∞)L is a prime

ideal, in fact, we may take L = Lδ ·
∏

(j,r)∈J ∗ Q
aj,r

j,r;eβj,r
for some positive integers

{aj,r}(j,r)∈J ∗ . Hence (G) O
(Ad)∞,PAd

eE

is a prime ideal.

Let us denote by P ′ the prime ideal of OAd
∞

such that (G) O
(Ad)∞,PAd

eE

=

P ′ O
(Ad)∞,PAd

eE

. We will next prove that P ′ = PAd

eE . In fact, with the notation in 2.7

and 3.7, let PZ
eeF be the generic point of ZeeF

∞ and let PAd

eeF be the image of PZ
eeF by

the morphism Z∞ → (Ad)∞. Since e is the ramification index of OY,E over OZ,F ,

PZ
eeF is the image of PY

eE by σ∞ : Y∞ → Z∞ and hence PAd

eeF = PAd

eE . Now, by the

definition of G, and since P ′ ⊆ PAd

eE , we have

eβj,r ≤ νP ′(qj,r) ≤ ν(qj,r) = eβj,r for (j, r) ∈ J .

Therefore νP ′(qj,r) = eβj,r for every (j, r) ∈ J and hence

νP ′

 qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

 = 0 for 2 ≤ j ≤ δ and νP ′ (z) =
∑

(j′,r′)∈J ∗

aj,re βj,r = e e

(recall (29) in 3.7). From this it follows that the morphism of k-algebras

h♯
P ′ : OX,P0 → κ(P ′)[[t]] induced by the arc hP ′ extends to OZ,F . That is,

hP ′ : Spec κ(P ′)[[t]] → X lifts to (Z,F ), more precisely, since νP ′(z) = ee, this

lifting defines a point in ZeeF
∞ . Therefore P ′ ∈ {PAd

eeF }, hence we conclude that

P ′ = PAd

eeF = PAd

eE .
Finally, since ♯G = e e (kF (Ad) + 1), the end of the proof follows from prop. 2.6

and equality (3), which is in fact lemma 3.4 in [DL].

Remark 4.6. Alternatively, in the proof of prop. 4.5 it can be proved by in-
duction on j, 2 ≤ j ≤ δ, and applying (iii) and (iv) in lemma 4.3, not only that
(Gj) is a prime ideal of Bj

∞, but also that the elements in Gj are independent in
(Gj) / (Gj)

2. Then, lemma 3.4 in [DL] can be recovered (at least for X smooth)
from propositions 4.5 and 2.6. Therefore, prop. 4.5 can be seen as a new version of
lemma 3.4 in [DL], which is in fact the change of variables theorem in the motivic
integration.

Definition 4.7. Let η : Y → Ad
k be a k-morphism dominant and generically

finite, where Y is a nonsingular k-scheme, let E be a divisor on Y and let e ≥ 1.
Let {qj,r}(j,r)∈J be a system of transverse generators for η with respect to E (def.

3.4), and let {Qj,r;n}(j,r)∈J ,n≥0 defined as in lemma 4.3. We call

Q := {Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

a regular system of parameters of O
(Ad)∞,PAd

eE

associated to {qj,r}(j,r)∈J .

In fact, note that by prop. 4.5 (see also lemma 4.3 (v)), O
(Ad)∞,PAd

eE

is a regular

local ring of dimension the cardinal of Q whose maximal ideal PAd

eEO
(Ad)∞,PAd

eE

is

generated by Q.

Theorem 4.8. Assume that char k = 0. Let X be a nonsingular k-scheme, let ν
be a divisorial valuation on an irreducible component X0 of X, and let e ∈ N. Let
π : Y → X0 be a proper and birational morphism such that the center of ν on Y is
a divisor E, and let η : Y → Ad

k be the composition of π with an étale morphism
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X0 → Ad
k, where d = dimX0. Let Q = {Qj,r;n}(j,r)∈J , 0≤n≤eβj,r−1

be a regular

system of parameters of O
(Ad)∞,PAd

eE

associated to a system of transverse generators

for η with respect to E. Then Q is also a regular system of parameters of OX∞,PX
eE
,

that is

PX
eE OX∞,PX

eE
=
(
{Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

)
OX∞,PX

eE
.

and OX∞,PX
eE

is a regular local ring of dimension

dimOX∞,PX
eE

= ♯Q = e (kE + 1).

where kE is the discrepancy of X with respect to E.
Moreover, there exist elements zj,r ∈ OX,P0

, (j, r) ∈ J , and L ∈ OX∞ \ PX
eE

such that

(38) PX
eE(OX∞)L =

(
{Zj,r;n}(j,r)∈J ,0≤n<eαj,r

)
(OX∞)L

where αj,r = ν(zj,r) for (j, r) ∈ J .

Proof : Recall that PY
eE is the generic point of Y eE

∞ (see 2.7) and that PX
eE (resp.

PAd

eE ) is the image of PY
eE by π∞ (resp. η∞). By prop. 2.5 (see also corol. 2.9) it

suffices to prove the result for the point PAd

eE in (Ad)∞. Then it follows from prop.
4.5. In fact, for the first assertion note that in this case kE(Ad

k) is equal to the
discrepancy kE of X with respect to E. For the second assertion, let {qj,r}(j,r)∈J
be a system of transverse generators for η with respect to E. For each (j, r) ∈ J
there exists a sequence of nonnegative integers {aj′,r′(j, r)}(j′,r′)∈J ∗

j,r
, such that

zj,r := qj,r ·
∏

(j′,r′)∈J ∗
j,r

q
aj′,r′ (j,r)

j′,r′ ∈ OAd,P0
.

(see prop. 3.3). Then, from prop. 4.5, (38) follows. This concludes the proof.

Remark 4.9. Let P be any stable point of X∞ and suppose that X is non-
singular at the center P0 of P and that P0 is not the generic point of X. There
exists a birational and proper morphism π : Y → X such that the center of νP
on Y is a divisor E, and e ∈ N such that νP = eνE ([Re2], (vii) in prop. 3.7). Let
PY ∈ Y∞ whose image by π∞ is P , then we have dimOX∞,P = ekE +dimOY∞,PY

(corol. 2.9). Since PY ⊇ PY
eE and P ⊇ PX

eE , with the notation in theorem 4.8
and prop. 3.3, {U0, . . . , Ue−1} is part of a regular system of parameters of OY∞,PY

and Q = {Qj,r;n}(j,r)∈J , 0≤n≤eβj,r−1
is part of a regular system of parameters of

OX∞,P . Moreover, suppose that {U0, . . . , Ue−1, G1, . . . , Gs} is a regular system of
parameters of OY∞,PY . To describe a regular system of parameters of OX∞,P we
add to Q the following elements : By lemma 4.1 and since π is birational, for each
y ∈ OY and for each n, there exists Y n ∈ OX∞,P such that

Yn ≡ Y n mod P.

Then, let Gi ∈ OX∞,P , 1 ≤ i ≤ s be obtained from Gi by replacing Un and Vj;n by

Un andV j;n, for n ≥ 0, 2 ≤ j ≤ d. We have

Gi ≡ Gi mod P.

and Q∪ {G1, . . . , Gs} is a regular system of parameters of OX∞,P .

Now let us consider a reduced separated k-scheme of finite typeX and a divisorial
valuation ν on X centered on Sing X. There exists a resolution of singularities
π : Y → X (i.e. π is a proper, birational k-morphism, with Y smooth, such that
the induced morphism Y \ π−1(Sing X) → X \ Sing X is an isomorphism) such
that the center of ν on Y is a divisor E.
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Corollary 4.10. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let ν be a divisorial valuation on an irreducible component X0 of X
centered on Sing X and let e ∈ N. Let π : Y → X be a resolution of singualri-
ties such that the center of ν on Y is a divisor E, and let η : Y → Ad

k be the
composition of π with a general projection µ : X0 → Ad, where d = dimX0. Let
Q = {Qj,r;n}(j,r)∈J , 0≤n≤eβj,r−1

be a regular system of parameters of O
(Ad)∞,PAd

eE

associated to a system of transverse generators for η with respect to E. Then Q is
a system of coordinates of (X∞, PX

eE), that is,

PX
eEOX∞,PX

eE
=
(
{Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

)
OX∞,PX

eE
.

Therefore

embdim ̂O(X∞)red,PeE
= embdim O(X∞)red,PeE

≤ ♯Q = e (k̂E + 1).

where k̂E is the Mather discrepancy of X with respect to E.
Moreover, there exist elements z1, . . . zs ∈ OX,P0 and L ∈ OX∞ \ PX

eE such that

PX
eE(OX∞)L = (Z1;0, . . . Z1;eα1−1, . . . , Zs;0, . . . Zs;eαs−1) (OX∞)L

where αi = ν(zi) for 1 ≤ i ≤ s.

Proof : We may suppose that π : Y → X dominates the Nash blowing up of
X. We may suppose that X is affine, let X ⊆ AN

k = Spec k[y1, . . . , yN ]. Then, a
general projection ρ : X ⊆ AN

k → Ad
k, y → (x1, . . . , xd) satisfies

ordE π∗(dx1 ∧ . . . ∧ dxd) = k̂E .

Let PAd

eE be the image of PY
eE by η∞. Then the result follows from prop. 4.5 applied

to PAd

eE and prop. 4.5 (iii) in [Re2] applied to ρ : X → Ad
k.
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