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COORDINATES AT STABLE POINTS OF THE SPACE OF ARCS

ANA J. REGUERA
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47011 Valladolid, Spain. E-mail : areguera@agt.uva.es. Tel. : 34 983423048. Fax : 34 983423788

Abstract. Let X be a variety over a field k£ and let X, be its space of arcs.
Let Pg be the stable point of X, defined by a divisorial valuation vg on X.
Assuming char k£ = 0, if X is smooth at the center of Pg, we make a study of the
graded algebra associated to vg and define a finite set whose elements generate a
localization of the graded algebra modulo étale covering. This provides an explicit
description of a minimal system of generators of the local ring Ox__ p,. If X is

singular, we obtain generators of Py / P% and conclude that embdim O(x_),...p. =

embdim (’);.::E < EE + 1 where EE is the Mather discrepancy of X with respect
to VE. 1

1. INTRODUCTION

The space of arcs X, of a reduced separated scheme of finite type X over a
perfect field k has finiteness properties when we localize at its stable points. The
stable points of X, were introduced in [Rel], its definition is based on the sta-
bility property of the family of truncated arcs {j,(Xs)}n in Denef and Loeser’s
fundational article [DL]. Stable points are those fat points P of X, for which the
truncations of its zero set Z(P) determine trivial fribrations of fiber A{ over an
open set, being X equidimensional of dimension d. Equivalently, stable points of
X are defined on an open subset of X, by the radical of a finitely generated
ideal, i.e. they are the generic points of the irreducible cylinders (see [EM], sec. 5).
It was proved in [Rel] that the ideal of definition of a stable point of X, on an
open subset of X, with the reduced structure, is finitely generated (see 2.4). This
implies that the complete ring (’Z(-OO\ p, P being stable, is a Notherian ring, which
is the basis of a useful Curve Selection Lemma centered at the stable points ([Rel],
corol. 4.8).

To compute the dimension of Ox_ p, P being stable, is an important problem.
One upper bound of dim Ox_, p is the codimension as a cylinder of Z(P) (see prop.
2.3). But the inequality is in general strict ([IR], ex. 2.8). Another approach we have
followed in some concrete examples ([Re2], 5.6, 5.16) is to describe the ring (’)/X: P
by generators and relations. The main purpose of this work is to provide coordi-
nates in Cﬁw\ p.

Divisorial valuations are closely related to stable points : the valuation vp asso-
ciated to a stable point P of X is divisorial ([Re2], (vii) in prop. 3.7). On the other
hand, every divisorial valuation vg defines a stable point Pr on X, and moreover,
if we consider a multiple e vg of vg, we also have a stable point P.r which contains
Pg (see 2.7). A study of the graded algebra associated to the divisorial valuation

1. Keywords : Space of arcs, divisorial valuation, graded algebra.
MSC : 13A02, 13A18, 14B05, 14B25, 14E15, 14J17, 32S05.
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2 ANA J. REGUERA
vg will be crucial in our study.

If X is smooth at the center Py of a stable point P of X, then we prove (prop.
2.6) that the local ring Ox__ p is regular and essentially of finite type over some
field and dim Ox__ p equals the dimension as a cylinder of Z(P). Hence, applying
the Change of Variables in the Motivic Integration ([DL], lemma 3.4), it follows
that dimOx__ p,, = e(kg + 1) where kg is the discrepancy of X with respect to
E. Assuming that char k = 0, in this paper we recover this equality, and moreover,
we give an explicit description of a minimal set of generators of P.g, i.e. we give a
regular system of parameters of Ox__ p, ..

If X is not smooth at P, then, if X — A¢ is a general projection, we have that a
set of generators of the image of P.p in (Ad)oo provides a set of generators of P.g
([Re2], prop. 4.5). From this it follows that the embedding dimension of the ring
(’)X/O;,\pe » is bounded from above by e(/l;E +1), where EE is the Mather discrepancy
of X with respect to E. A further work will be done to determine whether this
defines a minimal system of coordinates of (Xoo, Peg).

One of the main ideas in our proof is to define some “approximate roots” in
gr,.Oaa p,, being X — A? a general projection. In fact, if X is a curve then we

have that embdim O@E = kg + 1, which in this case is equal to mult X + 1
([Re2], corol. 5.7). We follow the same line as in the proof for the case of curves,
being the more subtle part to define these approximate roots {g;,}(;,res (defini-
tion 3.4). Although they do not generate gr, Oa p, in general (gr,, Opa p, is not
in general finitely generated for d > 3), they generate a localization of gr, Oga p,
modulo étale covering (theorem 3.8). This is done in section 3. In section 4 we
describe minimal coordinates of (A%),, at the image Pfg of P.p in (A?),, from
the g;’s. From this we obtain a regular system of parameters of Ox__ p,, if X is
smooth at Py (theorem 4.8), and a system of coordinates of (X, Peg) for general
X (corally 4.10).

2. PRELIMINARIES

2.1. Let k be a perfect field. For any scheme over k, let X, denote the space of
arcs of X. It is a (not of finite type) k-scheme whose K-rational points are the K-
arcs on X (i.e. the k-morphisms Spec K[[t]] — X), for any field extension k C K.
More precisely, X, := lim. X,, where, for n € N, X,, is the k-scheme of finite
type whose K-rational points are the K-arcs of order n on X (i.e. the k-morphisms
Spec K[[t]]/(t)"*! — X). In fact, the projective limit is a k-scheme because the
natural morphisms X,,» — X,, for n’ > n, are affine morphisms. We denote by
In t Xoo = Xn, n >0, the natural projections.

Given P € X, with residue field x(P), we denote by hp : Spec x(P)[[t]] = X
the induced k(P)-arc on X. The image in X of the closed point of Spec x(P)][t]],
or equivalently, the image Py of P by jo : Xoo — X = X is called the center of P.

Then, hp induces a morphism of k-algebras hup 1 Ox jop) — &(P)][[t]] ; we denote

by vp the function ord,h% : Ox jo(p)y — NU {oo}.

,Jo

The space of arcs of AY = Spec k[z1,...,zy]is (A} ) = Spec k[X,,..., X,,,.. ]

1EZ=n?

where for n > 0, X, = (Xy,n,...,Xnn) is an N-uple of variables. For any
[ €klz,...,xn], let Y07 F, t" be the Taylor expansion of f(}°, X, t"), hence
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F, € k[X,,...,X,]. If X C AY is affine, and Ix C k[z1,...,2x] is the ideal defi-
ning X in ALY, then we have Xo, = Spec k[Xg,..., X,,,...] / {Fu}lnso0.reiy)-

2.2. For r,m € N, 0 <r <m, let A" := k[[z1,...,2]][Tr41,. .., 2] and let
X C Spec A;™ be an affine irreducible k-scheme. A point P of X is stable if there
exist G € Ox__ \ P, such that, for n >> 0, the map X,,11 — X, induces a trivial
fibration

Int1(Z(P)) N (Xny1)a — jn(Z(P)) N (Xn)a

with fiber A¢, where d = dim X, Z(P) is the set of zeros of P in X, jn(Z(P))
is the closure of j,(Z(P)) in X,, and (X, )¢ is the open subset X,, \ Z(G) of X,,.
This definition is extended to any element X in X}, being X} the subcategory of
the category of k-schemes defined by all separated k-schemes which are locally of
finite type over some Noetherian complete local ring Ry with residue field k ([Re2]
def. 3.3). Note that X} contains the separated k-schemes of finite type and it also
contains the k-schemes Spec ﬁ, being R the completion of a local ring R which is
a k-algebra of finite type. In [Rel] and [Re2] a theory of stable points of X, is
developed. One important property of these points is the following :

Proposition 2.3. ([Re2], prop. 3.7 (iv)) Let P be a stable point of X. Forn >0,
let P, be the prime ideal PN Om, where jn(Xso) is the closure of jn(Xoo) in
X,., with the reduced structure. Then we have that dim @mfn
n >> 0, and since

is constant for

dim Ox_,p < sup, dim Oj—x— p

it implies that dim Ox__ p < co.

And the main result in the theory of stable points is :

2.4. Finiteness property of the stable points ([Rel] th. 4.1, [Re2] 3.10).
Let P be a stable point of X, then the formal completion O(X/O;;d,p of the local
ring of (Xoo)red at P is a Noetherian ring.

Moreover, if X is affine, then there exists G € Ox_ \ P such that the ideal
P (O(Xoo)wd)G is a finitely generated ideal of (O(X )G. In particular PO(x_),.q,P
is finitely generated.

[eS] )red

Besides we have (’)/X:p = @(X/Oord,p ([Re2] th. 3.13). Hence, from 2.4 it follows

that the maximal ideal of (Q/X:p is PO?:B and even more, pn— P"@ for
every n > 0 (see [Bo] chap. III, sec. 2, no. 12, corol. 2). Therefore, if P is a stable
point of X, then

embdim (Q/X;p = embdim Ox_),..,P-

Though this article we will consider étale morphisms. The following holds :

Proposition 2.5. Let X, Z € Xy and let o : X — Z be an étale k-morphism. Then
we have

Xoo 22 Xz X

in particular, X~ is étale over Zs,. Therefore, the morphism s @ Xoo — Zoo
induces a map

{stable points of X} — {stable points of Zoo}
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and, if Q is a stable point of Xoo and P its image by the previous map, then
Oz p— Ox_, o is étale and

(1) Ox._c Q= =0y P B(p) K(Q).

Proof : We may suppose that Z = Spec A, X = Spec B where B = (A[z]/(f))q,
f,g € Alz] and the class of f/(z) in B is a unit ([Ra], chap. V, th. 1). Then the
stability property in [DL] (see also [Re2] (8) in 3.4) implies that

Xoo = Spec (Ac[Xo] / (Fo))g,

where Ao = Oz_ . From this it follows that X = Z., xz X. Moreover, for n > 0,
we have

X, = Spec (An[Xo] / (Fb))g,

that is, X, & Z,, xz X. From this, the stability property [DL], lemma 4.1, and the
definition of stable point, it follows that, if @) is a stable point of X, then its image
P by 04 is a stable point of Z,

For the last assertion note that, if X = Spec OX .Qo» being Qo the center of @
in X, then @ induces a stable point @ in X, because hg : Spec k(Q)[[t]] = X
factorizes through X , and we have

(2) Ox.0=0z 2,0

Analogously, (O/ZOO\JD ~ (’Z\P, where Z = Spec OZ p, and P is the stable point of

Z\OO induced by P. Therefore, in order to prove (1) we may suppose that Z = Spec A,
X = Spec B where A and B are complete local rings and X — Z is local étale,
hence B = A ®,(p,) k(Qo) ([Ra] VIII corol. to lemme 2 and [Ha] IIT exer. 10.4).
Now, Xoo & Zo Xz X, therefore

Boo = A @p(py) K(Qo)  and  (Boo)q = (Asc) P ®u(ry) £(Qo)-

Thus (Ae)p — (Boo)g is étale and hence (@ — (E.O\)Q is also étale, and from

[Ra], VIII corol. to lemme 2, it follows that (B )g = (Z.o\)p ®@p(p) K(Q), therefore
(1) holds.

The inequality in prop. 2.3 may be strict (see [IR] example 2.8). However, if X
is nonsingular at Py, then we will next show that equality holds.

Proposition 2.6. Let P be a stable point of X . If X is nonsingular at the center
Py of P, then the ring Ox_ p is reqular and essentially of finite type over a field,
and we have

dim OX ,p = Sup, dim O_]n(XoQ) (P)n”

Proof : The first statement is prop. 4.2 in [Re2]. The second one also follows from
the proof of [Re2], prop. 4.2. In fact, by prop. 2.5 and since there exists an étale
morphism from a neighborhood of Py to a subset of Agdir, where d = dim X, we
may suppose that X C AZ’d_T. In this case we have

OXOC:OX[XI,...,KH,...] and OXV,L:OX[Xlw-'aKn]v nZO

where X, = (X1,n, ..., Xa:n), n > 1. By 2.4, there exist a finite number of polyno-

mials Gy, ...,Gs,G € Ox__ such that P = ((Gy,...,Gs) : G™) If nyg € N is such

that O X contains G1,...,G,, G, then k(X,, .1,...,X,,...) C Ox_ p. This
mo (

implies that

Ox_p = >~ k(X no-‘rl""’in“")®kom,}?no



hence we conclude the result.

2.7. Let X be a reduced separated k-scheme of finite type and let v be a divi-
sorial valuation on X, i.e. v is a divisorial valuation on an irreducible component
of X. Then there exists a proper and birational morphism 7 : ¥ — X, with Y
normal, such that the center of v on Y is a divisor E of Y. We also denote by vg
the valuation v. Let ms : Yoo = Xoo be the morphism on the spaces of arcs indu-
ced by 7. Let Yo’f}eg be the inverse image of E N Reg(Y) by the natural projection
Jo 1 Yoo — Y, which is an irreducible subset of Y, and let Ng be the closure of

WOO(YOEmg). Then Ng is an irreducible subset of X, let Pg be the generic point of

Ng. More generally, for every e > 1, let yePres = {Q €Yy / vo(Ig) = e}, where
I is the ideal defining E in an open affine subset of Reg(Y) (the set VP will
be also denoted by Y<F if Y is nonsingular). Then YEPree is an irreducible subset
of Y., let N.g be the closure of ﬂoo(YéEmg) and P.p (also denoted by PX,) be
the generic point of N.g. Note that P.p only depends on e and on the divisorial
valuation v = vg, more precisely, if 7’ : Y’ — X is another proper and birational
morphism, with Y’ normal, such that the center £’ of v on Y’ is a divisor, then the
point P,g: defined by e and E’ coincides with P,. We have that P, is a stable
point of X, ([Re2], prop. 4.1, see also [Rel], prop. 3.8).

2.8. With the notation in 2.7, the image of the canonical homomorphism d :
7 (A9Qx) — A9Qy is an invertible sheaf at the generic point of E. That is, there
exists a nonnegative integer kg such that the fibre at E of the sheaf dr(7* (A% ))
is isomorphic to the fibre at E of Oy(f/]{\ZEE). We call /k;E the Mather discrepancy
of X with respect to the prime divisor E. Note that EE = 0 if and only if 7 is an
isomorphism at the generic point of F, and that %E only depends on the divisorial
valuation v = vg. We have :

(3) sup,, dim Oj—<— , |\ =€ (kg +1)
([DL], lemma 3.4, [FEI], theorem 3.9). Hence by prop. 2.3 we have
dimOXowpeE <e (EE + 1)

Moreover, let P be a stable point of X, and let Py be its center. If Py is the
generic point of X then vp is trivial. Otherwise, vp is a divisorial valuation ([Re2],
(vii) in prop. 3.7 and prop. 3.8), i.e. there exists 7 : ¥ — X birational and proper
such that the center of vp on Y is a divisor E and there exists e € N such that
vp = evg. There exists a stable point PY € Y., whose image by 7, is P ([Re2],
prop. 4.1). Therefore PY D Pe}% and P D P,g. Now, assume that X is nonsingular
at Py, and recall that in this nonsingular case we have %E = kg, where kg is the
discrepancy of X with respect to E, which is defined to be the coefficient of F in the
divisor Ky, x with exceptional support which is linearly equivalent to Ky —m*(Kx)
([EM], appendix). Applying prop. 2.6 and lemma 4.3 in [DL] we conclude

Corollary 2.9. Let P be a stable point of X. Suppose that X is nonsingular at
the center Py of P, and that Py is not the generic point of X and vp = evg. Then
Ox_, p is a reqular ring of dimension
dim OXOWP = ekE + dim OYomPY .
In particular
dimOXomPeE = e(kE + 1).
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The following question is open :

Question 2.10. Let P be a stable point of X, and suppose that the local ring
Ox_, p is regular. Is X nonsingular at the center Py of P?

3. ON THE GRADED ALGEBRA OF THE LOCAL RING OF A SMOOTH SCHEME
ASSOCIATED TO A DIVISORIAL VALUATION

From now on, let k be a field of characteristic 0. Through this article, we will
denote by k < y1,...,y, > the henselization of the local ring k[y1,..., ¥y ,....y.)»
being y1, ..., y, indeterminacies (see [Ra] for more details on henselization).

Let n: Y — A¢ be a k-morphism dominant and generically finite, where Y is a
nonsingular k-scheme, let E be a divisor on Y and let Py be the center on A¢ of the
valuation defined by E. In this section we will define elements {g;} ez in the
fraction field of Opa p, (prop. 3.3) whose initial forms generate a localization of the
graded algebra gr,,Oxa p, modulo étale covering. In section 4 we will prove that
they have the property of determining a basis of Pﬁ; / (Pf;)Q, being Pﬁ; the image
by 7eo of the generic point of Y (see 2.7). From this and applying prop. 2.5, we
will conclude analogous results for a smooth surface X and a divisorial valuation
on X (theorems 3.8 and 4.8).

Let us apply the description of the morphism 7 appearing in [Re2], proof of prop.
4.5 (see (4) below). First, we may suppose that Y is an affine k-scheme. In fact,
we may replace Y by an open affine subset which contains the generic point {g of
E. Let u € Oy, U being an open subset of Y that contains £z, such that u defines
a local equation of E. Since 7 is dominant and generically finite, there exist local
coordinates z1,...,r4 in an open subset of A? that contains n(£g) such that the
image of z1 in Oy,¢,, is g u™*, where m; > 0 and g is a unit in Oy ¢, . By restricting
U and adding a m1-th root of g, we can define an étale morphism ¢ : U — U such
that the image of z; in (9[7 is u}"* where u; is a local equation of the strict transform
E of E in U. Moreover, since char k = 0, and Q2,0 @ K(Y) 2 Qy @ K(Y), we may
restrict U and U and define {u1,...,uq} C Op, {z1,..., 24} C Oy, where V is an
open subset of X, determining respective regular systems of parameters in a closed
point yp € E and in n o ¢(yo), and such that, if we identify x1,...,x4 with their
images by n! : Ov.n(yo) — Of],yo’ then

1 =uj"
_ . 7 mo
To = Zlging A2 vl +ul™? ug
4 -
z3 =D 1<icms A3i(u2) Ui +ui" ug
) x =3 As,i(u us—1) ul +ui" u
J = 2.1<i<ms N6, \U2, - - -, Us—1) U 1 s
Ts+1 = Us+1
Zq = Uq

where § = codimya n(€p),

my <ordy,, x; =min{i / A\;; #0} for 2 <j <d,
0<m1§m2§...§md,

Nji(ua, .. ui—1) € Ef[ug, ..., u;—1]], for 2 < 5 <8, 0 <4 < mj, and, given j' < j,
if i < my then X\;; € k[[us,...,u;_1]]. Moreover, since x; — uj”u; belongs to



7

Efu1,...,u;-1]] and is integral over Kfuy, ..., ud](u,,. . u,), it is also integral over
Klut, ... uj—1](u,,....u;_,)- Therefore, after a possible replacement of yo by another
point in an open subset of Un E, we may suppose that, for 2 < j < ¢ and
0 < i< my, Aji(uz,...,u;—1) belongs to the henselization k < us,...,uj_1 > of
the local ring k[uz, ..., Uj—1](u,..u;_,)> and, if i < mys, j° < j, then A;; belongs to
k< Uy ey Ujr—1 >

Besides, from the expression (4) it follows that there exists an open neighborhood
of yo in E whose closed points y; satisfy the same property, i.e. there exists a regular
system of parameters of y{, and of 7 o p(y() for which (4) holds. In fact, replace u;
by u} = u; +¢; mod uy, for 2 < i < d, where (c;); lies in an open subset of k%~1.
Hence, we may suppose with no loss of generality that

/\j7i(u2,...,uj_1)€k<u2,...,uj_1 > for 2 <j <9, nggm]
ifi < mj/7j/ <7 then )‘j,i ck< Uy v vy Ujr—1 >

(5) if Aji(ug,...,uj—1) # 0 then it is a unit in k& < ug,...,u;—1 >
Njmy (U2, ..., uj—1) is a unit, for 2 < j <d.

Note that U is nonsingular. Note also that A%€Qy is an invertible sheaf, hence
the image of dn : n*(A?Qy) — A%Qp is an invertible sheaf. The order ap in E
of the corresponding divisor is equal to the order in E of the image of d(n o ) :
(no@)*(A*Qy) = AQp. So, from now on, after a possible replacement of Y by U
and of n: Y = A by noy: U— V', we will suppose that (4) is a local expression
of 7. Besides, from (4) it follows that :

(6) ag=mi+...+ms— 1.

Lemma 3.1. Let A be a finitely generated k-algebra and let 6 :' Y — Spec Alz,y]
be a k-morphism, where x,y are indeterminacies. Let j, 2 < j < d+1 and suppose
that there exists a multiplicative system S;_1 of Alx] and there exist elements

Ly € Sj_flA[m] for2<ji <j—1
such that, if we set vj = 0%(1;/) for2 < j' < j—1, then {u1,va,...,vj_1,Uj, ..., uq}

is a reqular system of parameters of Oy,y,. Suppose that the images of x,y by 6"
are given by x — uy" and

(7) Yy Z Ai(va, ..., v5-1) u’l +ul" 0 mod (ul)m+1
mi<i<m
where m > mq, o € Oy,y, and A\;(ve,...,vj_1) €k <va,...,v,_1 > Set
e =g.c.d.({mi}U{i / N #0}), Bo :=my, eo = Bo

(8) Bry1 i=min{i / A; #0 and g.c.d{Bo,...,Br,i} < e, }and
ert1 =g.c.d{Bo,...,Br41} forl<r<g-—1, being g such that e, =¢
Bgt1 =m.
Let ng =1 and n, ::e’;—zlforlgrgg and let By = By and B,, 1 <r < g+1 be
defined by
(9) Br - nr71Br,1 = BT - ﬂrflv
hence we have

By >np1 By for1<r<g, and Bgﬂ > ngﬁg;

1 -
(10) n.B3, belongs to the semigroup generated by By, ...,0,_1, 1 <r<g-+1.
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Then, there exist an open subset U of Y containing g and a sequence of integers
{is}N, such that

(i) i1 <izg<...<iny= By and (i}, c {By}uU U9+1(nr,1BT_1, B,

(i) {B,}91 is contamed in {i1,...,in}, that is, there exist s1 < $3 < ... <
Sg+1 := N such that i, = Br for1<r<g+1,

(#ii) for each closed point yj, in UNE there exist a regqular system of parameters
{ur, v, . Vg, U, ugt of Oy, where v = v+ ¢, up = u; + ¢, (¢i)i €
kd=1 and there exist {hy =y, ha,...,hn} satisfying : given s, letr, 1 <r <
g+ 1, be such that n,_1B,_, <is < B (orr=1ifs=1and i, = B,), then

(a) hy € T4 ... Ty 1Sj_1A[w,y], where Ty is the multiplicative part ge-
nerated by q := hs_, (resp. qo :=x1) for 1 <v' <r—1 (resp. r' =0),
(b) the image of hs in K(Oy,y) belongs to Oy, , and if we identify hs with

its image in Oy, then

i (r)
(11) hs = Eisgigm(r) )‘SJ(’U/Q? cee 7’U;'71) U’Zl + Vs,m(r) (UIQa s a’U;'fl) UTITL ' 0

mod (uy)™"+1

where Ag i, Ys m €k < vy, 05 1 >, Ny, #0 for 1 <5 <N, v )

/,
J=

is a unit and m™ :=m + (ny — 1)B, + ...+ (n,_1 — 1)B,_,. Moreover,
forr <r' <g, let @ET) = B+ (ng — )B + (nyp_1 —1)B,_,then we
have

(12) min {z / Asi #0 and g.c.d.{er—hﬁy), e ,,Bfﬁ,r)_l,i} < ep_1 } = Bff)

and )\s 5 1S a unit.
(c) For s > 2, if s=s,-1+1 (resp. s,—1+1<s), then

b b® ﬁh
hg == qOO...qu P, (bgsbf;’ l2,...,l]‘1>
do """ 9p

where h = (qr—1)"=* (resp. h="hs_1), p=1—2 (resp. p=r — 1), the

integers {b3,}0,_, are the unique nonnegative integers satisfying b, <

ne, 1< 1" < p, and ny_18,_, = Zogwgr—z bs, B, (resp. ijs—1 =
— _ s b . .

ZOST’Srfl bj,r,ﬁjm/), o, = (/\sl,Bl)bl ”'(/\Spﬁp) e 18 a unit, and P, €

klz,v,...,v;_1] is such that
!/ !/ 8P5 / / . sy / /
(13) Ps(A\vg,...,v;_1) =0, a—(/\,%, cesViq) ds aunit in k < vy, ..., v >,
2

where X = (As_1,i,_,)" " (resp. A= Xjs—1,i;., 1)

Proof : First note that (10) follows from (8) and (9) (see [Za] 2.2.1 in the Ap-
pendix). Note also that there exists an open neighborhood of yy in E such that
if yp is a closed point on it and {u1,vy,...,vj_y,u}, ..., uy} is a regular system
of parameters of Oy, where v; = v + ¢;, uj = u; + ¢, ()i € k4= then the
integers defined by (8) and (9) for the expression of the image of y in terms of
{ur, v, Vg, ,u;} are the same as the ones defined for the expression in
(7). Thus, to prove the lemma, it suffices to show that, after a possible replacement
of 3o in an open subset U N E of E, there exist {i,}_; and {hs}, satisfying (i),
(ii) and (a), (b) for the image of hs in K(Oy,y,) (hence vy = va,...,vj_; =v;_1 in
(11)) and (c).

We will define {is}Y; and {hs}}; by induction on s. First, after a possible
replacement of gy in an open subset of E, we may suppose that, for every i such



that A; # 0 in (7), A; is a unit in the ring

Rj_l ::]{i<112,...,1}j_1 > .
Then, for s = 1, let 4; := min{i / X\j(v2,...,v;—1) # Otand hy := y. It is clear
that B, < i; < f; and that (a) and (b) hold for s = 1. Now, let s > 2 and

suppose that i; < ... < is:l and hy,...,hs_1 are defined and satisfy the @qui—
red conditions. If i5_y = B, then set N := s — l;If not, then is_l < Bg+1-
Thus, there exist r, 1 < r < g+ 1 such that is_1 € {8,_1} U (n,—18,_1,05,)- Let
51 < 83 <...<s._1 < s—1besuch that i, :BT, for 1 < ¢’ <pr—1 and let
qo =2, ¢ :=h,, for 1 <v' <r—1.

S

Ifig_1 = Br—l? recall that A —1,8 _1(’1}27 - ,’Ujfl) € ijl\{()}, thus (/\s_1 3 _1)m"
belongs to R;_1 \ {0} and hence there exists an irreducible monic polynomial
P, € k[z,vq,...,vj_1] such that

Ny BPS n
PS(<>\S_17ET—1) TyU2,. 7’Uj*1) =0 and g(()‘s—l,ﬁr_l) "V, ... 7’0]'71) 7é 0

Moreover, after a possible replacement of yg in an open subset of F/, we may suppose
that

PS(()‘S—l,Brfl)nrﬂ)Qa-~'7Uj—1) =0 and
(14) oP,
g(( 571,@71)%’, ...,vj_1) is a unit in R;_;.

Analogously, if i,y € (n,_153,_1,8,), then after a possible replacement of g, in an
open subset of E, we may suppose that there exists an irreducible monic polynomial
P, € k[z,vs,...,vj_1] such that

0P,

(15) PS(/\S_1714571,’I}2,...,Uj_l):O, @

(As—1,iy 15---,Vj—1) is a unit in R;_4.

Ifis_1 = B,_1,let b5, = b._1,,0 <1’ <r—2, be the unique nonnegative integers
satisfying by_1,» < ny for 1 <+ <7 =2, and np_16,_1 = > gcprcr_obr—1,08,
and let 71, := (A, 5 )% (A, .3 72)1’3*2, which is a unit in R;_1, such that the

51,81
. o by . _ 1B 3
image of qgo ---q," 3 by 0% is equal to T u) -1 mod (up)"r=1Fr-1+1, SQet
b - Hs (gr1)"
(16) hs =4y R qr721 ’ Ps/ ( belO - br—1r_2" 127 AR lj*l
qo - qT__2

and iy = (np—1 — 1)B,_; + min{i/i>p,_;, Ae—1,; # 0}, unless we have
As—1,; = 0 for all i > §,_;, which implies r — 1 = g, then set is := 3, ;. From (14),
(16) and Taylor’s development for P; it follows that, if s < N (resp. s = N) then the
vp-value of the image 6% (h,) of h, in Oy,y, is s > Np_1B,_1 (resp.is > iy = BQ+1)’
and the exponents of u; in 6%(h,) with nonzero coefficient (see the left hand side
of (11)) are determined by the ones in 6%(h,_;) by adding (n,_1; — 1)5,_;, there-
fore n,_18,_; < is < B, and (11) and (13) hold for s. Moreover, for r < ' < g,

(r

)
the coefficient A_ 5 in uf” of 6*(hs) is equal, modulo product by a unit, to
()\3_1157.71)"“1_1 )\Sil’ﬂfrl), therefore it is a unit, and (b) is satisfied. Besides,
he €T, ... ToflSj*_llA[:E, y], hence (a) also holds.

If n,_18,_; < is-1 < B, then e,_; divides i,_; (by (b) applied to s — 1)
and there exist unique nonnegative integers {bﬁ,}:;lo satisfying b7, < n, for 1 <
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< r—1landis—1 = D ooy bs, B, (because n,_18,_; < is_1). Then, let

Ay = ()\Slﬁl)b‘f . (Asr_lﬁ,.,l)bi_l’ which is a unit in R;_4, such that the image of

qgg‘ e ql;i‘ll by 0% is equal to ﬁsuzf‘l mod (ug)%-1+1 and set

r—1

be bs_ s hs—
(17) he =" P, (b,’f — 12,...,zj1>
qOO RPN q’l‘*l

and is := min{i / ¢ > is_1, As; # 0}, unless we have A\;_; ;, = 0 for all ¢ > Br_1

which implies 7 — 1 = g and then we set ig := Bgﬂ. It is clear that (a) holds and,

from (15) and (17), it follows that, if s < N (resp. s = N), then the vg-value of the

image 6%(hs) of hy in Oy,y, I8 s > g1 > Nr_1B,_1 (resp. > iy = Bngl > nng),

and the exponents of u; in 6%(h,) with nonzero coefficient are the same as the ones

for by 6%(hs_1), hence n,_13, < i, < 3, and (11) and (13) hold for s. Moreover,
()

for r <1’ < g, the coefficient A, ) in ulﬁr' of 6% (hy) is the same, modulo product
by a unit, as the coefficient A__, ;o of 6% (hs_1), therefore it is a unit, and (b) is

satisfied. Besides note that Bﬁr) = BT for 1 <r < g+ 1, hence from the previous

construction it follows that {5, }9%] C {i,};, hence the result is proved.

Corollary 3.2. Let j, 2 < j < 4. Set A = klza,...,zj_1], ¢ = x1, y = x5, and
let @ : Y — Spec Alz1,x;] be the composition of n:' Y — A with the projection
A% — Spec Alzy,z;]. Suppose that the hypothesis in lemma 3.1 holds and let the
image by n* of x; be given by

(18) T; = Z )\;714(1)2,. .. 7Uj—1) ull +u71nj u; mod (ul)ijrl.
m1<i<m;
i1 }
where A;‘,i('UQ;...,'Uj—l) € Rj_1 =k <wa,...,vj_1 >. Let {5j,r}£f(_) , {ejm}szo,

{n; 372, and {Bj’r}f’:(_)l be the integers defined by (8) and (9). Then there exist an
open subset U of Y and, for each point yf, in UNE, a regular system of parameters

! I / 1 ’r_ I d—1
{ur, vy, .. vy, ug)t of Oy, where v = v+, up = ui +ci, (¢i)i € k%77,
and there exist elements {q; 0 = T1,qj1,...,qj,g,+1} where

-1 —1a-1
4G €T, - T Sj—1[33175527~-~azj—17“7j]

being T, the multiplicative part generated by q; .+, such that the images of {q;.r fj:JBl

in Oy, are given by

Bjr 3.
(19) Qj.r = pjr(Vy, ., V5 ) U mod (uy)Pi-tt for 0 <r <g;
Biia;+1 B 1
Qg j+1 = Mg, +1(Vh, . .. 7”3‘—1) w7y mod (u1)67v91+1+
where i, (vy, ..., vi_1) is @ unit in k <vy,...,v5_4 > for 0 <r <g;+1.

Proof : This is consequence of lemma 3.1. In fact, after a possible replacement
of 1o in an open subset of E, we may suppose that there exist {is}_; and {h }¥,
satisfying (i), (ii) and (a), (b) in lemma 3.1. Let g;0 := 1, g1 := hsys ..., g, 1=
o, - 1A = 0 in the expression (11) for nf(h then let gj g, 11 =
Py, i1
suppose that there exists an irreducible monic polynomial P € k[z,vs,...,v;_1]
such that P(A v2,...,vj—1) = 0 and %—IZ)(A is a unit in R;_1.

Sg;+1:8g41 sgj+1)

Otherwise, after a possible replacement of yy in an open subset of F, we may

$9;+1:85.9;+1” 59j+175gj+1)



11

Then we proceed as in (17), that is we set

. o bio . big; K hsga‘“ l L
Bjsgi+1 = 950 .9 bjo . biai” AR
.0 4,95
where bjo,...,b;,, are nonnegative integers satisfying b;, < n;,, 1 <r < g;, and
—= - 7 — _ b - bj g 95+l
Big+1 = Lozreg, Vi and = (A, 5 )%t (A, 5 ). Then {g;,}, o

satisfy the required condition.

Proposition 3.3. There exist a point yo € E, a regular system of parameters

{u,v2,...,va} of Oy,y, and a regular system of parameters {x1,...,wq} of Opd 1(y,)
such that the following holds :
(1) If we identify x1,...,xq with their images in Oy, then
1 =u™
Tj = Dy <i<m, Ni(V2, -5 Uj-1) ut +u™ vy mod (w)™i L for2 < j <4
T, = Uy foro+1<r<d.

where 0 < my < mg < ... < my and, for 2 < j < 6, if we set Rj_1 =
k < wa,.. V-1 >, then )\m(vg, . ,Uj_l) S Rj_l, /\jﬂ' 7é 0 implies that it is
a unit in R;_1, and \j o, (va,...,vj-1) is a unit in R;_1 and

(20) if i< mj/7j' < j, then )\jﬂ; S lefl.

(i1) For 2 < j <4, let Bj := j_l[xl,xj}(g;l@j), let v be the restriction of vg
to Bj, let Bj,o = thj,p e ,Bjﬂj be a minimal system of generators of the
semigroup v;(B;\{0}) and Bj’gjﬂ = v;(I;), being I, the complete ideal defined
by the restriction of v; to a general fibre of Spec B; — Spec Rj_,. Set
let us consider the lexicographic order in J and, for (j,7) € J, let

Toe=AG ") e T ) Gy <G}, T =A{0") e /Gl <)}

Then, there exist elements {q;j,}(jryeg i k(z1,...,x;), more precisely,

(21) qjr € H TJT}W klz1, ..., z;]
G"eTs,

where, for (j'r') € J},., Tj  is the multiplicative system generated by qj: -,
such that :
(a.2) q10:=z1 and, for2 <j <4, 0<r < g;+1, the image of g, in the
fraction field K(Oy,y,) of Oy, belongs to Oy, and, if we identify q; »
with its image, then

(22 Ur T pir(v2, -y vi1) wPir mod (u)?5- 1 for 1 <r <g;
. R |
Qg+l = Mj,gj+1(v2, RN Uj_l) uﬁj’gﬁrl v mod (U)B“’J*l
where ;- (Va,...,v-1) is a unit in Rj_1 for 1 <r <g; +1.
(bg) For 2 < j < (S, set 45,0 ‘= q1,0 = T1, €5 = g~C'd-{6j,07~'~7ﬁj,T}7
Njp = % Jor 1 <r <g;, and let bjo,...,bj 4, be the unique nonne-
gative integers satisfying
(23) bjr <mjy forl1<r<g; and Bj,gj+1 = Z bj,rBj,ra

0<i<g,



12 ANA J. REGUERA

then, identifying q;,» with its image in Oy,y,, we have
4j,g;+1

bjg.
3,9

; = v € Oyy,-
5,0
95,0 - 9,g;

(i1i) Even more, for 2 < j < §, there exist nonnegative integers N; and s;1 <
552 < ... < 8jg,41 =Ny, and elements {hj7s}i\£1, such that qj . = hj, . for
1 <r <g;+1, and besides the following holds : given s, letr, 1 <r < g; +1
be such that s;,—1 < s < s;, (resp. r =1 1if s < s;1), then we have :
—1
(013) hj75 (S H(j/"",)ejj*,r Tj’,r’ k:[xl, A 7.’13j]
(b.3) the image of hj s in K(Oy,y,) belongs to Oy, and, if we identify h;
with its image in Oy y, then
. (r) (r)
hjs= Z Ajsi(V2, ... v5-1) ul+’yj7s,m;r) (vay ..., vj_1)u™  w; mod (u)™ *
&)

ij,s<i<m;

where nj,r—lﬂjJ«fl < i5s < ﬁjyr, Pje—1 < ijs, bjs = Bj’r iff s = s,

; : (r) ._
/\j,m,’yj’s’my) € Rj_q, /\j,s%s,’yj’s)m;m is a unit, and m; " = m; +
(nj1 =B+ + e —1)Bj 1.
(c¢.8) If s=sj,—1+1 (resp. s,_1+1 < s), then h; s is equal to
ql?j,o . qéj,,, . “J’,sh q2,9o+1 dj—1,9;_1+1
3,0 p T D8 bio  b5,7 b2 b2,957 """ b1 bj—1,9;_1
4o "9, 920 -2, =10+ Tj-1,9;
MNj,r—1 _ _ _
where h = q; 777" (resp. h = hjs_1), p=1—2 (resp. p =1 - 1), the
integers {bj,r'}f’:o satisfy b .. < mj., 1< 71" < p, and nj,—18;,_1 =
_ _ be be
S ; — S - — 7,0 3P
EOST’§r72 bj,r’ﬁj,r’ (resp. ijs—1 = ngrq bj,r’ﬁj,r’)7 Hjs = Hjo0 " Hjp
is a unit, and Pj s € k[z,v2,...,v;_1] is wrreducible and satisfies
OP; s

(24) Pjys()\,vg,...,l}j_l) :0, ()\,UQ,...7UJ'_1) 1S a unit in Rj—l;

0z
being A\ = (Njs—1,i;.,)" """ (resp- A= Njs—1,i;. 1)

Proof : The result is a consequence of lemma 3.1 and its corollary 3.2. First note
that, given j, 2 < j < 4, if there exist {qj7r}gg1 in k(x1,...,z;) satisfying (22) and
we define

(25) I = — 20t

bro b, S k‘(xl,...,xj)
4.0 g
where g;0 = x1 and {b; . }%", satisfy (23), and v; to be the image of I;, then v,
belongs to Oy, and besides

(26) v; =7; u; mod (u) where y; is a unit in R;_;.
In fact, with the notation in (22) we may take v; = %
Kia ety g,

Note also that, fixed j, 2 < j < 4, if (26) holds for every j' < j — 1, then the
image of z; in Oy, is given by
xj = Z Nji(vay.ooyvjo1) ub +ul™ u; mod (ug)™
mlgigmj
where \;; € Rj_1, m; is the integer in (4), \; ; # 0 implies that it is a unit in R;_1,
Ajm; is a unit in R;_; and (20) holds (recall the conditions in (5)). Moreover, the

integers {Bj’,,}szo (resp. Bj’gjﬂ) defined in (8) and (9) for the image of z; are a
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minimal system of generators of the semigroup v;(B; \ 0) (resp. equal to v;(;)).
From this, and setting u := u; and v, to be the image of =, for § + 1 < r < d (i.e.
Uy = Uy, 0 +1 < r < d, with the notation in (4)), (i) would follow.

Hence, in order to prove (i) and (ii), it suffices to show that, for 2 < j < 4,
there exist {qj,r}f:gl satisfying (21) and (22), where R;_; is defined taking v;/ to
be the image of [;; for 2 < j/ < j —1 (see (25)). We argue by induction on j.
For j = 2 the hypothesis in corol. 3.2 is clearly satisfied (we may take S; = {1}).
Thus, by corol. 3.2, there exist {ga,, fi"{l satisfying (21) and (22). Now, let j,
2 < j < ¢ and suppose that, for 2 < j < j — 1, there exist {quyr}fz":/(fl satisfying
(21) and (22). Since vjs is defined to be the image of I;;, 2 < j/ < j — 1, the hy-
pothesis of corol. 3.2 is satisfied. In fact, there exists a multiplicative part S;_; of
klz1,...,z;-1] such that H(j’,r’)ejfl TJT;, klz,...,z-1] = Sjlllk[xl, co Tl
hence [, € S;_llk[xl,...,xj,l] for 2 < 5/ < 7 — 1. Thus, corol. 3.2 assures the
existence of {qu}ffll satisfying (21) and (22). From this, we conclude (i) and (ii).
Besides, from the proof of corol. 3.2 (see the proof of lemma 3.1), (iii) follows.

Definition 3.4. The local expression in prop.3.3 (i) (or in (4) at the beginning
of this section) will be called a general transverse expression of n:Y — A% with
respect to E. The elements {g;,}(j,res obtained in prop. 3.3 (ii) will be called a
system of transverse gemerators forn:Y — Ag with respect to E.

Remark 3.5. For j =2, By = k[21,%2](3, 2,) is a two-dimensional regular local
ring. Then ¢2,0,92,1,---,42,g5592,g,+1 € B2 is a minimal generating sequence for vy
([Sp], theorem 8.6). In fact, since Ry = k, if we apply lemma 3.1 to y = x5 then all
the A ;’s in (11) belong to k, hence we can take Ps(z) = z — (As—1,4,_,)"" (resp.
Py(z) =z — As—1,4,_,) in (13). Hence g2, € k[x1, z2] for 0 < r < gy + 1, moreover

B
we have g2 0 = 21, q21 = T2 — ZKBZ ) A2 q2f)’° and, for 1 <r < gg,

_  na2r b2,r,0 ba,rr—1 o Y
Q@r+1 =42, —Crday ---4o, 1 — E , €2,y Q2,0 - Gar
Y=(Y050-yYr)

bar;’s are the unique nonnegative integers satisfying by, ; < ng; for 1 <i <r—1,
and ng B, . = ZO<i<r b2,r,i32 i, the 7’s are nonnegative integers satisfying v; < na;
for 1 <4 < r and n277‘32)r <> %'Bli’ and cap,c24 €k, c2p #0and cpy #0
only for a finite number of +’s.

Remark 3.6. Let j, 2 < j < 6. Set A = kfvg,...,vj_1], ¢ = 1, y = x;
and let 0 : Y — Spec A[z1,z;] be defined by the morphism of k-algebras given
by v = v;,2 < ' < j—1, x; = nf(z;), i = 1,7 (see (18)). Setting lj = v,
2 <y <j—1,and S;_; = {1}, the hypothesis in lemma 3.1 is satisfied. Let us
apply lemma 3.1, then the integers defined in (8) and (9) are {5j7r}fj:—gl, {e;r )P,
{n; -}, and {B;, 9i+1 (see prop. 3.3 or corol. 3.2). We denote by {qg-yr}gg)l the
elements {q, = hs,. g’:(_)l in 3.1 (iii).(a), hence satisfying

-1

/ / r—1
q;.r eT Gr—17"" T j)ok[’Ug, . ,vj_l,xl,xj]

being T]{J./ the multiplicative part generated by q;»,r,, and such that the images by 6*
of {¢}, 9,7:61 are {n*(q;) fj;gl, thus given in (19). In fact, note that g¢;, is obtained

T
from ¢'; ,. by replacing v; by bq;giﬂtg, for1<i<j—1.
1,0 " Hi, gy
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On the other hand, for 2 < j < 9, there exists a domain B;_; which is an étale
extension of kfvg,...,v;_1] and contains A;;(ve,...,vj—1), m1 < i < m; (see (i)
in prop. 3.3). Let ; be the valuation on B;j_1[z1, ;] extending v; and such that
vj(f) = 0forall £ € B;_; (see (ii) in prop. 3.3). Let gj 1, ..., Gjg,+1 € Bj_1[r1,2;] be
a minimal generating sequence for v; defined as in remark 3.4, i.e. gj0 = x1, ¢j1 =

Ty — Zi<ﬁj,1 /\;,2 (q~j70)ﬁj=0 and, for 1 <r < Gjs
~ _ Mir ~bj r.o ~bj o1 ~ ~ ~Y
(27) qj,r4+1 = q]',Jr —Cjr q]'fo . --quT,1 - Z Cj~ qu(’) el 1<r<yg;
Y=(Y050--y¥r)

sjr+1 . . a )
where bj.; = b, 1 <i < r:l, ie. bj,i <nj;andn;.B3;, = ZO§i<r bjriBis
we have 7;1(q}% - - - 45 > njfﬁ . for each~sequence ol of nonnegative integers in
the right hand side, and ¢;,,¢;jy € Bj—_1, ¢j» # 0 and ¢; 4 # 0 only for a finite
number of ~’s.

Note that, for 1 <r < g; + 1, in the ring ]_[:,_:10 T’;,l_, i _1[x1, z;] we have
/
(28) 4a;

where £,h € [[_, T’;;Bj,l[xl,a:j], (is a unit and 7(h) > 3

Jre

.= G- U+ h

s

3.7. Now, let X be a smooth k-scheme and let v be a divisorial valuation on an
irreducible component X, of X. Let Py be the center of v on X and let R := Ox p,.
We consider the graded algebra associated with v, that is, gr, R := Q,ca+pn/0r
where @1 := (R \ {0}) is the semigroup of the valuation and, for n € &%,

on=1{heR/v(h)>n}, @ ={heR/v(h)>n}

Let 7 : Y — X be a proper and birational morphism such that the center of v
on Y is a divisor E, and let n : Y — A¢ be the composition of 7 with an étale
morphism Xg — Ag, where d = dim Xg. Let us consider the notation introduced
in this section for the morphism 7, in particular, let {g;,} ez be a system of
transverse generators for 1 : Y — A¢ with respect to E, (prop. 3.3 (ii)). Recall that
the center of v on A¢ is (21,...,2s) and let S := k[zy,. .. s Td)(zy,..ms)

There exists a proper and birational morphism Z — A¢ with Z smooth such
that the center of v on Z is a divisor F. Since Oz r is the valuation ring of the
restriction of v to K(S), we have that Oz r < Oy g, i.e. Oy,g dominates Oz p,
hence, after restricting to some open subset of Y, we may suppose that Y dominates
Z,let 0 : Y — Z denote the corresponding morphism. Note that we have

4j,9;+1 .
jg’+b_ € Ozp for2<j<i.
bj.0 3.9 ’
950 ---9,g;

because these elements belong to K (5) and have v-value equal to 0; we also denote

by v, the element b‘q;’gjt: — of Oz (see prop. 3.3 (ii)). Besides, the ramification
7295

4500 45,
index ¢ of Oy, g over Oz r is equal to g.c.d.({Bj,)T,}(j,’rl)ej*). Thus there exist
{8+ }(jmeag=, ajr € Z, such that

(29) z = H q?f,ir € Ozr and v(z)= Z a8, = e
(4"reTx (4"r)eTx
Then,
v(o*(dz ANdvg A ... Ndvg)) =e—1
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and hence, if kr(A?) denotes the discrepancy of A? with respect ro F, we have

(30) ap = cekp(AY) +e—1

Since S < R, the initial forms of the elements of k[x1,...,x4] are well defined
elements in gr, R, and since ¢1 o = 1, applying (21) in prop. 3.3, by recurrence on
(4,r) we can define the initial form qj . of g;,, for every (j,r) € J. We have

qjr € H T}, (grR)
G'eTs,

where, for (j',7') € J},, Tj . is the multiplicative system generated by qj . Let
k[{ajr}(j,res] be the k-subalgebra of the fraction field K (gr, R) of gr, R genera-
ted by the q;,’s and, for 6 +1 < j < d, let x; be the initial form of z;. With this
notation, the following holds :

Theorem 3.8. The system of transverse generators {qj ., }(jres satisfy the follo-
wing properties :
(i) We have an isomorphism of graded rings

[12 &

H T {qj T}(J'r‘ cTJs X§+1,...,Xd] A[ue7u_e]
(G:r)eg
where deg(u) = 1, and A is a k-algebra which is étale over the polynomial ring
in d — 1 variables k[va, ..., vq], being deg(v;) =0, 2 < j <d.
(i) We have an isomorphism

H T, ! gr,R = Blu*,u
(Gr)eg*

whose restriction to G is ®, where AQy k(Py) C B and the extension is étale.
Besides, the fraction field K(B) of B is k(E).
(i) For 2 < j <, the isomorphism ® in (i) restricts to

6= T )k [{aredomed, w0y
(j’T)EJJ‘*xgj+1

[12 &

Aj-1[vi][u®,u]

where ¢j := g.c.d{B; .. | (j,r') € Tjg41}: A1 =k and Aj_y is étale over
E[ve,...,vj_1] for2 < j <.
(iv) For 2 < j <9, there exists a domain B;_; étale over A;_y such that

B;_ [{(h o} U{ay, r}g7+l} ~ Bioi[y1.0,52 - Yjg+1] [

where the y; s are mdeterminacies and J; is a prime ideal which is generated
bjr1 bjrr—1

- - b . . ~ .

by {y;”T =G Y0 YTy Y9\, being ¢;, € Bj_1. In particular,

the previous ring is a domain whzch s a complete intersection over Bj_;.
Moreover, for cmy domain C, any ideal in Cly1,0,Yj2---,Yj.g,+1] generated

]7‘1 bjrr—1195

Bayr0 Y Ly ¢ € O, ds a prime ideal.

by {y;} —Cir Y100 Y5
Proof : First, we have that R = Ox p, 2 k[T1,...,%d](a,,.. 2, =: S is étale,
hence R & 5 ®, k(Po) where we denote by R (resp. S ) the completion with respect
to the maximal ideal. Since the valuation v on R (resp. on S) can be extended to

a valuation 7 on R (resp. on S) and we have gr, R = grAR (resp. gr,S = gTAS)
we conclude that gr, R = gr,S ®j k(Fo). Therefore, in (ii) we may suppose that
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X =Af{ ie. R=5.

Keep the notation in prop. 3.3. The morphism S — Oz r induces an inclusion
Q: gr,S — gr,Ozp = k(F) [uf]

where k(F) is the residue field of F on Y, which contains k(vs,...,v4), and
u,Vvs,...,vq are indeterminacies, v;, 2 < j < d (resp. u) is the initial form of
v; (resp. u), hence deg(v;) = 0, deg(u) = 1. We have

12 &

k[uez’” , u_e2192]

92
I T2 k{aro} U{az. 3%y
r’'=0

@
and hence Go = k[vs][u®292, u~“92]. More precisely, the image of the ring in the

left hand side in the fraction field K(gr,Oz r) of gr,Oz r is in fact in gr,Oz
and is equal to the ring in the hand side. Arguing by recurrence on j, 2 < j <9, it
follows that

[ &

H T;,lr’ k |:{qj',7“/}(j’,r')Ejj,gj+1:| Ajfl[uej,ufej]

(_7'/,7’/)6\7;,9].4,1

where ¢; := g.cd{esg,,....ej4,} = g.cd{Bj . | (j',r') € g1t and Ajy

is the minimal subring of x(F) containing k[va,...,v,_1] and pj/ ,(va,...,vjr_1),
it (Va, ..., vi—1) "t for (5,17) € T g, +1, hence A;_y is étale over k[va, ..., v;_1].
Therefore
s ‘ 3
G; = Ajq[vj]u¥,u™%] and G =GsQx klzs+1,...,2q] = Au®, u™]

where A = As_1[vs,...,v4), hence (i) and (iii) hold.

In order to prove (ii), let B be the minimal subring of x(F') containing k[va, ... v4]
and {);j(va,...,Vj_1)}2<j<dmi<i<m,. From the construction of the h; ,’s in prop.
3.3 (iii) (see the proof of (iii) in lemma 3.1) it follows that, for every (j,), 2 < j <
d,my <1 < my, there exists h € H(j,r)ej* TJZ}S such that the initial form of A is
Aji(Ve,...,va)u. Now, let h € S = k[z1,...,25](4,,..25) and let a := v(h). Then
¢s divides a and the image of h in Oy, is equal to A(ve,...,vs)u® modulo u®?
where A(va,...,vs) € B. Hence the initial form of h belongs to B[u®’]. Besides,
it follows that the set of elements of K(S) of degree 0 is precisely K (B), that is,
k(F) = K(B). From this (ii) follows.

For (iv), recall that, given n € N, a field F containing a primitive n-th root of
unity £ and an element b € F* = F \ {0}, if the class of b in F*/F*" has order
m, then there exists d € F' such that X™ — d is an irreducible polynomial in F[X]
and moreover X" — b = H?:/gl(Xm — £id) is the decomposition in F[z] of X™ — b
in irreducible factors (see for instance prop. 9.6 in [Mo]). In particular, if A is a
domain containing a primitive nth root of unity and b € A is such that

(31) b & A for every n’ > 1, n'|n, then X" — b is irreducible in Afz].

For j = 2, with the notation in remark 3.5, let J5 is the ideal of k [y1,0, ¥2.1, - - - ¥2,g5)

generated by {yy7" —car ylfﬁr‘o yg?{’l . ygff_’fl 92 |, where the yo ,’s are indeter-
minacies. Let By = A; = k and let us consider the morphism of k-algebras

Ely1.0,y2,15- -5 ¥2,904+1) / J2 = E[{d1,0} U {qo., 12201
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sending yo,, 1 < r < g + 1 (resp. y1,0) to do, (resp. qip). Since k[{qio} U

{a2, 7a}gﬁl] is a 2-dimensional domain, to prove the isomorphism it suffices to show
that for 1 <r < go the element ;%" — ca ylfo y12>217 ! yng T is irreducible in

o by s bo it 1y
(Kl o) / (103" = canr 0% o 30 ) ) Dy

. b b L
ie. y; 9" ...y, does not have a n’-root for any n’ > 1 dividing na,. In fact,

suppose that

n

b2, 0 ba,rr1 a ar—1
U or .. 'y2,r7—T1 = E Aa yl,DO Yo
(32) QEZ;'O

Mo ot b2,r’,0 b2 vl —1
mod ({y2,r’ —C2 Y10 Yo 9 = 1

where n'|ng ., Ay € k, the sum in the right hand side term is finite, then we may
suppose that (32) is homogeneous with respect to the degree, that is, for each a in

(32), we have n/ (ZZ:—& a; BQ%) = ng, By, Since there exists at least one a in
(32) and we have ng, = % where eg; = g.c.d.(BLO, 93271‘)’ t=7r—1,r, and

n/|ng,, we conclude that n’es, divides (5, and also ez, 1, hence n'ey, divides
ea.r, that is n/ = 1.

Now, let 7, 2 < j < 4. Let us consider the notation in remark 3.6. We have

By [fano} Ul 53] = By [(ahob U el 257 ] - Besides, from (28) it fo-
lows that, for 1 < r < g;+1, the initial form qj ,. of ¢; ,. belongs to gry, (Bj-1[1, 7;]),

although ¢}, € T[. 2, ! T 1, i—1[x1, z;]. It also follows that

Bj 1 [{dho} U{a), 10

1%

B 1 [y1,0, Y51, > Yjgy+1] [ J;
where J; is the ideal generated by {y;7" — ¢, yljo’ . ijrT 9. In fact, from
the same argument as in before it follows that, for 1 < r < g; and for any n’

bj,ro bjrr—2

dividing 1, ¢y’ -y, * does not have a n'-root in the ring

N, . g b, ! — _
Bj_1[y1,05---,Yjr—2]/ ({yjjr/ = Cjp yl 0 R -yjf}-/_l ' :/:11>
More precisely, (b;,.0,...,b5rr_2 0,...,0) and bj.r0 %.r7=2 qoes not have
p Ys \Y5,7,0, 1 YT ) yl yj r—2
a n’-root in any ring of the form

g, JT ,0 bj,r’,r’—l r—1
Clyi0,--Yjr—2l/ ({Z/j,w “ G Yo Y- Sr=1

where C' is a domain and the ¢;, s are in C. Hence J; is a prime ideal and (iv)
holds. This concludes the proof.

Remark 3.9. Similar ideas to the ones in (ii) in thorem 3.8 appear in [Pi], proof
of th. 1.3.8.

Restricting to dimension 3, but considering any valuation v of rational rank 1
and dimension 3, i.e. v centered in a regular 3-dimensional ring R, in [Ka] an (in-
finite) generating sequence {¢n nen of v in R is constructed. Our construction in
prop. 3.3 is different to the one in [Ka] and we do not reach a generating sequence.
Generating sequences in higher dimensional complete local rings are considered in
[LMSS].
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4. DEFINING COORDINATES AT STABLE OF THE SPACE OF ARCS

Let n:Y — A¢ be a k-morphism dominant and generically finite, where Y is a
nonsingular k-scheme, let E be a divisor on Y and e > 1, and keep the notation in
section 3.

Let PY, be the generic point of Y2¥ (see 2.7), and let Pf,; be the image by
Neo Of PYg, which is a stable point of (A?),, ([Re2] prop. 4.5). We will first prove
(prop. 4.5) that a system of transverse generators for n with respect to E induces
a regular system of parameters of (9( ad) phd- Then we will conclude theorem 4.8

oo e p

and corollary 4.10.

Given a finitely generated k-algebra A, let us denote by A the ring of (Spec A) .
Given ! € A, we denote by Y L, t" the image of [ by the morphism of k-algebras
A — As[[t]].

Lemma 4.1. ([Re2] proof of prop. 4.1 (iii)) Let A C B be finitely generated k-
algebras and let 6 : Spec B — Spec A be the induced dominant morphism. Let P’
be a stable point of Spec By and let P be its image by O in Spec Ay Let h € B
belonging to the fraction field K(A) of A, h =1/q where l,q € A. Then, there exist
{H,}n>0 in (As)p such that

(33) H,=H, modP

(recall that H, € B for n > 0). Even more, there exists ¢ € N such that
Qoy---,Qe—1 € P, Q. & P and there exist polynomials S, on 2(n + 1) indeter-
minacies with coefficients in k, for n > 0, such that,

Fn — Sn(Lm"'7Ln+c7Qc7‘-‘7Qn+c) c (Aoo)P

(Qc)n—i-l

satisfies (33).

Proof : First note that P is a stable point of Spec A, ([Re2] prop. 4.5), hence
the existence of ¢ such that Qq,...,Qc—1 € P, Q. ¢ P ([Re2], th. 3.7 (i)). Then,
the result follows from the following observation : given h = 1/q, I,q € A, if
Qo,---,Qc—1 € P, Q. & P, then we have

QcHy+ ...+ QuicHy=Lyy. mod P' forn>0.
([Re2] proof of prop. 4.1).

Lemma 4.2. Suppose that the assumptions in lemma 3.1 hold and suppose besides
that 6 : Y — Spec Alz,y| is dominant. Let P = PeAE[I’y] be the image of P, by
Ooo, which is a stable point of Spec Alx,yleo- Let yo, the reqular system of parame-
ters {u,va,...,vq} of Oy, and {h1 =y, ho,...,hn} satisfy (a) to (c) in 8.1. For
2<j ' <j—1,let {Ljsn}n>0 in (Alz,yloc)p be such that Lji.,, = Lji., mod P,

(see lemma 4.1). Then, there exists a multiplicative system Sj_1 of Alz]eo such
1

tlﬂt fj/;n € gjilA[x]oo for 2 < j < j—1,n > 0 and there exist elements
{Hsinbi<s<nn>o i (Alz,yloo) P, n > 0, satisfying :
(i) Hy., = Hgyy mod Pe%, therefore

Hg.,, € P(Alz,yloo)p for0<n<eis—1 and Fs;eis & P(Alz,y]oo)p-

(i) Letr, 1 <r < g+1 be such that n,._18,_, <is < B, (resp.r=1if s =1
and iy = By). Set Qu.,, := Xn forn >0, Q. i=Hy i, for 1 <7/ <r,n >0
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and let T, is the multiplicative part generated by @Q 0 <7’ <r. Then,

forn > e(B, — B,), we have :

— =1 ——1—=—1
Hep €T,-1 ... Ty S, 1 Acc[Xo, X1, Xy Yo, Ve, Y, 5 ]

r'5eB, 7

(iii) If s =1 then Hyi,, =Y, forn > 0. If s> 1 then
Fsm € ({@T’;n}r’ir—l U {ﬁ(‘z—l;n}n<eis_1) for 0 <n < maz {enr_lﬁr_l, eiS—l}
n<eET/
Fs;n = Uy, Yn*(@‘ ~ gyt Psm for n > max {en,_1B,_,eis_1}
where Us n, Psn € BilYes, 141;--- ’Yn—e(ﬁr—ﬁj,r)—l] and us p 15 @ unit.
(iv) Suppose that s > 1. If is_y = B,_; (resp. is—1 € (ny—1B,_1,0,)) then
H ) (resp. Hs.ei, ) is equal to

S§Gnr—1B7.,

—bg —b Cs

H _
QO;EBO ...Qp‘;’eﬁp -[’S 5 —5 s L2;07 ,Lj,1;0
Qs e,
where H = (Qr—l;eﬁr,l)nwl (resp. H = Hy_1iei, ), ¢s € k\ {0} and p,

{6510, _ and Py are as in (c) in 3.1.
(v) Fizedr, 1 <r < g+ 1, the following ideals in T:l . .T(;lgj_le[gc, Yloo are
equal :

({Qr’;n} o<r/<r ) = ({Qr’;n} 0<r/<1 U{@r’;n} 2<r/<r >

Ogngegrz—l ogngeET,—l en,./,lgrl,lﬁngeﬁrl—l
and also the ideal generated by
(@i~ U 25" U (Ui {57 ) U
—_ GiST,7 +1—1 ;‘ _ -g71
Y ;AU Ul (VS v: S T B
Proof : The existence of S;_; follows from lemma 4.1; in fact, it suffices to ask
S;j_1 to contain the elements Q. where ¢ € S;_1 and cis such that Qo,...,Q.—1 € P
and Q. ¢ P. Now, let us define the elements {H ., },>0, 1 < s < N, by induction
on s. For s =1, hy = y € Alx,y], so Hy., € A[z,y]oo for n > 0. We set Hy., =
Hy,, =Y, € Alz,y|loo for n > 0. It is clear that (i) to (iii) are satisfied. Now, let
s, 2 < s < N, and suppose that Hy ., € (A[z,y]le)p are defined, for 1 < s’ < s,
n > 0, and satisfy the conditions. Let r, 1 < r < g; + 1 be such that i5_; €
{Br—1} U (nr—18,_1,8,). Therefore {Q,.,, }o<r'<rn>0 in (A[z,y]oo)p are defined,
and satisfy :
Qi € P(Alz,yloc)p for0<n<eB,,—1 and @r';eﬁ,./ ¢ P(Alz,y]oo) P

Hence, for every ! in the k-algebra k[{¢- }o<r<r U {hs_1}] generated by g¢,,
0< 1’ < r,and hs_1, and ior every n > 0, there exists a Eolynomial function L,
on {QT';H}T’<T,nzij/ S U{Hs—1in}n>eij., such that L, = L, mod PY.. Moreover,
given

l a,.’
(34) h= 5 € Oy,y, wherel € k[{g}o<r<rU{hs_1}], ¢= q.;

o<r'<r

being a,» € NU {0}, let ¢ = Y., areB,, so that Qy,...,Q._, € P, Q. & P
and set -

TT S’n/ ZC’ZC LA ,Zn C’@C’@C y e 7@"1 C

Hoi= | - (Q+)n+1 = i) € (Alz,yl)p
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where S,, is the polynomial in lemma 4.1 ; then H,, = H,, mod PSYE. From this and
(c) in lemma 3.1, which expresses hy as a polynomial in elements of the form (34),
the definition of {Hs.n}n>0 C (A2, y]eo)p follows. They satisfy (i) and, from the
expression in 3.1 (¢) and the induction hypothesis, it follows that (ii) holds and
that the first statement in (iii) and also (iv) are satisfied. In (iv), ¢ is the class
of iy, € Rj_1, hence ¢; # 0. The second statement in (iii) is obtained from the
expression in 3.1 (c) and the induction hypothesis, applying also (13) in lemma 3.1.
Finally, (v) can also be proved by induction, applying the same argument as before.

Let ALV :=k and, for 2 < j < 4, let
AL = kXX AL = A X Xepy 1) 25 < g+ 1,

n
where X7 := (X1;, ..., Xj_1;n)- Let {gj+}(jres be a system of transverse ge-
nerators for n : Y — Aﬁ with respect to E, as in 3.3 (ii). Even more, for 2 < j < 4,
let us consider the elements {hjys};\gl in 3.3 (iii) and set h19 :=¢1,0 = 1 € A. Let

T:={1,0}U{(j,s)/2<j<61<s<N,}

Then we have :

(Ad)oo, Pl T > 0, satis-

Lemma 4.3. There exist elements {ﬁj,s;n}(j,s)EI,nZO in O
fying : B B )
(i) Hjs.n = Hj5.n mod PYy, therefore Hj s, € Pl for 0 <n < eijs—1 and
_— d
HJ,S;Eij,s ¢ @E
(i1) We have Hy gy = X1y form > 0. For2 < j <§,letr, 1 <r <g;+1
be such that nj,r_lﬁjm;l <ijs SEM (resp.r=14f s =1 and i;1 = Bj,o)'
For (§',7") € Tjr, set Q1 = Hjr s n, n > 0 and, for (j',7") € JF,, let

T be the multiplicative system generated by Q Then, for n >

e(gj,r — Bjr) we have :

——1 .
Hj,s;n € H Tj’,r’ A]og [XjQEBj,7-—1+17 ) Xj;n—e(ﬁj,r—ﬁjm)]
G'r)eds,

Y] .
77T veﬁj’,r'

(if r =1, replace Xj.ep,,_,+1 by Xj0 in the previous equality).
(iii) For2<j <4, if s=1 then Fﬁs;n = Xjin forn>0. If s > 1 then :

FJQS;H € {@j,r’;n}r’grjl U {Fj,s—l;n}n<eisf1
n<ef .
for 0 <n < mazx {enjyr_lijyr_l,eijvs_l} and

Hjon=Ujsn Xj;nfe(ﬁw ~ gy T Pisn  forn>max {enj r—18;,-1,€ijs-1}

— 1 .
where Uj,s,ns Pj,sm € H(j’,r’)ejjfr Tj’,r’ A‘&T[Xj755;j,r—l+l’ s Xj;n—e(ﬁj’r—ﬁj‘r)—l]
and uj s 15 @ unit.

(iv) Sugﬁaose that 7,5 > 2. If iji,l =B, (resp. ijs—1 € (nj,rflﬁj,rflvﬁjﬂ'))

then Hj,s;enj,r_lﬁj,,,,l (resp. Hj sei;, ) is equal to

s s s
Qi gt gl
170§€5]‘,0 jvheﬁj,l ij%eﬁj,p
P Cj7sH Qj_179j—1+1§537‘_1,gj71+1
J,S @b;'o B B Qb;/’ - ’ L) @bj*lﬂ *bjfl,gjfl B
1,05e8; 0 JpeBj, 1,085 1,0 """ j—l,gj71;eﬁ_7~_1yg].71
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where H = (Q; .. B, )" (resp. H=Hj, 1i;. ) ¢js €k\{0} and
ps {05/} and Ps are as in (c.3) in 3.3.

(v) Set Gio:={H10n / 0<n<emy—1} and, for 2 <j <,
Gin ={Hjun /0<n<eijn—1} U ULy{Hjsn [/ €ijo1 <n<eijs—1}
Gjr = {Hj,sr71+1;n7/ enjr_1fj,—1 <n<eijs 41— 1} U

Uiy yolHjsm /[ eijo1 <n<eijs—1} for2<r<g;+1.

then, for2<j<d and1<r < g +1, we have

+1,1 _
<{Qj”“'m} ozvzr UAQjmn} s ) [I Ty A=
0<n<ep,s ~1 PPy SnEB (e edy,
7l i+1,1
= (G1oUGnU...Gi») ] Ty ALV
(3" r)ET],

Proof : Let us prove, by induction on j, 1 < j < §, the existence of {Hj s.n } .0z
n>0

satisfying the required conditions. For j = 1, (j,s) = (1,0), h10 == q10 = 21 €
Opi n(yo), 50, if we set Hi gy = Hiopm = Xin € O(Ad) pid for n > 0 then it

is clear that (i) to (iii) are satisfied. Now, let j, 2 < j < 5 and suppose that
Hjgm €0 pud are defined, for j < j, (j',s') € Z, n > 0, and satisfy the
E

(Ad)x7 e
conditions. Then the result follows applying lemma 4.2 to Y — Spec Alx1, z;],
where A = k[za,...,z;_1], and the following remark : since
qj’,g./+1 . .
lj/: ng+b fOr2Sj/S]—1
b i’.0 b i’ 1 j':gj/
Wo B - 1.9
we may take gj—l = Qj B, w}(J TETS 1y i and

Qj'vgj/"'l?egj',gjfﬂ

Lj’;O = b
—bjr 0 ) —=bjr1 =739

11045,3]",0 j,31§eﬂj’,l j/vngij/,gj,

From this, (i) to (iv) follow for j. This concludes the proof.

Remark 4.4. Let j, 2 < j <. Let {?jj’r}szzl in Bj_1[x1, ;] be as in remark
3.6, and Q; r.n € Bj_1[71,%j]00, m > 0, as in the beginning of this section. Arguing
by recurrence and applying (27), we obtain that, for 1 <r <g,; + 1,

2
-1 > Bj—l[l'lazj]oo
1

<<
OS’RSB]‘/’T‘/ -

(35) éj,r;n S <{@j’,r’;n}

foEO <n<e (N1 =By +...+(n1 — 1)) = e(ﬁj’r — Bjr). Set €(g;r) ==
e(ﬁj,r - ﬁj,’r‘)'

Analogously, for {g;, fJJBI, 4, € T;T 1 Tgo klva,...,vj_1,21,%;] (see re-
—1 .
mark 3.6), let {Q’;,.,}n>0 in [Tocs<ra T7; Jk[va, ..., vj_1,21,2;]s be obtained

applying lemma 4.2. Given 7, 0 < r < g; + 1, let {as}o<s<r—1 be nonnegative
integers such that

Y /G ) )
Zip =, H 4 s € klva,...,vj_1, 21, 25).
0<s<r—1
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and let Z ., € k[v2,...,vj—1,71,7;]o0[[t]], n > 0, as before. Arguing by recurrence
and applying (c) in lemma 3.1 it follows that

2
— ——1
(36) Z;,r;n < <{Q/J}s;n} 0sssr—1 > H T/j,S HU?’ Tt Uj*l’xl’mj]oo
0<n<p, .—1

0<s<r—1

for 0 <n <e(z),) :=ev(},) = Bjr)-

Now, with the assumptions and notation in lemma 4.3, given (j,r) € J, let
{aj (7, r)}(jlﬂ‘l)ejj*r be any sequence of nonnegative integers such that

. a;r 0 (4,r)
Zjr =45 H qj/,rf S ]{7[.’31,...71'3']
(4",m)ET} .

and let @;, = v(z;,) and let Z; ., € k[z1,...,Zj]e, 7 > 0, as before. Then we
have

({Zj’,r';n} @’ reT; ) H Sj_’,lT’ k[$1, PN ’m]]oo =
(

Ogngea_j/m/—l j,’rl)e‘jj*,r

ol -1
= {Qj/,’f‘/;”} (j,vrllejj,r H Tj/,’f‘/ k[.’lfl,...,,fl;j]oo
Ogngeﬁj/yrzfl (j/’rl)e‘-7j*,r
where S/ .+ is the multiplicative part generated by Zjt ptsediy - Moreover, arguing
by recurrence and applying (c.2) in prop. 3.3 and also the condition (20), it follows
that

2
(37) Zjﬂn;n c ({Zj/ﬂﬂ/m} G YT > H Sj_/,lr’ k[.Tl, e ,l’j]oo
1

0<n<ea;s ,— (j/,T'/)Ejj’t,.

for 0 < n < e(zj,) :=e (¥(2,) — Bjr). In fact, the proof is based on the one for
(36), taking into account condition (20).

Let G := U(jregG)r where the G;,’s are defined in lemma 4.3 (v). Note that
the cardinal of G, ; is em; and, for 2 < j <,

(U i) = e Bt (e Bra—emgaBin) oot (e By — € Mg, B
=e(Bja+ (B2 = Bia) + -+ (Bjg+1 = Big,)) =€ Bjge1 = e my.
Hence, applying (6) and (30) we obtain

4G =¢ (ap +1) =ee (kp(A?) 4+ 1).

Proposition 4.5. We have
d
Ple Ouypag = (9) Oy pi
moreover, there exists L € O(Ad)m\Pﬁg such that Pﬁ; (Oway ) =(9) (Owuey )L

Besides, the images of the elements of G in Pfg/(Pfg)z o pad are inde-
T eE

(A) oo
pendent, hence define a basis as /Q(Pf;)—vector space. In particular, we obtain
dimO(M)w’PAg =tG =e (ag +1).
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Proof : First note that, by (i) in lemma 4.3, we have G C Pfg. Let us prove that
(G) O(Ad) pud 18 @ prime ideal. By (ii) in lemma 4.3, for (j,7) € J, we have
ot eE

—1 .
gjﬂ" - H Tj’,r’ A&T[Xj;eﬁj,rfl“rl’ oo 7Xj;6ﬂj,7~*1]
(4',r")eT;,
(if » = 0 or 1, replace Xj.cp,, ,+1 by Xj;0 and set By := my). Then, for each j,
2 < j <9, there exists M; € N such that

— — ; j ‘
Qjr . € H T k[ Xy, ..., X3 ] forevery (§',17) € Ty 14
G rETS
and, if we set
Bl = I 7 kX X5
(j/,T‘/)Ejj*,ngrl
then
gj:= U Gy < By
(4"7")€T4,9;+1U{(d:95+1)}

(in fact, M; can be taken to be equal to em;). Set P; := Bl N Pé*];. We will
prove, by induction on j, 2 < j < §, that there exists L; € B \ P; such that
the ring (BL)1,/(G;) is a domain. For j = 2, we have hyo = 1, thus Gio =
{X1:0,- -+ X1;em, -1} and, applying remark 3.5 and (iii) in lemma 4.3 to Qs .,
enjr—1By, 1 < n < efy, and (iv) in lemma 4.3 to @2,7“;65“’ we obtain that
B2, / (G) is isomorphic to

(52_11‘7 [y2,0a Yz2.2..., y2,g2+1} / JZ) [{Xl;n}em1<n§M2 U {X2;n}662,92+1<n§M2]

where the image of y2 ., 1 <7 < ga + 1 (resp. y2,0) is Q, rieBy (resp. X1 em,), J2

is the ideal in th. 3.8 (iv) and S, is the multiplicative part generated by {ya,,}92,
therefore B2 /(G2) is a domain by th. 3.8.

Let j, 3 < j < 4, and suppose that the result holds for j — 1. Applying (iii)
in lemma 4.3 to Hj s, for eijs—1 < n < eij, — 1 (resp. enj,r,lﬂj,Pl <n<
eljs, 41— 1)if 8,1 +2 < s <s, (resp. s = s,—1 + 1) and applying (iv) in 4.3 to
Hjgei, ., (resp. Fj,s;enmfl?j,r,l)’ we obtain that there exists an étale extension
BJ_ of BI, c~0ntai~ning the image of 5};5, i.e.Nthe contraction of PY; to B is a
prime ideal P; # BI_, and such that B /(G;)BZ, is isomorphic to a localization of

(Sj_le_ﬂyj,l, s Yig ] / Jj) [{Xj;n}e/ﬁj,gj+1<n§Mj]

where D;_; is a domain which is an étale extension of BI=1/(G;_1), S; is the mul-

tiplicative part generated by {y;,};L, and J; is an ideal generated by {y; 7" —
~ bieo by by rr—1y s . ~ ~
Cir Yo YTy 97, being ¢ € D;—1 and y1,0 = X1.em, € Dj—1. Here

yj,r is identified with @, ,..5 . Applying th. 3.8 (iv) we conclude that Bi/(G;)is a
TR ~ . ~ .

domain. Since the morphism (BL))p,/(G;) — (B{)O)Igj/(gj)Bgo is local étale, hence

an inclusion of local rings, we conclude that (BZ,)p,/(G;) is a domain. Therefore,

there exists L; € B, \ P; such that (B )r,/(G;) is a domain (recall that B7, is

the localization of a finitely generated k-algebra).

In particular, it follows that there exists Ls € B, \ Ps C Oy \Pfg such
that the ideal generated by G in (H(j’r)ej* T;Tl Oady.. )L, 18 a prime ideal. From
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this it follows that there exists L € Ogay_ \Pﬁ; such that (G) (O(aay_ )L is a prime

.
jvr;egjﬂ‘
{aj+}jryeq-- Hence (G) O(Ad)w,PAg is a prime ideal.

ideal, in fact, we may take L = Lg - H(j e Q for some positive integers

Let us denote by P’ the prime ideal of Oua such that (G) O(Ad)w,Pﬁg

P’ O(Ad) prd - We will next prove that P = Pfg. In fact, with the notation in 2.7
oo e
and 3.7, let PZ . be the generic point of Z& and let Pﬁ;} be the image of PZ ., by

¢
the morphism Z,, — (A%).. Since ¢ is the ramification index of Oy.g over Oz p,

PZeF is the image of ng by 0o : Yoo = Zso and hence Pfjm = Pfg. Now, by the

(&
definition of G, and since P’ C Pﬁ;, we have

ij,r <vps (qj,r) < V(Qj,r) - QBj,r for (j,’f') €J.

Therefore vp/(g;,) = €f3;, for every (j,r) € J and hence

dj,9;+1
vp 7,95

vy b | = 0 for2<j<¢ and vp/(z) = Z ajre B, =ee
2,0 -+ 9j,g; (3" e
(recall (29) in 3.7). From this it follows that the morphism of k-algebras
hgg, : Ox,p, — k(P)][t]] induced by the arc hp: extends to Oz p. That is,
hp: : Spec k(P')[[t]] — X lifts to (Z, F'), more precisely, since vp/(z) = ee, this
lifting defines a point in Z<F. Therefore P’ € {PA%.}, hence we conclude that
P’ = Plp = Plp.

Finally, since G = e ¢ (kr(A9) + 1), the end of the proof follows from prop. 2.6
and equality (3), which is in fact lemma 3.4 in [DL].

Remark 4.6. Alternatively, in the proof of prop. 4.5 it can be proved by in-
duction on j, 2 < j < 4§, and applying (iii) and (iv) in lemma 4.3, not only that
(G;) is a prime ideal of B, but also that the elements in G; are independent in
(G;) / (G;)?. Then, lemma 3.4 in [DL] can be recovered (at least for X smooth)
from propositions 4.5 and 2.6. Therefore, prop. 4.5 can be seen as a new version of
lemma 3.4 in [DL], which is in fact the change of variables theorem in the motivic
integration.

Definition 4.7. Let n : Y — A¢ be a k-morphism dominant and generically
finite, where Y is a nonsingular k-scheme, let E be a divisor on Y and let e > 1.
Let {qj,r}(jr)es be a system of transverse generators for n with respect to £ (def.

3.4), and let {Q; .., }(j,r)es,n>0 defined as in lemma 4.3. We call

Q:= {ij;n}(j,r)ej, enj r—18 <n<eB; ,—1

J,r—1

a regular system of parameters of O(Ad) pud associated to {qjr}(jres-
ot e B

In fact, note that by prop. 4.5 (see also lemma 4.3 (v)), O(Ad) ped 18 a regular
T e B

local ring of dimension the cardinal of Q whose maximal ideal Pﬁ; (’)( ady. prd 18
oot e E

generated by Q.

Theorem 4.8. Assume that char k = 0. Let X be a nonsingular k-scheme, let v
be a divisorial valuation on an irreducible component Xy of X, and let e € N. Let
w:Y — Xy be a proper and birational morphism such that the center of v on'Y is
a divisor E, and letn : Y — Az be the composition of m with an étale morphism



25

Xo — AY, where d = dim Xy. Let Q = {7]»)””}@#)6\7, 0<n<eB, -1 be a regular

system of parameters of O pad associated to a system of transverse generators
" elE

(A?) oo
for m with respect to E. Then Q is also a regular system of parameters of (’)XWP%,

that is

Pe)gj OXOO,P;; = ({@j,r;n}(j,r)ej, enj,r_fj,,,.,lgngeﬁj,,,,q) OXOO,PJ‘E-
and OXooJi’% s a reqular local ring of dimension
dim Oy px =fQ=¢e (kg +1).
where kg is the discrepancy of X with respect to E.

Moreover, there exist elements z;, € Ox. p,, (j,7) € J, and L € Ox__ \ P2,
such that

(38) POx )L = ({Zjrn}Gimesosn<es,,) (Ox.)L
where @;, = v(zj,) for (j,r) € J.

Proof : Recall that PY; is the generic point of Y (see 2.7) and that P2, (resp.
Pfg) is the image of P); by 7o (resp. nood). By prop. 2.5 (see also corol. 2.9) it
suffices to prove the result for the point P4, in (A%).,. Then it follows from prop.
4.5. In fact, for the first assertion note that in this case kg(A¢) is equal to the
discrepancy kg of X with respect to E. For the second assertion, let {q;,}(j,rnes
be a system of transverse generators for n with respect to E. For each (j,r) € J
there exists a sequence of nonnegative integers {a;: (j,7)}/,r)e T such that

ajr r (G,r)
Zjr = Qo H 4/ € Opd p,-
(j/%r/)EJj*,r

(see prop. 3.3). Then, from prop. 4.5, (38) follows. This concludes the proof.

Remark 4.9. Let P be any stable point of X, and suppose that X is non-
singular at the center Py of P and that P, is not the generic point of X. There
exists a birational and proper morphism 7 : ¥ — X such that the center of vp
on Y is a divisor E, and e € N such that vp = evg ([Re2], (vii) in prop. 3.7). Let
PY €Y., whose image by 7 is P, then we have dim Ox..p = ekg +dim Oy, pv
(corol. 2.9). Since PY D P}, and P D P&, with the notation in theorem 4.8
and prop. 3.3, {Uy,...,Uc_1} is part of a regular system of parameters of Oy_ pv
and Q = {@j,r;n}(jm)ej, 0<n<eB, 1 is part of a regular system of parameters of
Ox_..p- Moreover, suppose that {Uy,...,Ue_1,G1,...,Gs} is a regular system of
parameters of Oy, pv. To describe a regular system of parameters of Ox_ p we
add to Q the following elements : By lemma 4.1 and since 7 is birational, for each
y € Oy and for each n, there exists Y, € O x_.,p such that

Y, =Y, modP.
Then, let G; € Ox_..p, 1 <1 < s be obtained from G; by replacing U,, and V},,, by
U, andV ., for n >0, 2 < j < d. We have

G, =G; modP.

and QU {Gj,...,Gs} is a regular system of parameters of Ox__ p.

Now let us consider a reduced separated k-scheme of finite type X and a divisorial
valuation v on X centered on Sing X. There exists a resolution of singularities
m:Y — X (ie. w is a proper, birational k-morphism, with Y smooth, such that
the induced morphism Y \ 7=1(Sing X) — X \ Sing X is an isomorphism) such
that the center of v on Y is a divisor E.
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Corollary 4.10. Assume that char k = 0. Let X be a reduced separated k-scheme
of finite type, let v be a divisorial valuation on an irreducible component Xy of X
centered on Sing X and let e € N. Let 1 : Y — X be a resolution of singualri-
ties such that the center of v on'Y is a divisor E, and let n : Y — Ag be the
composition of ™ with a general projection pu : Xg — A%, where d = dim Xg. Let
Q = {Qj,r;n}(j,r)ej, 0<n<cB, 1 be a regular system of parameters of O(Ad)x,Pjg
associated to a system of transverse generators for n with respect to E. Then Q s
a system of coordinates of (X0, PX;), that is,

« _
PeEOXOO,Pj; = ({Qjmn}(j,r)ej, en,-mfl?j,r,lgnéeﬁj,r—l) OXoo,Pff%'

Therefore

= embdim O(x_),..p.r < 1Q=¢ (EE +1).

embdim O(x )., P

where EE is the Mather discrepancy of X with respect to E.
Moreover, there exist elements z1,...zs € Ox,p, and L € Ox_ \ Pe)]g such that

PL(Ox ) = (Z10y-- Zrcar—1y -+ Zs:0y - - Zsiew.—1) (Ox.)1
where @; = v(z;) for 1 <i<s.

Proof : We may suppose that 7 : ¥ — X dominates the Nash blowing up of
X. We may suppose that X is affine, let X C AY = Spec k[y1,...,yn]. Then, a
general projection p: X C AN — A¢, y = (w1,...,1q) satisfies

ordg 7 (dxy A ... Ndxg) = k.
Let Pf; be the image of Pg}z by 7)so- Then the result follows from prop. 4.5 applied
to Pﬁg and prop. 4.5 (iii) in [Re2] applied to p: X — A¢.
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