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ABSTRACT

The document binarization is a fundamental processing
step toward Optical Character Recognition (OCR). It aims to
separate the foreground text from the document background.
In this article, we propose a novel binarization technique com-
bining local and global approaches using the clustering algo-
rithm Kmeans. The proposed Hybrid Binarization, based on
Kmeans (HBK), performs a robust binarization on scanned
documents. According to several experiments, we demon-
strate that the HBK method improves the binarization quality
while minimizing the amount of distortion. Moreover, it out-
performs several well-known state of the art methods in the
OCR evaluation.

Index Terms— Scanned documents, binarization, Kmeans,
OCR

1. INTRODUCTION

Document binarization is an important pre-processing for im-
age analysis especially Optical Character Recognition (OCR)
[1]. It tries to separate the foreground text from the back-
ground. In general, approaches that deal with binarization are
categorized in two main classes: global and local [2]. Prin-
cipally, global methods are based on histogram, classification
and clustering approaches. In the histogram category, Rosen-
feld and Kak [3] select one threshold from the histogram of
2D document. They assume that gray values of each object
are located around each histogram peak. Another well-known
method is the Iterative Global Thresholding (IGT) [4]. It is
composed of two phases executed iteratively. Firstly, the av-
erage color of the image is computed and subtracted from the
image. Then, a histogram stretching is performed, in such
way that the remaining pixels take up all of the gray-scale
tones. The main drawback of histogram methods is the in-
accurate detection of peaks caused by noise [5]. In the clas-
sification approaches, Otsu [6] is a very popular technique
[7]. It finds an automatic threshold that reduces the inter-
class variance between foreground and background. Many
clustering methods are reported in the binarization litterature.
The Fuzzy C-means (FCM) [8] is one of the most efficient
algorithms [2]. It sets the image pixels into the correspondent

foreground or background cluster. The membership degree of
each pixel is computed according to a relatively complex fash-
ion. Less complex [9], the Kmeans algorithm [10] clusters
pixels according to a distance computation. According to the
litterature, Kmeans is a simple and flexible clustering method
[11] that can be employed in binarization [2]. In general,
global binarization methods are efficient when they are ap-
plied to documents with uniform illumination. However, de-
graded documents, including stains, and uneven contrast, are
not well processed by global methods [12]. To overcome this
problem, local methods are used to binarize degraded docu-
ments. For example, Niblack [13] computes a threshold based
on the mean and the standard deviation of small neighborhood
around each pixel. Actually, the Niblack method identifies the
text regions correctly as foreground, however, it tends to pro-
duce a large amount of noise in non-text regions. Sauvola
[14] improves Niblack by using the dynamic range of im-
age gray-value standard deviation. In case of low separation
between foreground and background, the result is degraded
significantly. Wolf [15] outperforms Sauvola by maximizing
the local contrast. However, performance degradation arises
if there is a sharp change in background gray values across
the image. Recently, Sauvola Msy,,, [16] was proposed as an
improvement to Sauvola. It begins with data sub-sampling.
Then, binarization is performed at different scales. It should
recognize that, local methods provide an adaptive solution
since the binarization decision varies according to the prop-
erties of each document area. Local methods may introduce
some noise like artefacts due to the local areas treatments.
To improve the binarization quality, some recent works com-
bine local and global approaches [2]. They perform an effi-
cient local binarization while reducing the noise as the global
one do [17]. For example, Gabara [18] uses local threshold-
ing technique based on global edge detection. Hybrid IGT
(HIGT) [19] applies the IGT global binarization [4] on the
whole image then, reapplies it only on noisy areas. In most
cases, the hybrid methods improve binarization quality on de-
graded documents.

In this context, we propose in this paper an adaptive
method which we term Hybrid binarization based on Kmeans
(HBK) to binarize scanned documents. Our method performs
the Kmeans algorithm on local areas to get an improved re-



sult. Then, it employs a global technique to enhance local
binarization. Performed experiments show that HBK is a ro-
bust binarization method. The obtained binarization allow to
achieve higher OCR quality. The organization of the paper is
shown as follow. Firstly, the Kmeans algorithm is presented
in Section 2. We describe our proposed HBK method in Sec-
tion 3. Next, in Section 4, experimental results are discussed.
Finally, conclusion is drawn in Section 5.

2. KMEANS CLUSTERING

Kmeans [10] is one of the most popular unsupervised clus-
tering algorithms, mainly used for data mining [20] and im-
age processing [21]. Regarding the image processing context,
Kmeans aims to partition all pixels in the image into & distinct
clusters. Each cluster is represented by a single centroid.
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Fig. 1. The process flow of Kmeans

The Kmeans process flow is shown in Figure 1 and de-
scribed as follow. In the first stage, the centroids number and
values are initialized depending on the application. We note
by C = {Cy,C1,...,C,...,Cr_1} the set of k input cen-
troids. Afterward, the distances between centroids and pix-
els are computed to measure their similarity. For better clus-
tering quality, the Euclidean distance is generally employed
[22]. Given a centroid C; and a pixel P; the related Euclidean
distance is defined as:

d(C;, Py) = \J(CF = PR)2 + (CF = PE)2 + (CP - PP)?

ey
Where C; and P; are represented in the RGB color space by:
Ci=(CE,CE,CE)T and P; = (Pf,PF,PP)T, know-
ing that ¢ € [0,k — 1], j € [0,Np — 1] and Np is the
total number of pixels in the image. Next, the labeling
stage sets the membership of pixels to the closest cen-
troids according to the minimum computed distances. In
addition, the pixel values and number in each cluster ¢ are

added respectively to the corresponding accumulator Accu =
{Accuy, Accuy, ..., Accus, ..., Accuy,—1 }, and counter Count
= {County,County,...,Count,, ...,County_1} variable
sets, with Accu; = (Accul®, Accu$, AccuP)T. Finally, in
the k centroid updating stage, each centroid C;, i € [0,k — 1]
is re-estimated by computing the average assigned pixels to
the corresponding cluster . This process is done based-on the
previous computed accumulators and counters. The distance
computation, the labeling and the centroid updating stages
are repeated until overall pixels are firmly assigned and cen-
troid are no longer being changed. Before each iteration,
accumulators and counters are reset to zero. In next section,
we describe our proposal which is based fundamentally on
the Kmeans algorithm.

3. PROPOSED METHOD : HYBRID BINARIZATION
BASED ON KMEANS (HBK)

As a hybrid approach, our proposed binarization method per-
forms higher local binarization robustness and reduces the
possible appearing artifacts by using global correctness. In
the rest of the paper we call this method HBK. Global and
local phases of the HBK method are shown in Figure 2.
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Fig. 2. The HBK method: global and local phases

Firstly, in the local phase, the input image (scanned docu-
ment) is divided into N blocks. Then, the Kmeans algorithm
is applied in each block. Afterward, the global phase gathers
the obtained Kmeans results from each block iteratively and
performs a correctness loop until convergence. More details
of the HBK method are described in Algorithm 1.

Considering the binarization context, two initial centroids
are employed. We note by Cg = {Cgo,Cs1} the global
centroid set. We initialize C'go and C'gy with black and white



Algorithm 1 HBK(Img)
1: Cao < (0,0,0)T, Cay « (255,255, 255)7
2: while Cg;(ite) # Cg;(ite — 1),i € [O, 1] do
3. forbl € [0,Nb— 1] do

4 Kmeans(bl,Cq)

5: Reset(Accug, Countg)
6

7

8

9

fori e [0,1] do
Accug; + Accugi + Accupy;
Countg; + Countg; + Country ;
end for
10:  end for
11: Cgy + Accuas

. Countg;’
12: end while

Eq.2

iel0,1] Eq.3

values. Thus, Cgo = (0,0,0)T and Cgy = (255,255, 255)7
design respectively the background and the foreground clus-
ters. The document is divided into blocks of equal sizes.
Each block includes two local centroids given the set C'f, =
{(Cr0,0,Cr0,1),(Cr1,0,Cr1,1); - Crisis -y (CLNb—1,0,
Crne-1,1)}, with Crui = (Criy;, Cfy iy Oy )" given
that ¢ € [0,1], bl € [0, Nb — 1]. In the beginning, each
local centroid is initialized with the corresponding global
one: CLbl,O = Cgo and CLbl,l = Cqg1,bl € [O,Nb — 1]. In
addition, each block has two local accumulators and counters
given respectively by the sets Accuy, and Countp:

Accur, = {(Accuro,0, Accuro,1), (Accur o, Accurpia),

veey AccuLbl,i, eeey (ACC’LLLNb_LQ, AccuLNb_Ll)}and

Countr, = {(Countrg,o, Countrp 1), (Countr o,

Countrii),...,Countrp i, ..., (Countnp—1,0,

Countrnp-1,1)}

with Accurp,; = (Accufbl’i,Accufblﬁi,Accufbl’i)T where
i€ [0,1] and bl € [0, Nb — 1].

As stated in line 4, the Kmeans algorithm is applied across
all blocks in the scanned document. When the Kmeans pro-
cess on each block converges, all the local accumulators are
gathered into a global one: Accug = {Accugo, Accugt}
with, Accugi = (Accul;, Accu&,, AccuB)T,i € [0,1].
Line 7 states for the global accumulators compute. This pro-
cess is performed by one addition per each color component
as stated in Eq.2:

R R
Accug,; + Accupy, ;

Accugi = | Accu§, + Accufblﬂv e [0,1], ()

B B
Accug,; + Accury ;

bl € [0, Nb — 1]

Similarly, local counters of each block are accumulated
into global ones given by Countg = {Countgo, Countg }.
Finally, global accumulators Accu are devided by the corre-
spondent counters C'ount to compute the Cz; new centroids
as shown in Eq.3:

R Accugi
CG’L' Countg;
Cai=| c¢ |=| Awd | ic0,1] @3
v Gi Countg; ’ ’
B Accugv’
CGi Countc;i

If the global convergence is reached, the HBK algorithm
stops, else it reiterates and local centroids of each block are
reset with the computed global ones C¢ and Cg1. In the
next section, we demonstrate that our method gives satisfying
binarization quality thanks to the local approach.

4. EXPERIMENTAL RESULTS

In the following subsections, we present the employed
dataset. Then, we demonstrate the efficiency of our pro-
posed HBK method while reducing the distortion criterion.
Finally, we compare our proposal to several state of the art
methods in term of OCR evaluation.

4.1. The LRDE Document Binarization Dataset (LRDE-
DBD)

In our experiments, we evaluate our HBK method on the
LRDE-DBD! database [16]. It is composed of French text
documents extracted from “Le Nouvel Observateur 2’ mag-
azine. The provided dataset is composed of images with
A4 format and 300-dpi resolution. Evaluation tests were
performed on 125 scanned documents.

4.2. Distortion criterion-based evaluation

In general, to evaluate the efficiency of Kmeans clustering,
the sum of cluster distortions is usually employed as a perfor-
mance indicator [23, 24]. Given an image with Np pixels, we
note by % (p;) the Kmeans associated centroid of one pixel
p;, with ¢ € [0, Np — 1]. The distortion criterion measure is
defined by Eq.4:

1
distortion = — pi — € (ps)|? 4
Xy 2l )

ICopyright(c) 2012. EPITA and Development Laboratory (LRDE)
with permission from Le Nouvel Observateur. LRDE-DBD is avail-
able online on the web site: http //www.lrde.epita.fr/cgi —
bin/twiki/view/Olena/DatasetD BD

2Le Nouvel Observateur. Issue 2402, November 18-24, 2010 and avail-
able on the website: http : //tempsreel.nouvelobs.com



For comparison reason, we implement a simple Kmeans
binarization method that we term Global Binarization Kmeans
(GBK). In this method, a single Kmeans is performed over
the whole image. Keeping the goal of the binarization con-
text, initial centroids of both GBK and HBK are set to the
RGB values Cgo = (0,0,0)7 and Cg1 = (255, 255,255)T.
To evaluate the clustering performances of these two meth-
ods, we measure the distortion criterion of GBK and HBK
binarization on the LRDE-DBD database.
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Fig. 3. Accumulated distortion computed from the obtained
binarization results of GBK and HBK methods

Figure 3 shows the accumulated distortions of the two
compared binarization methods on 125 scanned documents.
The obtained result demonstrates that the HBK improves
nearly 3x the distortion measure compared to GBK. Indeed,
the treatment of Kmeans on small areas, gives local optimal
distortions that minimizes the global one. We can come to
the conclusion that our approach improves the binarization
quality while reducing distortion in employed Kmeans clus-
tering. In the next section, we perform an OCR evaluation to
measure the HBK binarization efficiency.

4.3. OCR-based evaluation

Optical Character Recognition (OCR) is a process by which
text characters contained in an image can be recognized. The
binarization quality has a direct influence on the OCR result.
In this context, the Tesseract 3.02 OCR [25] is used. Ac-
tually, we compare the character recognition rate of our HBK
approach against seven well-ranked binarization methods [16,
14, 15, 6, 13, 26, 27] on the LRDE-DBD documents. Table
1 shows the OCR recognition rate of the evaluated methods.
The first observation to be noted from this table, is that the
OCR results are very close: The recent Sauvola Msg, gives
an acceptable OCR rate by scoring 89% of accuracy. It en-
sures well text binarization but in some document areas, arti-
facts may appear leading to character miss-recognition. In the
other side, the proposed HBK method gives the best OCR rate
scoring 91% of accuracy thanks to its proper binarization re-

Table 1. OCR Accuracy evaluation of HBK and seven well-
ranked binarization methods.

Methods Images | OCR Accuracy (%)
HBK Scanned 91
Sauvola Ms;,,; [16] | Scanned 89
Wolf [15] Scanned 88
Sauvola [14] Scanned 87
Lelore [26] Scanned 85
Otsu [6] Scanned 84
Niblack [13] Scanned 80
TMMS [27] Scanned 73

sults. Indeed, in the HBK method, the local binarization gives
robust binarization quality and the global approach eliminates
the artifacts generated by the local approach.

5. CONCLUSION

Binarization is an important pre-processing step for optical
character recognition (OCR). In this paper, we proposed a
new hybrid binarization method based on the Kmeans clus-
tering algorithm. We show that HBK performs robust bina-
rization while minimizing the amount of distortion. Several
experiments are performed on real magazine documents. The
proposed HBK method outperforms several state of the art
methods in the OCR-based evaluation while scoring 91% of
accuracy. In future work, we intend to adapt the block sizes
with kind of text in order to ensure multiscale binarization. In
the other side, we note that the HBK method is highly adapted
to parallel processing thanks to the no-dependency between
image blocks. For this, we plan to use a parallel architecture
in order to accelerate the HBK execution time.
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