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The document binarization is a fundamental processing step toward Optical Character Recognition (OCR). It aims to separate the foreground text from the document background. In this article, we propose a novel binarization technique combining local and global approaches using the clustering algorithm Kmeans. The proposed Hybrid Binarization, based on Kmeans (HBK), performs a robust binarization on scanned documents. According to several experiments, we demonstrate that the HBK method improves the binarization quality while minimizing the amount of distortion. Moreover, it outperforms several well-known state of the art methods in the OCR evaluation.

INTRODUCTION

Document binarization is an important pre-processing for image analysis especially Optical Character Recognition (OCR) [START_REF] Xiu | Whole-Book Recognition, Pattern Analysis and Machine Intelligence[END_REF]. It tries to separate the foreground text from the background. In general, approaches that deal with binarization are categorized in two main classes: global and local [START_REF] Stathis | An evaluation technique for binarization algorithms[END_REF]. Principally, global methods are based on histogram, classification and clustering approaches. In the histogram category, Rosenfeld and Kak [START_REF] Rosenfeld | Digital Picture Processing[END_REF] select one threshold from the histogram of 2D document. They assume that gray values of each object are located around each histogram peak. Another well-known method is the Iterative Global Thresholding (IGT) [START_REF] Kavallieratou | A binarization algorithm specialized on document images and photos[END_REF]. It is composed of two phases executed iteratively. Firstly, the average color of the image is computed and subtracted from the image. Then, a histogram stretching is performed, in such way that the remaining pixels take up all of the gray-scale tones. The main drawback of histogram methods is the inaccurate detection of peaks caused by noise [START_REF] Glasbey | An Analysis of histogram-based thresholding algorithm, Graph[END_REF]. In the classification approaches, Otsu [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] is a very popular technique [START_REF] Martn | Analysis tools for gray level histograms[END_REF]. It finds an automatic threshold that reduces the interclass variance between foreground and background. Many clustering methods are reported in the binarization litterature. The Fuzzy C-means (FCM) [START_REF] Duda | Pattern Classification and Scene Analysis[END_REF] is one of the most efficient algorithms [START_REF] Stathis | An evaluation technique for binarization algorithms[END_REF]. It sets the image pixels into the correspondent foreground or background cluster. The membership degree of each pixel is computed according to a relatively complex fashion. Less complex [START_REF] Ghosh | Comparative Analysis of K-Means and Fuzzy C-Means Algorithms[END_REF], the Kmeans algorithm [START_REF] Lloyd | Least square quantization in PCM[END_REF] clusters pixels according to a distance computation. According to the litterature, Kmeans is a simple and flexible clustering method [START_REF] Pritesh | A Survey on K-mean Clustering and Particle Swarm Optimization[END_REF] that can be employed in binarization [START_REF] Stathis | An evaluation technique for binarization algorithms[END_REF]. In general, global binarization methods are efficient when they are applied to documents with uniform illumination. However, degraded documents, including stains, and uneven contrast, are not well processed by global methods [START_REF] Valizadeh | An adaptive water flow model for binarization of degraded document images[END_REF]. To overcome this problem, local methods are used to binarize degraded documents. For example, Niblack [START_REF] Niblack | An Introduction to Digital Image Processing[END_REF] computes a threshold based on the mean and the standard deviation of small neighborhood around each pixel. Actually, the Niblack method identifies the text regions correctly as foreground, however, it tends to produce a large amount of noise in non-text regions. Sauvola [START_REF] Sauvola | Adaptive document image binarization[END_REF] improves Niblack by using the dynamic range of image gray-value standard deviation. In case of low separation between foreground and background, the result is degraded significantly. Wolf [START_REF] Wolf | Extraction and recognition of artificial text in multimedia documents[END_REF] outperforms Sauvola by maximizing the local contrast. However, performance degradation arises if there is a sharp change in background gray values across the image. Recently, Sauvola Ms kx [START_REF] Lazzara | Efficient Multiscale Sauvolas Binarization[END_REF] was proposed as an improvement to Sauvola. It begins with data sub-sampling. Then, binarization is performed at different scales. It should recognize that, local methods provide an adaptive solution since the binarization decision varies according to the properties of each document area. Local methods may introduce some noise like artefacts due to the local areas treatments. To improve the binarization quality, some recent works combine local and global approaches [START_REF] Stathis | An evaluation technique for binarization algorithms[END_REF]. They perform an efficient local binarization while reducing the noise as the global one do [START_REF] Greenleaf | Local-Global Image Binarization reconstructing the cellular structure of polymer foam materials[END_REF]. For example, Gabara [START_REF] Gabarra | Combining global and local threshold to binarize document of images[END_REF] uses local thresholding technique based on global edge detection. Hybrid IGT (HIGT) [START_REF] Sokratis | A hybrid binarization technique for document images[END_REF] applies the IGT global binarization [START_REF] Kavallieratou | A binarization algorithm specialized on document images and photos[END_REF] on the whole image then, reapplies it only on noisy areas. In most cases, the hybrid methods improve binarization quality on degraded documents.

In this context, we propose in this paper an adaptive method which we term Hybrid binarization based on Kmeans (HBK) to binarize scanned documents. Our method performs the Kmeans algorithm on local areas to get an improved re-sult. Then, it employs a global technique to enhance local binarization. Performed experiments show that HBK is a robust binarization method. The obtained binarization allow to achieve higher OCR quality. The organization of the paper is shown as follow. Firstly, the Kmeans algorithm is presented in Section 2. We describe our proposed HBK method in Section 3. Next, in Section 4, experimental results are discussed. Finally, conclusion is drawn in Section 5.

KMEANS CLUSTERING

Kmeans [START_REF] Lloyd | Least square quantization in PCM[END_REF] is one of the most popular unsupervised clustering algorithms, mainly used for data mining [START_REF] Singh | Evolving limitations in Kmeans algorithm in data mining and their removal[END_REF] and image processing [START_REF] Isa | Adaptive fuzzy moving Kmeans clustering algorithm for image segmentation[END_REF]. Regarding the image processing context, Kmeans aims to partition all pixels in the image into k distinct clusters. Each cluster is represented by a single centroid.

Fig. 1. The process flow of Kmeans

The Kmeans process flow is shown in Figure 1 and described as follow. In the first stage, the centroids number and values are initialized depending on the application. We note by C = {C 0 , C 1 , ..., C i , ..., C k-1 } the set of k input centroids. Afterward, the distances between centroids and pixels are computed to measure their similarity. For better clustering quality, the Euclidean distance is generally employed [START_REF] Cha | Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions[END_REF]. Given a centroid C i and a pixel P j the related Euclidean distance is defined as:

d(C i , P j ) = (C R i -P R j ) 2 + (C G i -P G j ) 2 + (C B i -P B j ) 2 (1 
) Where C i and P j are represented in the RGB color space by:

C i = (C R i , C G i , C B i ) T and P j = (P R j , P G j , P B j ) T , know- ing that i ∈ [0, k -1], j ∈ [0, N p -1]
and N p is the total number of pixels in the image. Next, the labeling stage sets the membership of pixels to the closest centroids according to the minimum computed distances. In addition, the pixel values and number in each cluster i are added respectively to the corresponding accumulator Accu = {Accu 0 , Accu 1 , ..., Accu i , ..., Accu k-1 }, and counter Count = {Count 0 , Count 1 , ..., Count i , ..., Count k-1 } variable sets, with

Accu i = (Accu R i , Accu G i , Accu B i ) T . Finally, in the k centroid updating stage, each centroid C i , i ∈ [0, k -1]
is re-estimated by computing the average assigned pixels to the corresponding cluster i. This process is done based-on the previous computed accumulators and counters. The distance computation, the labeling and the centroid updating stages are repeated until overall pixels are firmly assigned and centroid are no longer being changed. Before each iteration, accumulators and counters are reset to zero. In next section, we describe our proposal which is based fundamentally on the Kmeans algorithm.

PROPOSED METHOD : HYBRID BINARIZATION BASED ON KMEANS (HBK)

As a hybrid approach, our proposed binarization method performs higher local binarization robustness and reduces the possible appearing artifacts by using global correctness. In the rest of the paper we call this method HBK. Global and local phases of the HBK method are shown in Figure 2. Considering the binarization context, two initial centroids are employed. We note by C G = {C G0 , C G1 } the global centroid set. We initialize C G0 and C G1 with black and white Algorithm 1 HBK(Img)

1: C G0 ← (0, 0, 0) T , C G1 ← (255, 255, 255) T 2: while C Gi (ite) = C Gi (ite -1), i ∈ [0, 1] do 3: for bl ∈ [0, N b -1] do 4: Kmeans(bl, C G ) 5: Reset(Accu G , Count G ) 6: for i ∈ [0, 1] do 7: Accu Gi ← Accu Gi + Accu Lbl,i
Eq.2 8:

Count Gi ← Count Gi + Count Lbl,i 9:
end for 10:

end for 11:

C Gi ← Accu Gi Count Gi , i ∈ [0, 1]
Eq.3 12: end while values. Thus, C G0 = (0, 0, 0) T and C G1 = (255, 255, 255) T design respectively the background and the foreground clusters. The document is divided into blocks of equal sizes. Each block includes two local centroids given the set

C L = {(C L0,0 , C L0,1 ), (C L1,0 , C L1,1 ), ..., C Lbl,i , ..., (C LN b-1,0 , C LN b-1,1 )}, with C Lbl,i = (C R Lbl,i , C G Lbl,i , C B Lbl,i ) T given that i ∈ [0, 1], bl ∈ [0, N b -1].
In the beginning, each local centroid is initialized with the corresponding global one:

C Lbl,0 = C G0 and C Lbl,1 = C G1 , bl ∈ [0, N b -1].
In addition, each block has two local accumulators and counters given respectively by the sets Accu L and Count L : Accu L = {(Accu L0,0 , Accu L0,1 ), (Accu L1,0 , Accu L1,1 ), ..., Accu Lbl,i , ..., (Accu LN b-1,0 , Accu LN b-1,1 )}and

Count L = {(Count L0,0 , Count L0,1 ), (Count L1,0 , Count L1,1 ), ..., Count Lbl,i , ..., (Count LN b-1,0 , Count LN b-1,1 )} with Accu Lbl,i = (Accu R Lbl,i , Accu G Lbl,i , Accu B Lbl,i ) T where i ∈ [0, 1] and bl ∈ [0, N b -1].
As stated in line 4, the Kmeans algorithm is applied across all blocks in the scanned document. When the Kmeans process on each block converges, all the local accumulators are gathered into a global one:

Accu G = {Accu G0 , Accu G1 } with, Accu Gi = (Accu R Gi , Accu G Gi , Accu B Gi ) T , i ∈ [0, 1]
. Line 7 states for the global accumulators compute. This process is performed by one addition per each color component as stated in Eq.2:

Accu Gi =       Accu R Gi + Accu R Lbl,i Accu G Gi + Accu G Lbl,i Accu B Gi + Accu B Lbl,i       , i ∈ [0, 1], ( 2 
) bl ∈ [0, N b -1]
Similarly, local counters of each block are accumulated into global ones given by Count G = {Count G0 , Count G1 }. Finally, global accumulators Accu G are devided by the correspondent counters Count G to compute the C Gi new centroids as shown in Eq.3:

C Gi =       C R Gi C G Gi C B Gi       =       Accu R Gi Count Gi Accu G Gi Count Gi Accu B Gi Count Gi       , i ∈ [0, 1] (3) 
If the global convergence is reached, the HBK algorithm stops, else it reiterates and local centroids of each block are reset with the computed global ones C G0 and C G1 . In the next section, we demonstrate that our method gives satisfying binarization quality thanks to the local approach.

EXPERIMENTAL RESULTS

In the following subsections, we present the employed dataset. Then, we demonstrate the efficiency of our proposed HBK method while reducing the distortion criterion. Finally, we compare our proposal to several state of the art methods in term of OCR evaluation.

The LRDE Document Binarization Dataset (LRDE-DBD)

In our experiments, we evaluate our HBK method on the LRDE-DBD1 database [START_REF] Lazzara | Efficient Multiscale Sauvolas Binarization[END_REF]. It is composed of French text documents extracted from "Le Nouvel Observateur 2 " magazine. The provided dataset is composed of images with A4 format and 300-dpi resolution. Evaluation tests were performed on 125 scanned documents.

Distortion criterion-based evaluation

In general, to evaluate the efficiency of Kmeans clustering, the sum of cluster distortions is usually employed as a performance indicator [START_REF] Al-Daoud | New methods for the initialization of clusters[END_REF][START_REF] Pena | An empirical comparison of four initialization methods for the Kmeans algorithm[END_REF]. Given an image with N p pixels, we note by C (p i ) the Kmeans associated centroid of one pixel p i , with i ∈ [0, N p -1]. The distortion criterion measure is defined by Eq.4:

distortion = 1 N p i=0 |p i -C (p i )| 2 (4) 
For comparison reason, we implement a simple Kmeans binarization method that we term Global Binarization Kmeans (GBK). In this method, a single Kmeans is performed over the whole image. Keeping the goal of the binarization context, initial centroids of both GBK and HBK are set to the RGB values C G0 = (0, 0, 0) T and C G1 = (255, 255, 255) T . To evaluate the clustering performances of these two methods, we measure the distortion criterion of GBK and HBK binarization on the LRDE-DBD database. The obtained result demonstrates that the HBK improves nearly 3x the distortion measure compared to GBK. Indeed, the treatment of Kmeans on small areas, gives local optimal distortions that minimizes the global one. We can come to the conclusion that our approach improves the binarization quality while reducing distortion in employed Kmeans clustering. In the next section, we perform an OCR evaluation to measure the HBK binarization efficiency.

OCR-based evaluation

Optical Character Recognition (OCR) is a process by which text characters contained in an image can be recognized. The binarization quality has a direct influence on the OCR result. In this context, the Tesseract 3.02 OCR [START_REF] Smith | An Overview of the Tesseract OCR Engine[END_REF] is used. Actually, we compare the character recognition rate of our HBK approach against seven well-ranked binarization methods [START_REF] Lazzara | Efficient Multiscale Sauvolas Binarization[END_REF][START_REF] Sauvola | Adaptive document image binarization[END_REF][START_REF] Wolf | Extraction and recognition of artificial text in multimedia documents[END_REF][START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF][START_REF] Niblack | An Introduction to Digital Image Processing[END_REF][START_REF] Lelore | Super-resolved binarization of text based on the FAIR algorithm[END_REF][START_REF] Fabrizio | Text segmentation in natural scenes using toggle-mapping[END_REF] on the LRDE-DBD documents. Table 1 shows the OCR recognition rate of the evaluated methods. The first observation to be noted from this table, is that the OCR results are very close: The recent Sauvola Ms kx gives an acceptable OCR rate by scoring 89% of accuracy. It ensures well text binarization but in some document areas, artifacts may appear leading to character miss-recognition. In the other side, the proposed HBK method gives the best OCR rate scoring 91% of accuracy thanks to its proper binarization re-Table 1. OCR Accuracy evaluation of HBK and seven wellranked binarization methods.

Methods

Images OCR Accuracy (%) HBK Scanned 91 Sauvola Ms kx [START_REF] Lazzara | Efficient Multiscale Sauvolas Binarization[END_REF] Scanned 89 Wolf [START_REF] Wolf | Extraction and recognition of artificial text in multimedia documents[END_REF] Scanned 88 Sauvola [START_REF] Sauvola | Adaptive document image binarization[END_REF] Scanned 87 Lelore [START_REF] Lelore | Super-resolved binarization of text based on the FAIR algorithm[END_REF] Scanned 85 Otsu [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF] Scanned 84 Niblack [START_REF] Niblack | An Introduction to Digital Image Processing[END_REF] Scanned 80 TMMS [START_REF] Fabrizio | Text segmentation in natural scenes using toggle-mapping[END_REF] Scanned 73 sults. Indeed, in the HBK method, the local binarization gives robust binarization quality and the global approach eliminates the artifacts generated by the local approach.

CONCLUSION

Binarization is an important pre-processing step for optical character recognition (OCR). In this paper, we proposed a new hybrid binarization method based on the Kmeans clustering algorithm. We show that HBK performs robust binarization while minimizing the amount of distortion. Several experiments are performed on real magazine documents. The proposed HBK method outperforms several state of the art methods in the OCR-based evaluation while scoring 91% of accuracy. In future work, we intend to adapt the block sizes with kind of text in order to ensure multiscale binarization. In the other side, we note that the HBK method is highly adapted to parallel processing thanks to the no-dependency between image blocks. For this, we plan to use a parallel architecture in order to accelerate the HBK execution time.
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 2 Fig. 2. The HBK method: global and local phases Firstly, in the local phase, the input image (scanned document) is divided into N b blocks. Then, the Kmeans algorithm is applied in each block. Afterward, the global phase gathers the obtained Kmeans results from each block iteratively and performs a correctness loop until convergence. More details of the HBK method are described in Algorithm 1.Considering the binarization context, two initial centroids are employed. We note by C G = {C G0 , C G1 } the global centroid set. We initialize C G0 and C G1 with black and white
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 3 Fig. 3. Accumulated distortion computed from the obtained binarization results of GBK and HBK methods
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