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Abstract

This research is dedicated to the study of periodic characteristics of periodically correlated time se-
ries such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods
are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalized Seasonal
Block Bootstrap (GSBB). The first approach is proposed, because the usual MBB does not preserve
the periodic structure contained in the data and cannot be applied for the considered problems. For
the aforementioned periodic characteristics the bootstrap estimators are introduced and consistency
of the EMBB in all cases is obtained. Moreover, the GSBB consistency results for seasonal variances
and autocovariance function are presented. Additionally, the bootstrap consistency of both considered
techniques for smooth functions of the parameters of interest is obtained. Finally, the simultaneous
bootstrap confidence intervals are constructed. A simulation study to compare their actual coverage
probabilities is provided. A real data example is presented.
Keywords: Periodically correlated time series, consistency, seasonal means, seasonal variances, peri-
odic autocovariance function.
MCS 2010 codes: 62F40 , 62G09, 62G20, 62M10.

1 Introduction

Seasonality appears naturally in economics, vibroacoustics, mechanics, hydrology and many other fields.
A wide range of examples can be found for example, in Antoni (2009), Gardner et al. (2006), Hurd and
Miamee (2007) and Napolitano (2012). Periodicity is often present not only in the mean but also in the
covariance function (see for example, Broszkiewicz-Suwaj et al. (2004)). Thus, to build statistical models
periodically correlated (PC) processes are used. A time series is called PC with period d, when it has
periodic mean and covariance functions, that is,

E (Xt) = E (Xt+d) and Cov (Xt, Xs) = Cov (Xt+d, Xs+d) .

For more details, properties and examples we refer the reader to Hurd and Miamee (2007).
Analysis of PC time series can be performed in the time or in the frequency domain. In the first case the
standard characteristics of interest are the seasonal means, the seasonal variances and the autocovariance
function. In the latter case these are Fourier coefficients of the mean and the autocovariance functions,
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spectral correlation density functions and the Loève bifrequency spectrum. However, one should note
that the Loève bifrequency spectrum is impulsive (see (2.12c) in Napolitano (2016)) and hence it is not
suitable for estimation. In contrast, estimators of the Fourier coefficients have been widely considered in
the literature (see for example, Hurd and Leśkow (1992a), (1992b), Dehay and Hurd (1994), Ciblat et al.
(2002)). The overview of the aforementioned and also higher-order characteristics can be found in Hurd
and Miamee (2007) and Napolitano (2016).
Independent of the characteristic that is considered, not only do its estimates need to be calculated, but
also the confidence intervals are essential. Moreover, usually parameters of interest are multidimensional,
for example, vector of seasonal means or vector of Fourier coefficients. In such cases simultaneous confi-
dence intervals are used. The asymptotic simultaneous confidence intervals are difficult to obtain. There
are two reasons for that. Construction of the simultaneous confidence intervals requires estimation of the
asymptotic variance and the calculation of quantiles. To obtain the simultaneous confidence intervals
one needs to determine the asymptotic distribution of a smooth function of the vector of estimators (see
e.g Dudek and Leśkow (2011)). Moreover, when Fourier coefficients of the mean and the autocovariance
functions are considered, the asymptotic covariance matrix is very difficult to estimate (Lenart et al.
(2008), Dudek et al. (2014b), Dudek (2015)). Hence, to obtain confidence intervals resampling methods
are used.
Presently there are two bootstrap approaches that can be applied for PC time series. These are the Gen-
eralized Seasonal Block Bootstrap (GSBB) introduced by Dudek et al. (2014a) and the Moving Block
Bootstrap (MBB) proposed independently by Künsch (1989) and Liu and Singh (1992). The GSBB was
designed for periodic processes and hence it preserves the periodic structure of the original data. The
GSBB is the most general bootstrap algorithm for periodic data. Before the GSBB was introduced two
other bootstrap approaches were used for data with periodic structure: the Seasonal Block Bootstrap
(SBB) proposed by Politis (2001) and the Periodic Block Bootstrap (PBB) of Chan et al. (2004). The
SBB assumes that the block length is always an integer multiple of the period length, while in the PBB
case the block length is always smaller than the period length. For particular block length choices the
GSBB reduces to the SBB and the PBB, but in general the GSBB does not require any relation between
the block and the period length. The MBB completely destroys periodic structure contained in the orig-
inal data and hence its application to PC times is limited. The main advantage of the MBB is that it
does not require the knowledge of the period length. Moreover, it works very well for some non-periodic
characteristics of PC processes and can be applied when the period length is unknown. Additionally, the
MBB is widely used for almost periodically correlated (APC) time series. Note that APC processes are
the generalisation of PC processes. Their mean and covariance functions are almost periodic.
In the last years many bootstrap and subsampling consistency results for PC and APC processes were
published. Consistency of the resampling methods for the Fourier coefficients of the mean and the au-
tocovariance functions of PC and APC time series was obtained in Lenart et al. (2008) (subsampling),
Dudek (2015) (the MBB) and Dudek et al. (2014b) (the GSBB). Additionally, Dehay and Dudek (2015,
2016) considered continuous APC processes that are not fully observed and applied the MBB for the
coefficients of the mean and the autocovariance functions. Moreover, Lenart (2011) showed the subsam-
pling consistency for the spectral density and for the magnitude of the coherence for APC time series.
In Lenart (2016) a new approach called the Generalized Resampling Scheme is applied to the spectral
density matrix of APC time series. The number of bootstrap consistency results in the time domain is
limited. The MBB for the overall mean of APC time series was considered by Synowiecki (2007). For PC
time series consistency of the GSBB for the overall mean and the seasonal means was shown by Dudek
et al. (2014a). Finally, Leśkow and Synowiecki (2010) and Dudek et al. (2014a) obtained consistency of
the PBB and the GSBB for periodic random arrays with growing period. Recently, Dudek (2016) showed
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applicability of the MBB and the GSBB to the Fourier coefficients of the mean and the autocovariance
function of such periodic random arrays.

In this paper we show consistency of the GSBB for the seasonal variances and the autocovariance function
of PC time series. Since the MBB is not suitable for periodic characteristics, we introduce its extension
and apply it to get consistent estimators of the seasonal means, the seasonal variances and the autoco-
variance function. Let us indicate that we use the GSBB in its original form and only the MBB requires
modification to provide consistent results. Finally, we present results that allow for the construction of
the bootstrap simultaneous confidence intervals for the aforementioned parameters. Moreover, in the
simulation study we compare performance of both bootstrap methods. It will turn out that for short
samples the MBB outperforms the GSBB.

The paper is organized as follows. In Section 2 the considered problem is formulated and the neces-
sary definitions and notation are presented. Moreover, the MBB and the GSBB algorithms are recalled
and modifications of the MBB is proposed. The bootstrap estimators of the seasonal means, the seasonal
variances and the autocovariance function of PC time series are introduced. In all considered cases the
consistency of both bootstrap approaches is shown. Finally, Section 2.5 contains the consistency results
for smooth functions of the aforementioned parameters. In Section 2.4 we discuss the alternative represen-
tation of a PC sequence in the form of multidimensional stationary series and some disadvantages of this
approach. Section 3 is dedicated to the simulation study of the behaviour of the both proposed bootstrap
approaches. The simultaneous equal-tailed bootstrap confidence intervals for seasonal means and sea-
sonal variances of a few simulated data examples are constructed and their actual coverage probabilities
are calculated. Finally, in Section 4 the real data application is presented.

2 Problem formulation and consistency results

Let {Xt, t ∈ Z} be a PC time series with the known period d. In the sequel we follow the notation
proposed in Dudek et al. (2014a). We assume that Xt is α-mixing, that is, αX(k) → 0 as k → ∞, where

αX(k) = sup
t

sup
A∈FX (−∞,t)

B∈FX (t+k,∞)

|P (A ∩B) − P (A)P (B)|

and FX(−∞, t) = σ ({Xs : s ≤ t}), FX(t + k,∞) = σ ({Xs : s ≥ t + k}). If αX(k) = 0 it means that
observations that are at least k units time apart are independent. α-mixing is an example of a weak
dependence measure. Examples of other measures of weak dependance and their properties can be found
in Doukhan (1994).

Let (X1, . . . , Xn) be a sample from the considered series and Bi be the block of observations from this
sample of the length b ∈ N that starts with observation Xi, i.e

Bi = (Xi, . . . , Xi+b−1) .

Moreover, let l ∈ N be the smallest number for which b(l + 1) > n. Below we recall the MMB and the
GSBB algorithms.

Moving Block Bootstrap
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1. Choose the block length b (b < n).

2. From the set {B1, . . . , Bn−b+1} select randomly with replacement l + 1 blocks that will create
the bootstrap sample

(
B∗MBB

1 , . . . , B∗MBB
l+1

)
. Thus, each block is chosen with probability 1/(n −

b + 1). Finally, take from the bootstrap sample the first n observations to obtain the sample(
X∗MBB

1 , . . . , X∗MBB
n

)
of the same size as the original one.

Generalized Seasonal Block Bootstrap

1. Choose the block length b (b < n).

2. For t = 1, b + 1, 2b + 1, . . . , lb + 1, let

(X∗GSBB
t , X∗GSBB

t+1 , . . . , X∗GSBB
t+b−1 ) = (Xkt , Xkt+1, . . . , Xkt+b−1).

Random variables kt, t = 1, b+1, 2b+1, . . . , lb+1 are i.i.d. from a discrete uniform random variable
taking values in the set

St,n = {t− dR1,n, t− d(R1,n − 1), . . . , t− d, t, t + d, . . . , t + d(R2,n − 1), t + dR2,n},

with R1,n = [(t− 1)/d] and R2,n = [(n− b− t)/d].

3. Join the l + 1 blocks to get
(
B∗GSBB

1 , . . . , B∗GSBB
l+1

)
. Finally, take from the bootstrap sample the

first n observations to obtain the sample
(
X∗GSBB

1 , . . . , X∗GSBB
n

)
of the same size as the original

one.

The MBB method in contrary to the GSBB does not keep the periodic structure of the original sample
and cannot be applied in our problem. Having the MBB sample one cannot identify which seasons the
bootstrap observations come from. Thus, we propose an extension of the usual MBB. A similar idea that
allowed to use the MBB for the coefficients of the autocovariance function can be found in Dudek (2015).

Extension of the MBB method
Let us define a bivariate series Yi = (Xi, i) and then do the MBB on the sample (Y1, . . . , Yn) to obtain(
Y ∗MBB
1 , . . . , Y ∗MBB

n

)
. In the second coordinate of the series Y ∗MBB

1 , . . . , Y ∗MBB
n we preserve the infor-

mation on the original indices. Below we show how this information can be included in the definitions of
the bootstrap estimators of the periodic characteristics of Xt to provide the consistency of the extended
MBB. From now on when we use the abbreviation EMBB we have in mind the extended MBB version.
Let {i1, . . . , il+1} be selected block numbers in step 2 of the MBB algorithm performed on (Y1, . . . , Yn).
Moreover, let n = lb + r, where r ∈ {0, 1, . . . , b − 1}. Using the first and the second coordinates of
Y ∗MBB
1 , . . . , Y ∗MBB

n we form a vector containing the selected observations(
X∗EMBB

1 , . . . , X∗EMBB
n

)
= (Xi1 , . . . , Xi1+b−1, Xi2 , . . . , Xi2+b−1, . . . , Xil , . . . , Xil+b−1,

Xil+1
, . . . , Xil+1+r−1

)
and the vector of the original time indices

TI = (i1, . . . , i1 + b− 1, i2, . . . , i2 + b− 1, . . . , il, . . . , il + b− 1, il+1, . . . , il+1 + r − 1) .
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By v∗s we denote the number of elements in the EMBB sample that are from season s, that is,

v∗s = #TIs = #{t : t ∈ TI, t mod d = s} for s = 1, . . . , d− 1,

v∗d = #TId = #{t : t ∈ TI, t mod d = 0}.

Note that n = v∗1 + · · · + v∗d and that TIs contains those time indices from TI that represent season s.

The next three sections are dedicated to the seasonal means, the seasonal variances and the autoco-
variance function of a PC time series. We introduce their bootstrap estimators and show the EMBB and
the GSBB consistency in each case. Let us recall that we use the modified version of the usual MBB and
the usual GSBB. This means that we do the GSBB on the original sample (X1, . . . , Xn).

2.1 Seasonal means

Denote by µs (s = 1, . . . , d) the seasonal means of Xt. Their estimators are defined as following

µ̂s =
1

ws

ws−1∑
i=0

Xs+id for s = 1, . . . , d, (1)

where ws is the number of occurrences in the sample observations from season s.

Let us recall the GSBB estimator of µs introduced in Dudek et al. (2014a):

µ̂∗GSBB
s =

1

ws

ws−1∑
i=0

X∗GSBB
s+id for s = 1, . . . , d. (2)

Finally, we define the bootstrap counterparts of Equation (1) obtained using the EMBB algorithm by

µ̂∗EMBB
s =

1

v∗s

∑
i∈TIs

X∗EMBB
i for s = 1, . . . , d. (3)

If v∗s = 0 for some s then we take µ̂∗EMBB
s = 0.

The number v∗s in Equation (3) is equal to the number of observations from season s in the bootstrap
sample. Note that when the GSBB is used then the periodic structure is kept and in the bootstrap
sample each season is represented by exactly the same number of observations as in the original sample.
This is not the case for the EMBB. When the block length is smaller than the period length (b < d), it
may happen that in the bootstrap sample there are no observations from some seasons. In general some
seasons may be underrepresented and others overrepresented.

Remark 2.1 It is worth noticing that the EMBB estimator of the overall mean (µ = 1/d
∑d

i=1 µs), that

is, 1/d
∑d

i=1 µ̂
∗EMBB
s , is equal to the mean from the bootstrap sample 1/n

∑n
i=1X

∗EMBB
i . Thus, in this

case we do not need to use information from which seasons the observations in the bootstrap sample are
from and hence the standard MBB approach can be used (consistency of the MBB for µ is shown in
Synowiecki (2007)).

Before we formulate consistency results, we need to introduce some additional notation. Let µ =
(µ1, . . . , µd)′ and µ̂ = (µ̂1, . . . , µ̂d)′ be the vectors of the seasonal means and their estimators, respectively.
By (·)′ we denote transposition. Moreover, let µ̂∗EMBB be the bootstrap counterparts of µ̂ obtained
using the EMBB.
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Theorem 2.1 Let {Xt, t ∈ Z} be an α-mixing PC time series. Assume that for some δ > 0,

(i) supt∈Z E|Xt|4+δ < ∞;

(ii)
∑∞

τ=1 τα
δ/(4+δ)
X (τ) < ∞;

Then, if b → ∞ as n → ∞ such that b = o(n), the EMBB for the seasonal means is consistent, that is,

ρd
(
L
(√

w (µ̂− µ)
)
,L∗ (√w

(
µ̂∗EMBB − µ̂

))) p−→ 0 (4)

unless asymptotically L (
√
w (µ̂− µ)) is degenerate. Moreover, w = ⌊n/d⌋.

By ρd we denote a metric metricizing weak convergence of probability measures on Rd. Moreover, L(·)
denotes a probability law and L∗(·) its bootstrap counterpart conditional on (X1, . . . , Xn). Note that the
GSBB consistency results presented in Dudek et al. (2014a) are obtained for Mallows’ metric. Here it can
also be considered. Theorem 2.1 states consistency of the EMBB under exactly the same assumptions as
was obtained for the GSBB by Dudek et al. (2014a).

2.2 Seasonal variances

In this section we consider the other important characteristic of a periodic time series, that is, seasonal
variances. So far in the literature there is no bootstrap consistency result for them. Below we recall
definition of the seasonal variances of a PC time series and introduce their bootstrap estimators. Since
the GSBB technique keeps the periodic structure of the data, it provides a very elegant and intuitively
natural estimator. The EMBB estimator requires the same kind of modifications that we proposed in
the seasonal means case.

Let σ2
s (s = 1, . . . , d) denote the seasonal variances of the considered PC time series Xt with the pe-

riod length d. Their estimators are defined as

σ̂2
s =

1

ws

ws−1∑
i=0

(Xs+id − µ̂s)
2 for s = 1, . . . , d.

Finally, the bootstrap versions of σ̂2
s obtained using the GSBB and the EMBB are of the form

σ̂∗2 GSBB
s =

1

ws

ws−1∑
i=0

(
X∗GSBB

i − µ̂s

)2
for s = 1, . . . , d,

σ̂∗2 EMBB
s =

1

v∗s

∑
i∈TIs

(
X∗EMBB

i − µ̂s

)2
for s = 1, . . . , d.

Again if v∗s ≡ 0 for some s then we define σ̂∗2 EMBB
s = 0.

Let us define three d-dimensional vectors containing all seasonal variances, their estimators and bootstrap
estimators, that is, σ2 = (σ2

1, . . . , σ
2
d)′, σ̂2 = (σ̂2

1, . . . , σ̂
2
d)′ and σ̂∗2 = (σ̂∗2

1 , . . . , σ̂∗2
d )′. Since the consis-

tency for both bootstrap methods holds under exactly the same assumptions, for the sake of simplicity
we present the results not using additional superscripts. We also keep this rule for the autocovariance
function we introduce later.

Theorem 2.2 Assume that {Xt, t ∈ Z} is an α-mixing PC time series, WP(3) and WP(4) such that
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(i) supt∈Z E|Xt|8+2δ < ∞;

(ii)
∑∞

τ=1 τα
δ/(4+δ)
X (τ) < ∞;

If b → ∞ as n → ∞ such that b = o(n), then

ρd
(
L
(√

w
(
σ̂2 − σ2

))
,L∗ (√w

(
σ̂∗2 − σ̂2

))) p−→ 0 (5)

unless asymptotically L
(√

w
(
σ̂2 − σ2

))
is degenerate.

By WP (k) we denote a weakly periodic process of order k. Process Xt is WP (k) if E|Xt|k < ∞ and for
any t, τ1, . . . , τk−1 ∈ Z

E(XtXt+τ1 . . . Xt+τk−1
)

is periodic in the variable t. For more details on weakly periodic processes see for example, Synowiecki
(2007).

2.3 Autocovariance function

For the last one we consider the autocovariance function of a PC time series with known period of length
d. By B(t, τ) we denote the autocovariance function of Xt. To be precise B(t, τ) = Cov(Xt, Xt+τ ).
Arguments t and τ represent time and shift, respectively. Note that B(t, τ) is a periodic function of the
time argument. Moreover, the seasonal variances σ2

s (s = 1, . . . , d) that were considered in Section 2.2
are values of the autocovariance function at lag 0, that is, σ2

s = B(s + kd, 0) for k ∈ N . The detailed
description of B(t, τ) for PC time series, its properties and some examples can be found in the book of
Hurd and Miamee (2007).
The estimator of B(s, τ) is of the form

B̂(s, τ) =
1

w

w−1∑
k=0

(Xs+kd − µ̂s) (Xs+τ+kd − µ̂s+τ ) , (6)

where s = 1, . . . , d and w is the number of full periods contained in the sample (n = wd + r1, r1 ∈
{0, 1, . . . , d − 1}). All elements of the sum (6) for which the time index s + τ + kd > n are replaced by
0. Moreover, µ̂s+τ is the estimator of the seasonal mean represented by index s + τ.

The bootstrap estimators of B(t, τ) obtained with the GSBB and the EMBB are of the form

B̂∗GSBB(s, τ) =
1

w

w−1∑
k=0

(
X∗GSBB

s+kd − µ̂s

) (
X∗GSBB

s+τ+kd − µ̂s+τ

)
, (7)

B̂∗EMBB(s, τ) =
1

v∗s

∑
t∈TIs

(
X∗EMBB

t − µ̂s

) (
X∗EMBB

t+τ − µ̂s+τ

)
. (8)

If v∗s ≡ 0 for some s then we take B̂∗EMBB(s, τ) = 0.
Notice that in the formula (6) each summand (Xs+kd − µ̂s) (Xs+τ+kd − µ̂s+τ ) consists of the observation
from season s and the observation from the season represented by index s + τ . Below we investigate if
this structure is preserved in formulas (7)-(8). For this purpose we decompose the bootstrap estimator
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into two components. For the sake of simplicity we focus only on the EMBB estimator. However, one
should remember that the corresponding formula holds also for the GSBB. We have

B̂∗EMBB(s, τ) =
1

v∗s

∑
t ̸∈C∗

s,b,τ

(
X∗EMBB

t − µ̂s

) (
X∗EMBB

t+τ − µ̂s+τ

)
+

+
1

v∗s

∑
t∈C∗

s,b,τ

(
X∗EMBB

t − µ̂s

) (
X∗EMBB

t+τ − µ̂s+τ

)
, (9)

where

C∗
s,b,τ =

{
t : t ∈ TIs,

(
X∗EMBB

t , t∗
)
∈ B∗EMBB

i ,
(
X∗EMBB

t+τ , (t + τ)∗
)
∈ B∗EMBB

i+1

for i ∈ {1, 2, . . . , l}} .

The set C∗
s,b,τ contains those time indices from the set TIs for which X∗EMBB

t and X∗EMBB
t+τ belong to two

consecutive blocks B∗EMBB
i and B∗EMBB

i+1 . Thus, for each element of the first summand of Equation (9)

we observe exactly the same situation as for B̂(s, τ), that is, it represents seasons s and s+ τ . This is no
longer the case for the second summand of Equation (9). Despite the fact that X∗

t is from season s the
observation X∗

t+τ can be from any season. This is the consequence of using the EMBB method. Since the
GSBB reproduces the periodic structure of the original sample it provides the corresponding bootstrap
estimator such that X∗GSBB

t and X∗GSBB
t+τ are always representing seasons s and s+τ . However, we show

that the part of the bootstrap estimator based on the set C∗
s,b,τ is not asymptotically meaningful and

hence consistency of the EMBB can be obtained. In fact a similar argument is essential to get the GSBB
consistency. One should be aware that the real problem that this part of the estimator is introducing,
is the dependence structure that was not present in the original sample. Block bootstrap algorithms are
designed to preserve dependence structure only within each block.

Let r be any positive integer and let

s = [s1, . . . , sr]
′ , τ = [τ1, . . . , τr]

′ and B(s, τ ) = [B (s1, τ1) , . . . , B (sr, τr)]
′ ,

where s1, . . . , sr ∈ {1, . . . , d} and τ1, . . . , τr ∈ Z.

Theorem 2.3 Under assumptions of Theorem 2.2 for any s, τ for which L
(√

w
(
B̂(s, τ ) −B(s, τ )

))
is asymptotically non-degenerate we have

ρr

(
L
(√

w
(
B̂(s, τ ) −B(s, τ )

))
,L∗

(√
w
(
B̂∗(s, τ ) − B̂(s, τ )

)))
p−→ 0, (10)

where ρr is a metric metricizing weak convergence of probability measures on Rr.

As for the seasonal variances, we omit the superscript in B̂∗(s, τ ). That means that Equation (10) holds
for the GSBB and the EMBB.

Remark 2.2 One may note that in formulas (7) and (8) the bootstrap versions X∗
t of data are substituted

to define the bootstrap statistic B̂∗(s, τ ) but the sample averages µ̂s from the original data (not the
bootstrap data) are used for centring in B̂∗(s, τ ). Such definitions of the bootstrap estimators is not
accidental. In many applications analysis of time series with some seasonal pattern is done in two main
steps. In the first one data are demeaned and in the latter the second-order analysis is performed. The
form of our bootstrap estimators corresponds to this approach. Moreover, the bias of the bootstrap version
of µ̂s may significantly influence the performance of bootstrap methods, especially in the case of short
samples.
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2.4 Discussion of the approach via multidimensional stationary time series

In our work we consider one-dimensional PC time series. However, an alternative approach is possible.
Xt can be equivalently represented as Rd-valued stationary time series Xm (see Preposition 1.1 in Hurd
and Miamee (2007)), where

Xm = (X1+(m−1)d, . . . , Xd+(m−1)d)′, m = 1, 2, . . . .

Thus, Xm consists of observations from the mth period.
Working with a stationary sequence may seem to be more convenient than analysis of a nonstationary
process. However, there are several reasons why the approach introduced in this paper is important and
worthy of consideration.

First of all let us recall arguments provided by Hurd and Miamee (2007). The period length is not
always known, but it is required to transform a PC sequence to a vector stationary sequence. Analysis
of PC time series in the time and in the frequency domain can provide its estimate. Moreover, one may
test if periodicity is present only in the mean or also in the covariance function. Additionally, some prob-
lems are more easily understood for PC time series than for multidimensional sequences (see comment
on innovation rank on p. 6 of Hurd and Miamee(2007)). Finally, methods developed for discrete PC
time series, can be carried over to the APC case and continuous time. APC time series and PC/APC
continuous time processes cannot be transformed to a stationary sequence.
At the end, let us compare resampling approaches for PC time series with those for stationary multidi-
mensional time series. The overview of known consistency results for stationary processes can be found
in Lahiri (2003) and Politis et al. (1999). Let (X1, . . . , Xn) be a sample from a PC time series with the
known period d and let n = wd, w ∈ Z. If we do the usual MBB on our sample, we will select randomly
with replacement blocks from the set of size n− b+ 1 (see the description of the method at the beginning
of Section 2). The block length b can be chosen as any integer number smaller than n. On the other
hand, if we transform our sample into a stationary vector (X1, . . . ,Xw) the number of possible block
choices is w − b + 1 and b < w. Moreover, each block (Xi, . . . ,Xi+b−1), i = 1, . . . , w − b + 1, consists of
b full periods. If we transform it again into a one-dimensional vector(

X1+(i−1)d, . . . , Xd+(i−1)d, . . . , X1+(i+b−2)d, . . . , Xd+(i+b−2)d

)
one may notice that the first observation is always from the first season. It means that the usual MBB for
Xm is equivalent to the SBB for Xt. Using the usual MBB or its extension proposed by us or the GSBB,
allows to choose blocks that do not contain an integer number of periods and do not necessarily start with
observations from the first season. Moreover, when the PC sample is short there are very few possible
block length choices for the SBB. Finally, the MBB and the GSBB techniques have higher overlap than
the SBB among blocks to be bootstrapped, which leads to higher efficiency (see also comments in Dudek
et al. (2014a)). Thus, in the bootstrap world, analysis of a PC time series is preferable.
Last but not least, one should be aware of the fact that analysis of time series can be done partially in the
time and partially in the frequency domain. For example, some practitioners prefer to estimate seasonal
means, then demean the data and perform analysis to find the second-order significant frequencies. Such
an approach is preferable when detecting a fault of a machine. Approach via PC time series allows to
use the same kinds of tools for the both steps of analysis.

2.5 Additional results

At the beginning we present the consistency results of both bootstrap approaches for the smooth functions
of µ and B(s, τ ). These results are essential to construct the bootstrap simultaneous confidence intervals
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for seasonal means and seasonal variances. Their performance for some examples of PC time series is
analysed in Section 3.

Theorem 2.4 Under the assumptions of Theorem 2.1 and taking function H : Rd → Rs such that it is:

(i) differentiable in a neighbourhood of µ

NH =
{
x ∈ Rd : ||x− µ|| < 2η

}
for some η > 0

(ii) ▽H(µ) ̸= 0

(iii) the first-order partial derivatives of H satisfy a Lipschitz condition of order κ > 0 on NH .

If b → ∞ as n → ∞ such that b = o(n), but b−1 = o(log−1 n), then

ρs
(
L
(√

w (H (µ̂) −H (µ))
)
,L∗ (√w

(
H
(
µ̂∗EMBB

)
−H (µ̂)

))) p−→ 0,

where ▽ is the gradient operator.

The corresponding result for the GSBB can be found in Dudek et al. (2014a).

Theorem 2.5 Under the assumptions of Theorem 2.3 and taking function H : Rr → Rs such that it is:

(i) differentiable in a neighbourhood of B (s, τ )

NH =
{
x ∈ R2r : ||x−B (s, τ )|| < 2η

}
for some η > 0

(ii) ▽H (B (s, τ )) ̸= 0

(iii) the first-order partial derivatives of H satisfy a Lipschitz condition of order κ > 0 on NH .

If b → ∞ as n → ∞ such that b = o(n), but b−1 = o(log−1 n), then

ρs

(
L
(√

w
(
H
(
B̂ (s, τ )

)
−H (B (s, τ ))

))
,

L∗
(√

w
(
H
(
B̂∗ (s, τ )

)
−H

(
B̂ (s, τ )

))))
p−→ 0.

Let us recall that B̂∗ (s, τ ) can be obtained using the GSBB or the EMBB.

As we mentioned before Theorems 2.4 and 2.5 can be used to construct bootstrap simultaneous con-
sistent confidence intervals for µ and B (s, τ ). Below we shortly present the idea of their construction for
the example of the (1 − 2α)% equal-tailed percentile simultaneous confidence intervals for µ. Quantiles
of order α and 1−α are calculated using the maximum and the minimum statistics. As before we do not
specify the bootstrap approach that is used, because the methodology does not depend on the chosen
method. Define

Kmax(x) = P ∗
(√

wmax
i

(µ̂∗
i − µ̂i) ≤ x

)
,

Kmin(x) = P ∗
(√

wmin
i

(µ̂∗
i − µ̂i) ≤ x

)
.

10



Then, the confidence region is of the form(
µ̂i −

K−1
max (1 − α)√

w
, µ̂i −

K−1
min (α)√

w

)
, (11)

where i = 1, . . . , d. More details and description of different confidence regions can be found for example,
in Dudek and Leśkow (2011).

In the second part of this section we would like to discuss some possible different bootstrap approaches,
the modification of the assumptions of the presented theorems and problem of the block length choice.
We start with the latter one. Strengthening the assumption (i) in Theorems 2.1-2.5, we are able to
weaken (ii). If we replace (i) and (ii) by

(i)′ the time series Xt is uniformly bounded;

(ii)′ αX(k) = O
(
k−2

)
,

then the conclusions of Theorems 2.1-2.5 remain valid. This is quite a standard result that appears in the
papers concerning bootstrap for the first- and the second-order characteristics of PC time series. Thus,
for proof we refer the reader for example, to Dudek et al. (2014b).

One of the disadvantages of the usual MBB method is that the observations from the beginning and
the end of the sample appear less often in the blocks than the other observations. For example X1 is
present only in B1. Politis and Romano (1992) proposed a modification of the MBB called the Circular
Block Bootstrap (CBB). The idea of this approach is to treat data as wrapped on the circle. As a result
instead of n − b + 1 blocks, n different blocks {B1, . . . , Bn} can be defined. For t > n − b + 1 block
Bt is of the form (Xt, . . . , Xn, X1, . . . , Xb−n+t−1). Thus, the missing part of the block is taken from the
beginning of the considered sample. This idea can be also adapted to PC time series. However, to wrap
the data we need to assume that the sample size is an integer multiple of the period length (n = dw).
In the stationary case the CBB often provides the unbiased bootstrap estimator, that is, its expected
value is equal to the considered estimator. The extension of CBB (ECBB) can be applied in our problem,
but one should be aware that the obtained bootstrap estimator is only asymptotically unbiased. It is
also worth noticing that this effect disappears in a case of the circular GSBB (cGSBB), because each
bootstrap sample obtained with the cGSBB contains exactly w observations from each season.

Corollary 2.1 If in Theorems 2.1-2.5 we replace the EMBB estimators by their ECBB or cGSBB coun-
terparts, all the results remain valid.

Finally, we would like to provide a comment on the block length choice. The problem of the block length
choice in the case of stationary time series is well investigated (see for example, Lahiri (2003)) and is based
on the minimisation of the mean squared error (MSE). In our nonstationary case independently on the
parameter of interest, we do not know the form of the MSE. However, we believe that MSE expansions
at least for the EMBB should be similar to those available for the usual MBB. For the EMBB, each
resampled block basically gives about ⌊b/d⌋ consecutive observations from the original data separated by
the period d (for any seasonal starting point), and this effective bootstrap sample size should determine
the bias/variance properties in estimating a seasonal mean in a manner analogous to the standard (usual)
MBB. With this in mind, MSE expansions for the EMBB will probably be similar to those for the MBB,
by replacing b with b/d and n with n/d in those expressions with the MBB. For example by this logic,
considering variance estimation of a seasonal mean, the optimal block for the EMBB would seemingly
act like b/d = C(n/d)1/3 or b = Cd2/3n1/3 for a constant C that could be estimated with some plug-in
approaches (see for example, Politis and White (2004) in the stationary case).
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3 Simulation study

Our study is divided into two parts. As first we compare performance of the ECBB and the cGSBB
methods for the seasonal means µs (s = 1, . . . , d). The second part is dedicated to the seasonal variances
σ2
s (s = 1, . . . , d). We consider the circular versions of the EMBB and the GSBB to reduce edge effects,

caused by the fact that the observations from the beginning and the end of the sample appear in less
blocks than the other observations. We restricted ourselves to µs and σ2

s because those two periodic
characteristics appear the most often in applications.
For the seasonal means and the seasonal variations we calculated the actual coverage probabilities (ACPs)
of the 95% equal-tailed simultaneous bootstrap confidence intervals. The number of algorithm iterations
is 1000 and number of bootstrap samples is B = 500. Moreover, we decided to restrict our consideration
to the short samples, that is, n ∈ {60, 120, 240}. This decision is inspired by the work of Dudek and
Potorski (2014) in which the authors compared the CBB and the cGSBB for the overall mean of PC
time series. It seems that for the short samples the CBB overperforms the cGSBB, while for the longer
ones this effect vanishes. Additionally, especially in the economic applications seasonal effects and short
samples are present quite often and hence we believe that this kind of study can provide some suggestions
regarding the advantages and disadvantages of the ECBB and the cGSBB in such situation. Moreover,
we set the period length d = 12. Thus, in each sample we have 5, 10 or 20 periods. Finally, the block
length b ∈ {3, 5, 8, 10, 13, 15, 18, 20}.

In the following we consider two kinds of models:

(a) Xt = f(t) + Yt,

(b) Xt = f(t) + Zt,

where f(t) is a periodic or null function.
Series Yt is an autoregressive sequence with periodic noise added:

Yt = 0.5Yt−1 + sin (2πt/12) at + εt,

where at are iid random variables from the standard normal distribution. Moreover, εt are iid white noise
with continuous density function and they are independent on at.
Finally, Zt is generated as a moving average series with periodic noise:

Zt = 0.5 cos (2πt/12)ut + 0.5bt, where bt = 0.2bt−1 + 0.3bt−2 + ct.

Sequences ut and ct are independent and are iid from the standard normal distribution.

Seasonal means case
In the first part of our study we consider 10 models

M1: model (a) with f(t) = 2 cos (2πt/12) and εt that are Gaussian of mean 0 and variance 1/4

M2: model (a) with f(t) = 0.2 cos (2πt/12) and εt that are Gaussian of mean 0 and variance 1/4

M3: model (a) with f(t) = 2 cos (2πt/12) and εt that are iid from a mixture of normal distributions of
means 1/2 and -1/2, variances 1 and weights 1/2

M4: model (a) with f(t) = 0.2 cos (2πt/12) and εt that are iid from a mixture of normal distributions
of means 1/2 and -1/2, variances 1 and weights 1/2
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M5: model (a) with f(t) = 2 cos (2πt/12) and εt that are iid from a Student-t distribution with location
parameter 0, scale parameter 1/2 and 4 degrees of freedom

M6: model (a) with f(t) = 0.2 cos (2πt/12) and εt that are iid from a Student-t distribution with location
parameter 0, scale parameter 1/2 and 4 degrees of freedom

M7: model (a) with f(t) = 2 cos (2πt/12) and εt that are iid from a Student-t distribution with location
parameter 0, scale parameter 1/2 and 2 degrees of freedom

M9: model (a) with f(t) = 0.2 cos (2πt/12) and εt that are iid from a Student-t distribution with location
parameter 0, scale parameter 1/2 and 2 degrees of freedom

M9: model (b) with f(t) = 2 cos (2πt/12)

M10: model (b) with f(t) = 0.2 cos (2πt/12)

We defined M1 −M10 to analyse two situations: strong (M1,M3,M5,M7,M9) and weak
(M2,M4,M6,M8,M10) periodic mean component when compared to the noise. In the first case values
of the seasonal means are 10 times higher than in the latter one. Those examples were chosen to check
the influence on ACPs of signal to noise ratio values, that is, what effect on results is due to the power
of noise. The examples of realisations of M1 −M10 for the sample size n = 240 are presented in Figure
1. One can notice that in the left column (models M1,M3,M5,M7,M9), contrary to the right column
(models M2,M4,M6,M8,M10), periodicity is quite strong and easy to observe. Finally, M3−M10 are
modified versions of M1−M2, which allow us to investigate the influence of the different distributions of
residuals on the bootstrap confidence intervals. Note that residuals in models M5−M8 are heavy-tailed
and hence do not fulfill the assumption of existence of more than 4 or 8 moments (see Theorems 2.1 and
2.2, condition (i)). In fact residuals in M7 and M8 do not have even variance.

In Figures 2-11 we present the results of our study. In each figure in the left column are ACP curves for
the ECBB and the cGSBB. The right column illustrates the differences between ACP values obtained
for the ECBB and the cGSBB. Finally, rows correspond to different sample sizes (n = 60, 120, 240).
One can notice that performance of both bootstrap methods does not depend much on the signal to
noise ratio. The ACPs obtained with the cGSBB and the ECBB for M1,M3,M5,M7,M9 are similar
to corresponding ones for M2,M4,M6,M8,M10, especially for n = 120 and n = 240.
The strongest differences in performance between the bootstrap methods are observed for the shortest
sample size. In this case ACPs obtained with the ECBB are too high for the short block lengths and
they are decreasing when b is growing. On the other hand, the cGSBB usually provides too low ACPs for
small values of b. Moreover, for n = 60 and all models except M7−M8 ACPs obtained with the cGSBB
are smaller than 95% for all considered block lengths. Let us recall that residuals chosen for M7−M8 do
not have variance and hence the moment assumption does not hold. For larger sample sizes the cGSBB
curves are closer to 95% and some ACPs are greater than the nominal coverage level. For n = 120 and
n = 240 the ECBB and the cGSBB ACP curves are closer to each other than for n = 60. In particular,
for the largest considered sample size the distance between curves is not greater than 2% except for two
cases, that is, M3 with b = 18 and M4 with b = 3. For n = 240 ACP curves are quite flat and close
to the nominal coverage probability. It is also worth noticing that the performance of both bootstrap
techniques does not seem to be dependent on the distribution of the residuals. The shape of the ACP
curves for M3 −M6 is similar to those obtained for M1 −M2.
To understand better the behaviour of the ECBB and the cGSBB we compared the optimal block length

13



choices (bopt) for each case. By optimal for fixed model and sample size we mean such b from the consid-
ered set of block lengths that provides an ACP which is the closest to 95%. In Table 1 are presented the
optimal block length choices bopt together with ACPs for M1 −M10 and n ∈ {60, 120, 240}. Since the
results for models M7 −M8 are slightly different than for other models we discuss them separately. For
models M1−M6 and M9−M10 one may notice that for n = 60 the ECBB outperforms the cGSBB. It
provides ACPs closer to 95% than the cGSBB. The absolute value of the difference between the nominal
coverage probability and obtained ACP ranges from 0.2% to 1.8% for the ECBB and 1%-4.8% for the
cGSBB. For n = 120 and n = 240 the corresponding differences are maximally equal to 0.4%. It is also
worth noticing the values of bopt for the ECBB and the cGSBB are usually different. Only in 4 cases
are the optimal block lengths the same, that is, for M1 −M3 with n = 120 and for M6 with n = 240.
Finally, one may notice that for n = 60 and n = 120, bopt is always smaller than the period length d.
This means that the ECBB is providing ACPs close to the nominal one also for b < d. Let us recall that
for b < d, in the ECBB sample some seasons may be not represented, while the cGSBB ensures that in
the bootstrap sample there are exactly as many observations from each season as in the original one.
For models M7 − M8 results are a bit different than just described. One should remember that for
M7 − M8 the moment assumption is strongly violated, because residuals have only the first moments.
In this case the optimal block lengths for both methods are greater than for other cases. For the ECBB
and n = 60 the chosen block length is equal to 13 and hence bopt > d. Additionally, for n = 60 the ACPs
obtained with the cGSBB are very close to the nominal coverage level and in contrary to the models
M1 − M6 and M9 − M10 they are greater than 95%. For n = 240 independently of the considered
bootstrap method to obtain ACPs close to 95% one needs to consider b > 20. In fact the obtained values
of bopt range from 40 to 53 and hence they are much higher than the corresponding values obtained for
other models.

Seasonal variances case
In the second part of our study we constructed the 95% bootstrap equal-tailed simultaneous confidence
intervals for the seasonal variances. All parameters set before remain unchanged. Only chosen PC time
series are slightly modified. Obviously the shorter and more noisy the signal is then the quality of the sea-
sonal means estimates will be lower. These estimates are essential to calculate the values of the seasonal
variances estimators. Since the investigation of the influence of the seasonal means estimation quality
on the variance estimator is outside the scope of this paper, we restrict our consideration to four models
with the null mean function. To be more precise from M1−M6 and M9−M10 we removed the periodic
mean component and we obtain the following models

V1: model M1 with f(t) ≡ 0,

V2: model M3 with f(t) ≡ 0,

V3: model M5 with f(t) ≡ 0,

V4: model M9 with f(t) ≡ 0.

The examples of their realisations for the sample size n = 240 can be found in Figure 12. In Figures
13-15 are presented ACP curves for both bootstrap methods together with the differences between the
ECBB and the cGSBB. Since the main differences between the bootstrap methods are observed for the
shortest sample and results for models V 2 and V 3 are similar to results for V 1, to restrict the number
of figures we presents ACP curves for V 2 and V 3 only for n = 60.
The main conclusions that were obtained for the seasonal means case are valid also for the seasonal
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Table 1: Optimal block length choices (bopt) for models M1 −M10 with sample sizes n ∈ {60, 120, 240}.
ACPs obtained with bopt for the ECBB are in column 4 and for the cGSBB in column 6.

ECBB cGSBB

n bopt ACP bopt ACP

60 5 96.2% 5 92.0%
M1 120 8 95.4% 8 94.6%

240 8 95.2% 3 95.6%

60 3 96.4% 8 90.2%
M2 120 10 95.0% 10 95.4%

240 8 95.2% 13 95.0%

60 8 95.8% 3 92.8%
M3 120 8 95.2% 8 95.0%

240 10 94.8% 8 95.4%

60 8 95.2% 3 92.2%
M4 120 8 94.8% 5 95.0%

240 8 95.2% 10 94.6%

60 8 95.4% 13 93.0%
M5 120 10 95.4% 8 95.0%

240 20 95.0% 8 95.4%

60 5 96.6% 5 94.0%
M6 120 8 95.4% 10 95.4%

240 20 95.2% 20 94.6%

60 13 95.1% 8 95.2%
M7 120 26 94.8% 15 95.0%

240 40 95.6% 40 95.0%

60 13 95.0% 10 95.2%
M8 120 15 95.2% 18 95.6%

240 53 95.2% 50 94.8%

60 8 96.8% 3 92.4%
M9 120 10 94.6% 5 95.2%

240 13 95.0% 10 94.8%

60 8 96.0% 10 93.0%
M10 120 10 95.2% 3 95.0%

240 15 94.8% 8 95.0%
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variances. ACPs for the ECBB are usually higher than the corresponding ones for the cGSBB. Moreover,
for n = 120 and n = 240 independently on the bootstrap method the ACP curves are quite flat. For
n = 60 the cGSBB curves are below the nominal coverage level, while the ECBB ones are above 95% for
the small values of b. The only exception of this rule is V 4. In this case all ACP curves for n = 120 and
n = 240 are entirely located above the nominal coverage level. This situation can be also observed for
n = 60 and b ≤ 10.
Table 2 contains the optimal block lengths. For model V 4 we needed to perform additional simulations
to find block lengths that provide an ACP close to 95%. One may notice that obtained values are much
larger than corresponding ones for V 1. Similarly to the seasonal means case, for n = 60 one may observe
sometimes big differences in values of the ACPs obtained with the ECBB and the cGSBB. For V 1 the
optimal block length provides ACP equal to 95.2% (ECBB) and 91.8% (cGSBB). On the other hand for
V 4 ACPs obtained with b opt are comparable for the both bootstrap techniques and close to the optimal
coverage probability.

Table 2: Optimal block length choices (bopt) for models V 1 − V 4 with sample sizes n ∈ {60, 120, 240}.
ACPs obtained with bopt for the ECBB in column 4 and for the cGSBB in column 6.

ECBB cGSBB

n b opt ACP b opt ACP

60 5 95.2% 5 91.8%
V 1 120 5 95.2% 13 95.0%

240 8 95.4% 8 95.0%

60 13 95.6% 10 95.2%
V 4 120 28 95.0% 28 95.6%

240 40 95.8% 40 94.4%

V 2 60 8 94.8% 10 92.8%

V 3 60 10 93.6% 5 94.0%

None of the bootstrap methods is uniformly better than the other. For shorter samples the ECBB
is providing higher ACPs. This may be caused by the fact that the ECBB has a higher degree of
overlap among blocks than the cGSBB (see Dudek et al. (2014a) and Lahiri (2003)). For longer samples
the differences in performance between methods seem to vanish. However, if someone prefers to be
conservative, we suggest using the ECBB, because it usually provides greater actual coverage probabilities
than the cGSBB and simultaneously greater than the nominal coverage level.
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Figure 1: Examples of realizations: from top M1, M3, M5, M7, M9 (left column) and M2, M4, M6, M8, M10 (right
column). Sample size n = 240. 17
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Figure 2: Model M1: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 3: Model M2: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 4: Model M3: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 5: Model M4: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 6: Model M5: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 7: Model M6: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.
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Figure 8: Model M7: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

4 Real data example

In this section we present application of our results for energy market data. Energy market data is known
to have periodic structures not only in the mean function but also in the autocovariance function (see for
example, Broszkiewicz-Suwaj et al. (2004)). We consider the series containing hourly observations from
volumes of energy traded on the Nord Pool Spot exchange collected between 6 July and 31 August 2010.
The detailed description of the series can be found in Dudek et al. (2015). Moreover, in the mentioned
paper periodic ARMA model is fitted to these data.

In Figure 16 the considered data are presented. The length of the sample n is equal to 984, the pe-
riod length d is 24 and hence the number of observed periods w is 41.
Using techniques described in Section 2 we constructed the 95% equal-tiled simultaneous bootstrap con-
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Figure 9: Model M8: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d) vs.
block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

fidence intervals for seasonal means µs and seasonal variances σ2
s , s = 1, . . . , 24. To apply the cGSBB and

the ECBB we set the block length b = ⌊
√
n⌋ = 31 and b = ⌊ 3

√
n⌋ = 9. Moreover, the number of bootstrap

samples B = 1000. Problem of the block length choice is very difficult and so far in the literature for PC
time series there is no result concerning this issue. However, this topic is well investigated for stationary
processes (see for example, Lahiri (2003)) and usually block lengths of order

√
n or 3

√
n are optimal. Since

PC processes are periodically stationary we decided to use such kind of block lengths.
In Figures 17 and 18 the estimated values of µs and σ2

s together with obtained simultaneous confidence
bands are presented. In the seasonal means case differences between the lower and the upper bounds
obtained with the cGSBB and the ECBB are very small. The maximal observed difference is around 50,
while the values of estimates range from 23 000 to 32 000. Moreover, all confidence bands are narrow.
Independent of the chosen b and the bootstrap approach all 24 seasonal means are non-zero. None of the
confidence bands are crossing the line y = 0.
The simultaneous confidence intervals for σ2

s , s = 1, . . . , 24 are quite wide. The lower bands are often
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Figure 10: Model M9: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d)
vs. block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs
obtained for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

taking negative values. Since seasonal variances are always non-negative the lower bounds can be re-
stricted from below by 0. However, for the sake of clarity we decided to present graphics in the current
form. Independent of the block length and the bootstrap method significant values of σ2

s are observed
for s = 7, 8, 9, 21, 22.
In the all considered cases independently of the considered parameter the ECBB confidence intervals are
wider than the ones obtained with the cGSBB. As we discussed in Section 3 this property can often be
observed (see also Dudek and Potorski (2014)). Since for now there is no method of the block choice
for any bootstrap approach that can be applied for PC and APC time series, we recommend using the
ECBB to those who prefer to be conservative.
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Figure 11: Model M10: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for µi (i = 1, . . . , d)
vs. block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs
obtained for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

5 Appendix

For the sake of clarity and to simplify the notation we present all the proofs for the ECBB and the
cGSBB. To get the corresponding results for the EMBB and the GSBB it is enough to change number
of blocks that can be selected. For example for the ECBB we have n different blocks and for the EMBB
n − b + 1. Moreover, we assume that the sample size is an integer multiple of the block length (n = bl)
and that each block contains v full periods, that is, b = vd + r2, where r2 ∈ {0, 1, . . . , d − 1}. Thus, in
each selected block there are v or v + 1 observations from each season.

Proof of Theorem 2.1:
Below we present the asymptotic normality result for the seasonal means case under α-mixing assump-
tion. Since the proof of the theorem is the simplified version of the proof of Theorem 5.2, we omit the
details.
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Figure 12: Examples of realizations: from top V1, V3 (left column) and V2, V4 (right column). Sample size n = 240.

Theorem 5.1 Assume that {Xt, t ∈ Z} is a PC, and α-mixing time series such that

(i) supt∈Z E|Xt|2+δ < ∞ for some δ > 0;

(ii)
∑∞

τ=1 α
δ/(2+δ)
X (τ) < ∞;

Then
√
w (µ̂− µ)

d−→ Nd (0,Σ(s)) ,

where Σ(s) = [σij ]i,j=1,...,d, σii = σ2(si) and

σij =
∞∑

k=−∞
Cov

(
Xsi , Xsj+kd

)
.

One may notice that under the assumptions of Theorem 2.1, conditions (i) and (ii) of Theorem 5.1
are fulfilled. First we show the consistency in the one-dimensional case. Without loss of generality we
consider only the first season. We will show that

ρ1
(
L
(√

w (µ̂1 − µ1)
)
,L∗ (√w

(
µ̂∗ECBB
1 − µ̂1

))) p−→ 0 as n −→ ∞. (12)

In our consideration we follow the notation introduced in Dudek et al. (2014a).
Our sample of size n is divided into l disjoint blocks of the length b (n = lb). Let Ũi and Ũ∗

i , i = 1, . . . , l
be the sum of all observations from the first season contained in the ith block of the original sample and
the bootstrap sample, respectively. Then, the estimator (1) and its bootstrap counterpart (3) can be
equivalently rewritten as

µ̂1 =
1

w1

l∑
i=1

Ũi and µ̂∗ECBB
1 =

1

v∗1

l∑
i=1

Ũ∗
i .
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Figure 13: Model V 1: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for σ2
i (i = 1, . . . , d) vs.

block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

To get desired consistency of µ̂∗ECBB
1 we introduce another bootstrap estimator of µ1, which is of the

form

µ̃∗ECBB
1 =

1

w1

l∑
i=1

Ũ∗
i .

Let Ui = Ũi−EŨi and U∗
i = Ũ∗

i −E∗Ũ∗
i for i = 1, . . . , l. Using Corollary 2.4.8 in Araujo and Giné (1980)

and following the reasoning proposed in Dudek et al. (2014a) (see Theorem 3.1), one may easily obtain
the consistency of µ̃∗ECBB

1 , that is,

ρ1
(
L
(√

w (µ̂1 − µ1)
)
,L∗ (√w

(
µ̃∗ECBB
1 − µ̂1

))) p−→ 0 as n −→ ∞. (13)

To obtain consistency of µ̃∗ECBB
1 we use the Conditional Slutsky’s Theorem (see Lemma 4.1 in Lahiri

(2003)). Multiplying µ̃∗ECBB
1 by w1/v

∗
1, one gets µ̂∗ECBB

1 . Note that P ∗ (vl ≤ v∗1 ≤ (v + 1)l) = 1. Let us
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Figure 14: Model V 2, V 3: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for σ2
i (i = 1, . . . , d)

vs. block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs
obtained for ECBB and cGSBB. In first and second row results for V 2 and V 3, respectively. Sample size n = 60. Nominal
coverage probability is 95%.

recall that n = wd + r1. Since l/w → 0 as n → ∞, we get that

v∗1
vl

P ∗
−→ 1 and

v∗1
w

P ∗
−→ 1 as n → ∞.

Moreover, w/w1 −→ 1 as n → ∞ and

E∗

(
l∑

i=1

Ũ∗
i

)
=

l∑
i=1

E∗
(
Ũ∗
i

)
=

l∑
i=1

1

n

n∑
j=1

Ũj =
bl

n
wµ̂1 = wµ̂1.

Thus,

√
w

∣∣∣∣∣ 1

v∗1
E∗

(
l∑

i=1

Ũ∗
i

)
− µ̂1

∣∣∣∣∣ =
√
w

∣∣∣∣ 1

v∗1
wµ̂1 − µ̂1

∣∣∣∣ =
√
w |µ̂1|

∣∣∣∣ wv∗1 − 1

∣∣∣∣ .
Finally, from the Conditional Slutsky’s Theorem we have that

√
w

∣∣∣∣∣ 1

v∗1
E∗

(
l∑

i=1

Ũ∗
i

)
− µ̂

∣∣∣∣∣ P ∗
−→ 0 as n −→ ∞

and simultaneously we get (12). Since to obtain the consistency of µ̂∗ECBB it is enough to follow the
proof presented in Dudek et al. (2014a), we decided to omit technical details.
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Figure 15: Model V 4: ACPs of simultaneous equal-tailed percentile bootstrap confidence intervals for σ2
i (i = 1, . . . , d) vs.

block length b (left column). cGSBB method (black) and ECBB (gray). Right column: differences between ACPs obtained
for ECBB and cGSBB. From top results for n = 60, 120, 240, respectively. Nominal coverage probability is 95%.

�

Proof of Theorems 2.2 and 2.3:
Since Theorem 2.2 is a special case of Theorem 2.3, we present only the proof of the latter one. The
asymptotic normality of B̂(s, τ) for strictly periodic time series under ϕ-mixing assumption was shown
in Hurd and Miamee (2007) (see Preposition 9.13). Below we present the asymptotic result for α-mixing
PC time series.

Theorem 5.2 Assume that {Xt, t ∈ Z} is a PC, WP(3), WP(4) and α-mixing time series such that

(i) supt∈Z E|Xt|4+2δ < ∞ for some δ > 0;
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Figure 16: Volumes of energy traded hourly on the Nord Pool Spot Exchange from July 6th 2010 to August 31st 2010.

(ii)
∑∞

τ=1 α
δ/(2+δ)
X (τ) < ∞;

Then
√
w
(
B̂(s, τ ) −B(s, τ )

)
d−→ Nr (0,Σ(s, τ ))

for any s, τ for which det Σ(s, τ ) > 0, where Σ(s, τ ) = [σij ]i,j=1,...,r, σii = σ2(si, τi) and

σij =
∞∑

k=−∞
Cov (Z(si, τi), Z(sj + kd, τj)) ,

where Z(s, τ) = (Xs − µs) (Xs+τ − µs+τ ).

Proof:
At first we consider one-dimensional case, that is, r = 1.
We start with the decomposition of the estimator B̂(s, τ). Note that

B̂(s, τ) =
1

w

w−1∑
k=0

(Xs+kd − µ̂s) (Xs+τ+kd − µ̂s+τ )

=
1

w

w−1∑
k=0

(Xs+kd − µs) (Xs+τ+kd − µs+τ ) − 1

w

w−1∑
k=0

(Xs+kd − µs) (µ̂s+τ − µs+τ )

− 1

w

w−1∑
k=0

(µ̂s − µs) (Xs+τ+kd − µs+τ ) +
1

w

w−1∑
k=0

(µ̂s − µs) (µ̂s+τ − µs+τ )

= B̃(s, τ) − I − II + III.

Moreover,

E |I| ≤

√√√√E (µ̂s+τ − µs+τ )2 E

(
1

w

w−1∑
k=0

(Xs+kd − µs)

)2

=

√√√√Var (µ̂s+τ ) E

(
1

w

w−1∑
k=0

(Xs+kd − µs)

)2

.
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Figure 17: Estimated values of µi (i = 1, . . . , 24) (black) together with 95% simultaneous equal-tailed percentile bootstrap
confidence intervals for (grey). Results for cGSBB and ECBB in first and second row, respectively. Block length b = 9 (left
column) and b = 31 (right column).

Under assumptions (i) and (ii), E
(

1√
w

∑w−1
k=0 (Xs+kd − µs)

)2
is bounded (see Kim (1994)) by a constant

independent on n. Additionally, using Lemma A.0.1 from Politis et al. (1999) we have that for any
s = 1, . . . , d

Var (µ̂s) = Var

(
1

ws

ws−1∑
i=0

Xs+id

)
=

1

ws

1

ws

ws−1∑
i=0

ws−1∑
j=0

Cov (Xs+id, Xs+jd)

≤ 1

ws

1

ws

ws−1∑
i=0

ws−2∑
k=−ws+2

∣∣Cov
(
Xs+id, Xs+(i+|k|)d

)∣∣
≤ 1

ws

1

ws

ws−1∑
i=0

ws−2∑
k=−ws+2

α
δ

2+δ

X (|k|) = O

(
1

ws

)
= O

(
1

w

)
.

Thus, E |I| = O (1/w). Analogically one may get that E |II| = O (1/w). Finally,

E |III| ≤
√

E (µ̂s+τ − µs+τ )2 E (µ̂s+τ − µs+τ )2 ≤
√

Var (µ̂s) Var (µ̂s+τ ) = O

(
1

w

)
.

Therefore,
√
w
(

E
(
B̂(s, τ)

)
−B(s, τ)

)
= OP (1/

√
w) and

√
w
(
B̂(s, τ) −B(s, τ)

)
=

√
w
(
B̃(s, τ) −B(s, τ)

)
+ OP

(
1√
w

)
.

Since Xt is WP(4), the series Zk(s, τ) = (Xs+kd − µs) (Xs+τ+kd − µs+τ ) is PC. Moreover, Zk(s, τ) is
α-mixing with the mixing coefficients αZ(t) = αX(td− τ). Finally, Zk(s, τ) has the absolute moments of
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Figure 18: Estimated values of σ2
i (i = 1, . . . , 24) (black) together with 95% simultaneous equal-tailed percentile bootstrap

confidence intervals for (grey). Results for cGSBB and ECBB in first and second row, respectively. Block length b = 9 (left
column) and b = 31 (right column).

order 2 + δ uniformly bounded. Under assumption (i) we have

E |Zk(s, τ)|2+δ = E |(Xs+kd − µs) (Xs+τ+kd − µs+τ ))|2+δ

≤
√

E |Xs+kd − µs|4+2δ E |Xs+τ+kd − µs+τ |4+2δ

and hence supk E |Zk(s, τ)|2+δ < ∞.
As a straightforward consequence of Lemma 1 from Lenart et al. (2008) we get that

Var

(
1√
w

w∑
k=1

Zk(s, τ)

)
−→ σ2(s, τ) as n −→ ∞.

Finally, the conclusion of the theorem is obtained using Theorem 3.3.1 from Guyon (1995).

To get the thesis for the multidimensional case one needs to use Cramér-Wold device and the fact
that Zk(si, τi) and Zk(sj , τj) for i ̸= j are jointly cyclostationary (for definition see Definition 1 in Lenart
et al. (2008)). Using Lemma 2 from Lenart et al. (2008) one may easily obtain the thesis, thus we omit
the details.

�
Notice that under the assumptions of Theorem 2.3 the asymptotic normality of B̂(s, τ) holds. Without
loss of generality and for the sake of simplicity from now on we assume that the considered time series
Xt is zero mean.
First we prove Theorem 2.3 in the one-dimensional case for the ECBB. Without loss of generality we
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take s = 1 and τ ≥ 0. For the sake of simplicity, we omit the superscript ECBB. We show that

sup
x∈R

∣∣∣P (√w
(
B̂(1, τ) −B(1, τ)

)
≤ x

)
−P ∗

(√
w
(
B̂∗(1, τ) − E∗B̂∗(1, τ)

)
≤ x

)∣∣∣ p−→ 0. (14)

To get the desired consistency we introduce the modified versions of B̂∗(1, τ). To understand the idea of
their construction let us recall formula (9)

B̂∗(1, τ) =
1

v∗1

∑
t̸∈C∗

1,b,τ

X∗
t X

∗
t+τ +

1

v∗1

∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ .

New estimators B̂∗
1(1, τ) and B̃∗(1, τ) are created by replacing v∗1 by w and then removing the second

summand on the right-hand.
Thus,

B̂∗
1(1, τ) =

1

w

∑
t ̸∈C∗

1,b,τ

X∗
t X

∗
t+τ +

1

w

∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ

and

B̃∗(1, τ) =
1

w

∑
t ̸∈C∗

1,b,τ

X∗
t X

∗
t+τ .

Estimator B̃∗(1, τ) is based only on those elements X∗
t X

∗
t+τ for which X∗

t and X∗
t+τ belong to the same

block. Those that we skip are based on this part of the bootstrap sample, for which the dependence
structure contained in the original data was destroyed as a result of joining selected blocks. Similar ideas
of asymptotically equivalent estimators can be found in Dudek (2015) and Dudek et al. (2014b) for the
estimator of the autocovariance function coefficients.
We show that ∣∣∣√w

(
B̂∗

1(1, τ) − B̂(1, τ)
)
−

√
w
(
B̃∗(1, τ) − E∗B̃∗(1, τ)

)∣∣∣ P ∗
−→ 0 (15)

and hence to get (14) it will be enough to show consistency of B̃∗(1, τ).

Before we proceed we decompose B̃∗(1, τ) into sums over disjoint blocks of the length b. We have

B̃∗(1, τ) =
1

w

∑
t ̸∈C∗

1,b,τ

X∗
t X

∗
t+τ =

1

w

 ∑
t ̸∈C∗

1,b,τ

1≤t≤b

X∗
t X

∗
t+τ + · · · +

∑
t ̸∈C∗

1,b,τ

(l−1)b+1≤t≤lb

X∗
t X

∗
t+τ

 =

=
1

w

(
Z̃∗
1,b + Z̃∗

b+1,b + · · · + Z̃∗
(l−1)b+1,b

)
.

The first subscript in Z̃∗
i,b indicates the index of the first observation in the block. Thus, Z̃∗

i,b is the sum

of the observations from the first season contained in the block B∗
i = (X∗

i , . . . , X
∗
i+b−1). Note that Z̃∗

i,b

are conditionally independent and

P ∗
(
Z̃∗
i,b = Z̃j,b

)
=

1

n
for j = 1, . . . , n,
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where Z̃i,b is the corresponding sum over the block Bi for the original data. Moreover, let

Zi,b = Z̃i,b − EZ̃i,b, Z∗
i,b = Z̃∗

i,b − E∗Z̃∗
i,b.

Note that

√
w
∣∣∣E∗B̃∗(1, τ) − B̂(1, τ)

∣∣∣ −→ 0 as n −→ ∞.

and hence condition (15) is equivalent to

1

w
Var∗

 ∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ

 P ∗
−→ 0 as n −→ ∞.

In the proof of Theorem 2.1 we showed that v∗1 ∼ w as n → ∞. Hence we get that w/ (v∗1)2 ∼ 1/w as
n → ∞ and ∣∣∣∣∣∣ 1

w
Var∗

 ∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ

− 1

w
Var∗

 ∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ

∣∣∣∣∣∣ P ∗
−→ 0.

Moreover,

1

w
Var∗

 ∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ


=

2

w

l−2∑
k=0

∑
k′≥k

Cov∗

 ∑
i∈TI1,k

X∗
(k+1)b−τ+iX

∗
(k+1)b+i,

∑
j∈TI1,k′

X∗
(k′+1)b−τ+jX

∗
(k′+1)b+j

 ,

where TI1,k = {i : 1 ≤ i ≤ τ, (k + 1)b− τ + i ∈ TI1} and TI1,k′ = {j : 1 ≤ j ≤ τ, (k′ + 1)b− τ + j ∈ TI1}.
The only non-zero elements in the sum on the right-hand side are for k′ = k and k′ = k + 1. In the first
case we have

Var∗

 ∑
i∈TI1,k

X∗
(k+1)b−τ+iX

∗
(k+1)b+i

 =

= E∗

 ∑
i∈TI1,k

X∗
(k+1)b−τ+iX

∗
(k+1)b+i

2

−

E∗

 ∑
i∈TI1,k

X∗
(k+1)b−τ+iX

∗
(k+1)b+i

2

=
1

n

n∑
j1=1

1

n

n∑
j2=1

 ∑
i∈TI1,j1

Xj1+b−τ+i−1Xj2+i−1

2

−

 1

n

n∑
j3=1

1

n

n∑
j4=1

 ∑
i∈TI1,j3

Xj3+b−τ+i−1Xj4+i−1

2

.
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TI1,ja = {i : 1 ≤ i ≤ τ, (ja + b− τ + i− 1) mod d = 1} for a = 1, 3. Since the set TI1,ja contains at most τ
elements, using assumption (ii) the absolute expected value of the last expression can be bounded from
above by C1τ

2, where C1 is some positive constant independent of n.
For k′ = k + 1 we get

Cov∗

 ∑
i∈TI1,k

X∗
(k+1)b−τ+iX

∗
(k+1)b+i,

∑
j∈TI1,k+1

X∗
(k+2)b−τ+jX

∗
(k+2)b+j


= E∗

 ∑
i1∈TI1,k

X∗
(k+1)b−τ+i1

X∗
(k+1)b+i1

τ∑
i2∈TI1,k+1

X∗
(k+2)b−τ+i2

X∗
(k+2)b+i2


−E∗

 ∑
i1∈TI1,k

X∗
(k+1)b−τ+i1

X∗
(k+1)b+i1

E∗

 τ∑
i2∈TI1,k+1

X∗
(k+2)b−τ+i2

X∗
(k+2)b+i2


=

1

n

n∑
j1=1

1

n

n∑
j2=1

1

n

n∑
j3=1

 ∑
i1∈TI1,j1

Xj1+b−τ+i1−1Xj2+i1−1

∑
i2∈TI1,j2

Xj2+b−τ+i2−1Xj3+i2−1


−

 1

n

n∑
j4=1

1

n

n∑
j5=1

 ∑
i3∈TI1,j4

Xj4+b−τ+i3−1Xj5+i3−1


·

 1

n

n∑
j6=1

1

n

n∑
j7=1

 ∑
i4∈TI1,j5

Xj6+b−τ+i4−1Xj7+i4−1

 .

The absolute expected value of the right-hand side is less then or equal to C2τ
2, where C2 is some positive

constant independent of n. Thus,

E

∣∣∣∣∣∣ 1

w
Var∗

 ∑
t∈C∗

1,b,τ

X∗
t X

∗
t+τ

∣∣∣∣∣∣ = O

(
l

w

)
= O

(
1

b

)
and we get the desired convergence (15). Additionally, using the Conditional Slutsky’s Theorem (see
Lahiri 2003, p. 77) we get that it is enough to show the consistency of B̃∗(1, τ), that is,

sup
x∈R

∣∣∣P (√w
(
B̂(1, τ) −B(1, τ)

)
≤ x

)
−P ∗

(√
w
(
B̃∗(1, τ) − E∗B̃∗(1, τ)

)
≤ x

)∣∣∣ p−→ 0. (16)

To get (16) we use Corollary 2.4.8 from Araujo and Giné (1980) and the fact that v∗1/w → 1 as
n → ∞. We need to show that for any ν > 0

l−1∑
k=0

P ∗
(

1√
w

∣∣Z∗
1+kb,b

∣∣ > ν

)
P−→ 0, (17)

l−1∑
k=0

E∗
(

1√
w
Z∗
1+kb,b1{|Z∗

1+kb,b|>
√
wν}

)
P−→ 0, (18)

l−1∑
k=0

Var∗
(

1√
w
Z∗
1+kb,b1{|Z∗

1+kb,b|≤
√
wν}

)
P−→ σ2(1, τ). (19)
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Using the same reasoning as in Dudek (2015) (see Theorem 2, proof of (14)-(16)) after some minor ad-
justments one may obtain (17)-(19). As the main steps of the proof are the same, we decided to omit
technical details.
Finally, using same arguments as we presented in the proof of Theorem 2.1 one may obtain consistency
of B̂∗(1, τ). To get the consistency in the multidimensional case, the Cramér-Wold device needs to be
used. Same arguments as in the one-dimensional case are used and hence again we skip the computation.

Following the main steps of just presented proof with minor adjustments corresponding to those pre-
sented in proof of Theorem 3.3 in Dudek et al. (2014b) one may obtain the consistency result for the
GSBB. �

Proof of Theorems 2.4 and 2.5:
To get thesis of both theorems it is enough to follow ideas presented in proofs of Theorem 4.3 from Dudek
et al. (2014a) and Theorem 3.6 from Dudek (2015) and hence we omit the details. �
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[2] Araujo, A. and Giné, E. (1980), The central limit theorem for real and Banach valued random
variables, New York: Wiley.

[3] Chan, V., Lahiri, S.N., and Meeker, W.Q (2004), ’Block bootstrap estimation of the distribution of
cumulative outdoor degradation’, Technometrics, 46, 215–224.

[4] Broszkiewicz-Suwaj, E., Makagon, A., Weron, R., and Wy?omańska, A. (2004), ’On detecting and
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