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KERNEL METRICS ON NORMAL CYCLES AND APPLICATION TO
CURVE MATCHING.

PIERRE ROUSSILLON∗ AND JOAN ALEXIS GLAUNÈS∗

April 21, 2016

Abstract. In this work we introduce a new dissimilarity measure for shape registration using the
notion of normal cycles, a concept from geometric measure theory which allows to generalize curvature
for non smooth subsets of the euclidean space. Our construction is based on the definition of kernel
metrics on the space of normal cycles which take explicit expressions in a discrete setting. This
approach is closely similar to previous works based on currents and varifolds [26, 9]. We derive the
computational setting for discrete curves in R3, using the Large Deformation Diffeomorphic Metric
Mapping framework as model for deformations. We present synthetic and real data experiments and
compare with the currents and varifolds approaches.
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Introduction. Many applications in medical image analysis require a coherent
alignment of images as a pre-processing step, using efficient rigid or non-rigid regis-
tration algorithms. Moreover, in the field of computational anatomy, the estimation
of optimal deformations between images, or geometric structures segmented from
the images, is a building block for any statistical analysis of the anatomical vari-
ability of organs. Non-rigid registration is classically tackled down by minimizing a
functional composed of two terms, one enforcing regularity of the mapping, and the
data-attachment term which evaluates dissimilarity between shapes. Defining good
data-attachment terms is important, as it may improve the minimization process, and
focus the registration on the important features of the shapes to be matched.

In [26, 16] a new framework for dissimilarity measures between sub-manifolds
was proposed using kernel metrics defined on spaces of currents. This setting is now
commonly used in computational anatomy ; its advantages lie in its simple implemen-
tation and the fact that it provides a common framework for continuous and discrete
shapes (see [11] for a computational analysis of currents and their numerical imple-
mentation). However, currents are oriented objects and thus a consistent orientation
of shapes is needed for a coherent matching. Moreover, due to this orientation prop-
erty, artificial cancellation can occur with shapes with high local variations. To deal
with this problem, a more advanced model based on varifolds has been introduced
recently [8]. Varifolds are measures over fields of non-oriented linear subspaces. See
[8], chap. 3 for an exhaustive analysis.

In this work, we propose to use a second-order model called normal cycle for
defining shape dissimilarities. The normal cycle of a submanifold X is the current
associated with its normal bundle NX . The normal cycle encodes second order, i.e.
curvature information of X; more precisely one can compute integrals of curvatures by
evaluating the normal cycle over simple differential forms. Moreover, it has a canonical
orientation which is independent of the orientation of X (in fact X does not need to be
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oriented). This is explained by Zähle in [28] : ”Although curvature measures describe
second order properties of the sets, the first order theory suffices for deriving integral
geometric relations. The key is to consider the unit normal bundle of the sets as a
locally (d−1)-rectifiable subset of R2d and to observe that the first order infinitesimal
behaviour of the unit normal bundle determines the curvature measures.” It will be
seen in subsection 1.2.3. Our approach is closely related to the currents and varifolds
models in that it is based on the definition of kernel metrics that take explicit form in
a discrete setting. This paper is organized as follows : in section 1 we introduce the
mathematical notions of currents and normal cycles as a way to represent shapes. In
section 2 we define the kernel metric in a general setting and apply it on normal cycles.
In section 3 we derive explicit formulas for the metric in the case of discrete curves
in R3. In section 4 we introduce the general curve matching problem and recall some
basic facts about the diffeomorphic model. Finally we present two sets of synthetic
experiments in section 5 as well as an experiment on real data, with the matching of
brain sulci.

1. Shapes Representation with Normal Cycles.

1.1. Currents. The concept of currents was first developed as a generalization
of distributions, in the sense of Laurent Schwartz. The space of currents can be indeed
defined as the topological dual of some space of differential forms. It was later used
in geometric measure theory, as it turned out to be a coherent framework for calculus
of variations (e.g. Plateau’s problem : the existence of an area minimizing surface
given a constrained border). Kernel metrics on spaces of currents were proposed and
developed in [26, 16, 17] as a way to evaluate the dissimilarity between shapes in
computational anatomy. The main advantages of this setting are the ability to rep-
resent shapes in a common vectorial space, the existence of straightforward formulae
for computing dissimilarities, and the fact that it encompasses both continuous and
discrete shapes in the same setting.

We first briefly remind some definitions and results about currents, as it is the
fundamental underpinning for normal cycles.

In this paper, Λm(Rd) stands for the space of m-vectors in Rd, i.e. the vectorial
space generated by the m-simple vectors :

{
u1 ∧ · · · ∧ um, u1, . . . , um ∈ Rd

}
. This

an euclidean space, with the canonical scalar product on m-simple vectors (denoted
〈., .〉Λm(Rd) or simply 〈., .〉 when there is no ambiguity)

〈u1 ∧ · · · ∧ um, v1 ∧ · · · ∧ vm〉 = det ((ui · vj)1≤i,j≤m)

where x · y is the canonical scalar product on Rd. The norm associated with this
scalar product in Λm(Rd) is denoted |.|Λm(Rd) or |.|. We also denote the dual pairing

between w ∈ (Λm(Rd))∗, the dual of Λm(Rd) and u ∈ Λm(Rd) : 〈w|u〉 := w(u). Via
the Riesz representation theorem, we can associate to w a unique m-vector w such
that ∀u ∈ Λm(Rd), 〈w|u〉 = 〈w, u〉.

For the definition of currents used in this paper, we consider the space of contin-
uous m-differential forms vanishing at infinity Ωm0 (Rd) := C0

0(Rd, (ΛmRd)∗) , with
the norm : ‖ω‖∞ = supx∈Rd |ω(x)|. For later use, we also define Ωmk,0(Rd) :=

C0
k(Rd, (ΛmRd)∗) the space of m-differential forms of class Ck, with partial deriva-

tives up to order k vanishing at infinity. We now give the definition of current that
we will use in this paper.

Definition 1 (Currents). The space of m-currents in Rd is defined as the topo-
logical dual of Ωm0 (Rd) : Ωm0 (Rd)′. T ∈ Ωm0 (Rd)′ maps every differential form ω to
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T (ω) ∈ R and

T (ω) ≤ CT ‖ω‖∞
Example 2. A fundamental example of current (which will be useful when dealing

with discrete shapes) is the ”Dirac” current. Let x ∈ Rd, α ∈ Λm(Rd). For ω ∈
Ωm0 (Rd), we define δαx (ω) := 〈ω(x)|α〉.

As we will see right below, using the theory of integration for differential forms,
any sufficiently regular shape in Rd can be seen as a current. In this way, shapes are
represented in the vectorial space of currents.

We recall that Hm is the m-dimensional Hausdorff measure and that in Rd, Hd =
λd where λd is the classical Lebesgue’s measure of Rd. Besides, for X a m-dimensional
submanifold, Hm coincides on X with the volume form of X.

First we consider the case of a compact, m-dimensional, oriented C1-submanifold
X on Rd. One can associate to X a current [X] defined as follows :

(1) [X](ω) :=

∫
X

〈ω(x)|τX(x)〉 dHm(x)

where τX(x) = τ1(x)∧· · ·∧τm(x), with (τi(x))1≤i≤m a positively oriented, orthonormal

basis of TxX. If X̃ denotes the same submanifold X with opposite orientation, we
have [X̃] = −[X].

In fact, C1 regularity is too strong for our framework and we will consider m-
rectifiable sets, which are basically sets defined via Lipschitzian maps ([13], 3.2.14)

Definition 3 (m-rectifiable sets). 1. A set X ⊂ Rd is m-rectifiable if there
exists a Lipschitz function f mapping some bounded set U of Rm onto X.

2. X is said countably (Hm,m)-rectifiable if there exists (Xi)i∈N a sequence of
m-rectifiable sets such that Hm (X \ ∪i∈NXi) = 0

Remark 4. There is an equivalent definition due to Federer ([13], 3.2.29) : a set
X is countably (Hm,m)-rectifiable if and only if Hm-almost all of X is contained in
a countable union of m-dimensional, C1-submanifolds.

If X is a compact, m-rectifiable set, we can consider for Hm-almost every x ∈ X
the tangent space of X at x, TxX ([13], 3.2.16 and 3.2.19), and an orientation of X
will be simply an orientation ox ∈ {−1, 1} of every tangent space TxX such that the
application x 7→ (TxX, ox) is Hm measurable on X. Therefore, we can associate a
current [X] to any countably m-rectifiable set X as in equation (1).

As mentioned and studied in [9], the orientation, inherent in the concept of cur-
rents is a challenging issue in computational anatomy. Hence, any matching problem
between two shapes requires first of all a coherent orientation for both shapes. As-
signing coherent orientations between corresponding shapes can be difficult or even
arbitrary in some practical applications. More importantly, when using kernel metrics
on the space of currents, this orientation issue can lead to artificial cancellation in
the space of currents. A high spatial variation of the shape (compared to the typical
size of the kernel used for the kernel metric) will not be seen by the metric, due to
the orientation. To overcome this problem, Nicolas Charon proposed a model based
on varifolds [9]. A varifold can be heuristically seen as an unoriented distribution of
measures with support in the set of all tangent spaces of the shape. In this work, we
propose a model based on normal cycles, which are currents associated to the unit
normal bundle. As we will see it does not require any orientation of the shape it-
self, and shares some similarities with the approach based on varifolds. Although the
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mathematical frameworks are different, the normal cycles metrics we will introduce
can be seen in some sense as extensions of metrics based on varifolds.

1.2. Normal cycles. Normal cycles find their roots in the seminal work of Fed-
erer. In [12], he proved that for a set with positive reach X (see definition below), the
volume of the ε-parallel neighbour of X ∩B (where B is a borelian) can be expressed
as a polynomial of ε, and more importantly that the coefficients of this polynomial
can be interpreted as curvature measures of the set X. These measures have integral
representation, and Zähle in [28] introduced (d − 1)-generalized principal curvatures
for sets with positive reach, and retrieved Federer’s curvature measures by integrating
functions of these principal curvatures over the unit normal bundle. She showed that
it can be done by integrating adequate differential forms on the associated rectifiable
current : this is exactly the normal cycle. This work was pushed forward in [29]. A
more intrinsic definition of normal cycle can be found in [15], however we will not need
such a generalization for our purpose. The book of Morvan ([21]) is a self-sufficient
reference for normal cycle as it will be used in this paper.

Normal cycles have already been applied to computational analysis of discrete
surfaces in [10]. Cohen-Steiner and Morvan derived a definition of discrete curvature
and discrete curvature tensor for polyhedral surfaces using normal cycle. Thus, they
could retrieve direction of minimal curvatures for discrete surfaces, and obtained an
estimation of the error of the curvature between the approximated surface and the
smooth one.

We will not investigate more about curvature approximations here, but rather
introduce all the tools necessary for normal cycles in a pure geometric measure theory
viewpoint. In section 2, kernel metrics will be developed in order to have explicit
distance between shapes with normal cycles representation.

1.2.1. Sets of positive reach. The first step is to define a proper framework
to consider shapes. For currents and varifolds for example, this framework is the one
of m-rectifiable sets. Here, as we want to define a normal bundle associated with the
shape, we will need a slightly different framework. As previously said, the normal
cycle of a C2-submanifold X in Rd is the current associated with its unit normal
bundle NX = {(x, n) ∈ Rd × Sd−1|x ∈ X,n ∈ (TxX)⊥ ∩ Sd−1}. However, the C2

setting is not the most convenient one to deal with normal cycles. When generalizing
the tube formula for convex sets (Steiner’s formula) and for C2-submanifold (Weyl’s
formula), Federer introduced the notion of sets with positive reach ([12], sect. 4),
which encompasses both cases. The reach of a set X ⊂ Rd is closely linked to the
uniqueness of projection on this set for sufficiently close points.

Definition 5 (Reach). For ε > 0, we define Xε = {x ∈ Rd|d(x,X) ≤ ε} and
∂Xε = {x ∈ Rd|d(x,X) = ε}. The reach of X is the supremum of r > 0 such that for
every 0 < ε ≤ r, there exists a unique projection of x ∈ Xε onto X. X is said to be a
positive reach set if r > 0.

PR is the class of sets with positive reach.

Remark 6. If X is convex, Reach(X) = +∞. If X is a compact C2-submanifold,
X has a positive reach.

On a set with positive reach R, we can roll a ball of radius less than R. Thus,
a set with positive reach can be seen heuristically as a set with a bounded below
curvature.

Definition 7 (Tangent Bundle and Unit Normal bundle). Let X be a set with
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Fig. 1. Illustration of the unit normal bundle for a regular non closed curve in the plane. The
curve is in blue, the unit normal vectors associated to four points are represented as red arrows, and
the resulting unit normal bundle is represented in red, with its canonical orientation. Note that this
representation is only illustrative, as the true normal bundle belongs to the space R2 × S1 in this
case

positive reach.
1. The tangent cone of X at point x is

Tan(X,x) :=
{
v ∈ Rd,∀ε > 0,∃y ∈ X,∃c > 0, |x− y| < ε and |c(y − x)− v

∣∣ < ε
}

It is a closed cone ([12]).
2. TX := {(x, v) : x ∈ X, v ∈ Tan(X,x)} is the tangent bundle of X.
3. The normal cone of X at point x is defined as the polar cone of Tan(X,x) :

Nor(X,x) :=
{
u ∈ Rd,∀v ∈ Tan(X,x), 〈u, v〉 ≤ 0

}
Nor(X,x) is a closed convex cone.
4. The set of unit normal vectors is defined as Noru(X,x) := Nor(X,x) ∩ Sd−1.
5. NX = {(x, n) ∈ (Rd)2, x ∈ X,n ∈ Noru(X,x)} is the unit normal bundle of X.

Remark 8. For a C2-submanifold, the unit normal bundle defined here coincides
with the classical one, which is a (d−1)-submanifold in the (2d−1) dimensional space
Rd × Sd−1.

Remark 9. If x ∈ X̊, the interior of X, then Tan(X,x) = Rd and consequently
Noru(X,x) = ∅.

Example 10 (Unit normal bundle of a curve in Rd). We give here the description
of the normal bundle associated to a regular curve in Rd. Let γ : [0, L] → Rd be
the parametrization of a C1 regular non-intersecting and non-closed curve C in Rd.
On a regular point along the curve (i.e. γ(t), 0 < t < L), one has Noru(C, γ(t)) =
γ′(t)⊥ ∩ Sd−1. For the singular part (i.e. the two endpoints), we denote S+

v :=
{u ∈ Sd−1 | 〈u, v〉 ≥ 0}. One can easily show that Noru(C, γ(0)) = S+

−γ′(0) and

Noru(C, γ(1)) = S+
γ′(1). These are two half spheres with a coherent orientation with

respect to the normal bundle (independent of the parametrization). See Figure 1 for
an illustration.

The generalized normal bundle NX is a subset of Rd × Sd−1, and since X is a
set with positive reach, we can visualize NX in Rd : choose 0 < ε < Reach(X) and
consider the application

(2) (x, n) ∈ NX 7→ x+ εn ∈ Rd
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Thus, the normal bundle can be depicted in Rd, using (2) by considering the ε-tube
around the set X.

Even if the definition of positive reach relies on few hypotheses, a set with positive
reach has remarkable regularity properties :

Proposition 11. Let X be a set with positive reach R > 0, and 0 < ε < R. ∂Xε

is a C1-hypersurface (a (d− 1)-dimensional, C1-submanifold in Rd), with Lipschitzian
normal vector field.

Proof. We summarize here the main results of [12], 4.8. On Xε, the projection
on X, PX , is well defined. Moreover, if we denote δ(x) = d(x,X) for every x ∈ Xr,
we can rewrite : ∂Xε = {x ∈ Rd|δ(x) = ε}. 4.8. (5) of [12] guarantees that δ is

continuously differentiable on the interior of Xr \ X, with ∇δ(x) = x−PX(x)
δ(x) . Thus,

∂Xε is defined as an implicit C1 real valued function, with non null differential, and
therefore is an hypersurface.

Moreover, one can show that the outward unit normal vector of ∂Xε at point x is

given by n(x) = x−PX(x)
δ(x) = ∇δ(x). And 4.8 (9) of [12] states that ∇δ is Lipschitzian

on ∂Xε. Thus, ∂Xε has Lipschitzian normal vector field.

The next proposition draws a more precise link between ∂Xε and the normal
bundle NX .

Proposition 12. Let X be a set with positive reach, 0 < ε < Reach(X) and PX
be the projection on X, which is well defined on Xε. Then

ϕε : ∂Xε → NX : y 7→
(
PX(y),

y − PX(y)

ε

)
is bijective and bi-Lipschitz, with inverse mapping

gε : NX → ∂Xε : (x, n) 7→ x+ εn

This proposition is the key argument to obtain the next theorem, which is fun-
damental to define normal cycles.

Theorem 13. If X is a set with positive reach, NX is a (d− 1)-rectifiable set in
Rd × Sd−1.

Proof. This is just an application of Proposition 12 with Proposition 11, and by
using the definition of rectifiability seen above : NX is the image of the Lipschitzian
map gε of the C1 submanifold ∂Xε.

Thus, with a set with positive reach, one can associate the current of its (d− 1)-
rectifiable unit normal bundle.

Orientation of NX . A last aspect to precise is the orientation. We recall that a
current is an oriented object, hence to define the current associated with the normal
bundle, it needs it to be oriented. Again, a nice property of a set with positive reach is
that its normal bundle has a canonical orientation which does not require the set itself
to be oriented. From now on, we denote by π0 the projection on the spatial space, and
π1 the projection on the normal space : π0 : (x, n) ∈ Rd×Sd−1 7→ x, π1 : (x, n) ∈ Rd×
Sd−1 7→ n. One should note that the unit normal bundle has a canonical orientation
arising from the orientation of ∂Xε as follows : let (e1, . . . , ed) be the standard basis
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of Rd, and (a1(x, n), . . . , ad−1(x, n)) an orthonormal basis of T(x,n)NX (which is well

defined Hd−1-almost everywhere on NX). We say that (a1(x, n), . . . , ad−1(x, n)) is
positively oriented if

(3) 〈((π0 + επ1)(a1(x, n)) ∧ · · · ∧ (π0 + επ1)(ad−1(x, n)) ∧ n, e1 ∧ · · · ∧ ed〉 > 0.

This quantity is independent of 0 < ε < ReachX [28]. Then a(x, n) = a1(x, n) ∧
· · · ∧ ad−1(x, n) fulfilling (3) (independent of the choice of the orthonormal basis
verifying the last hypothesis) may be considered as a (d−1)-vectorfield orienting NX .

1.2.2. Normal Cycle. Since NX is an orientable rectifiable set (independently
of any orientation of X), we can consider its current, which is called the normal cycle.
We denote Ωd−1

0 (Rd × Sd−1) = C0
0(Rd × Sd−1,Λd−1(Rd × Rd)∗).

Definition 14 (Normal cycle). The normal cycle of a set X with positive reach
is the (d−1)-current associated to NX . If ω ∈ Ωd−1

0 (Rd×Sd−1) is a (d−1)-differential
form on Rd × Sd−1, one has

(4) N(X)(ω) := [NX ](ω) =

∫
NX
〈ω(x, n)|τNX (x, n)〉 dHd−1(x, n)

where we keep the previous notation : τNX (x, n) is the (d − 1)-vector associated
with an orthonormal positively oriented basis of T(x,n)NX .

Hence, normal cycle is a tool to canonically represent a set with positive reach.

1.2.3. Lipschitz-Killing curvatures and normal cycle. Here we formalize
more specifically the link between the normal cycle of a set X with positive reach,
and its curvatures. For this purpose, we define some invariant, universal differential
forms on Rd × Sd−1, the Lipschitz-Killing forms.

Let (x, n) ∈ Rd × Sd−1. We set e1(x, n), . . . , ed−1(x, n) ∈ Rd such that (e1(x, n),
. . . , ed−1(x, n), n) is an orthonormal basis of Rd, and we denote

ε1 =

(
e1

0

)
, . . . , εd =

(
n
0

)
ε̃1 =

(
0
e1

)
, . . . , ε̃d−1 =

(
0

ed−1

)
where we omit the dependency on (x, n). This enables us to define a polynomial in
the real variable t :

ν(t) = (ε1 + tε̃1) ∧ · · · ∧ (εd−1 + tε̃d−1)

which is a (d − 1)-vector field in Rd × Sd−1. Even though the (ei)1≤i≤d−1 are not
uniquely defined (an orthonormal change of basis is still a valid candidate), the ex-
pression of ν is independent of the choice of this orthonormal basis, and thus is well
defined.

For 0 ≤ k ≤ d− 1, we denote νk the coefficient of the monomial td−k−1 of ν, and
define the (d− 1)-form ωk which is canonically identified to the (d-1)-vector field

ωk :=
νk

(d− k)αd−k

where αk is the volume of the k-dimensional unit ball.
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Definition 15 (Lipschitz-Killing forms). ωk, 0 ≤ k ≤ d − 1 is called the kth

Lipschitz-Killing form. The Lipschitz-Killing forms are euclidean motion invariants
(see [21], Chap. 19).

We can sum up the announced results of Federer and Zähle on these curvature
measures in a theorem (see [12, 28, 29])

Theorem 16. If X is a set with positive reach R > 0 and ε < R, we have

(5) Vol ((X ∩B)ε) =

d∑
k=0

αkCd−k(X;B)εk

where Ck(X;B) = N(X)
(
ωkx1P−1

X (B)

)
, for 0 ≤ k ≤ d − 1 and Cd(X;B) :=

Hd(X ∩B).

It can be shown, as detailed in [5], that these Ck(X; .) coincide with the classical
definition of curvatures for C2 hypersurfaces. In the case of an oriented m-dimensional
submanifold X of Rd without boundary, one has (see [21], chap. 21)

Ci(X; .) = 0, m < i ≤ d

which means that the first coefficients of the polynomial (5) are null. Moreover,
Cm(X;B) = Hm (X ∩B) and Cm−2(X;B) =

∫
X
s(x)dHm(x) up to a constant, where

s(x) is the scalar curvature of X at x. The next proposition justifies the designation
of curvature measures.

Proposition 17. The Ck(X; .) are euclidean motion invariant, signed Radon
measures. Moreover, they are additive : if X, Y , X ∪ Y and X ∩ Y have positive
reach, then

Ck(X ∪ Y ; ·) = Ck(X; ·) + Ck(Y ; ·)− Ck(X ∩ Y ; ·)

To make the connection with the usual notion of curvature in differential geom-
etry, let us derive the expression of the normal cycle in the simple case of a non-self
intersecting regular closed curve C in R2 with C2 regularity. Let γ : [0, L]→ R2 be an
arc-length parametrization of C, with L its length. We denote τ(s) = γ′(s) the unit
tangent vector and n(s) = τ(s)⊥ the unit normal vector such that (τ(s), n(s)) is posi-
tively oriented. The scalar curvature κ(s) is defined via the formula n′(s) = κ(s)τ(s).
At each point x = γ(s) of the curve, there are two unitary normal vectors n(s) and
−n(s), so that the unit normal bundle NC is composed of two disconnected curves
with parametrizations Γ1(s) = (γ(s), n(s)) and Γ2(s) = (γ(L− s),−n(L− s)) (taking
into account the canonical orientation of NC). The expression of the normal cycle
over a 1-form ω thus writes

N(C)(ω) = N(C)1(ω) +N(C)2(ω)

with

N(C)1(ω) :=

∫ L

0

〈ω(Γ1(s))|Γ′1(s)〉 ds, N(C)2(ω) :=

∫ L

0

〈ω(Γ2(s))|Γ′2(s)〉 ds.

The 1-form ω can be identified to a vector-field ω̄ on T (R2 × S1) written in the form

ω̄(x, n) = (ω̄p(x, n), ω̄n(x, n)e1),
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where ω̄p(x, n) ∈ R2, ω̄n(x, n) ∈ R and, as defined previously, e1 the unitary vector
such that (e1, n) is a positively oriented basis of R2. With these notations one gets
after computations

N(C)1(ω) =

∫ L

0

〈ω̄p(γ(s), n(s)), τ(s)〉 ds+

∫ L

0

ω̄n(γ(s), n(s))κ(s)ds,

and

N(C)2(ω) = −
∫ L

0

〈ω̄p(γ(s),−n(s)), τ(s)〉 ds−
∫ L

0

ω̄n(γ(s),−n(s))κ(s)ds.

This shows clearly the link between the normal cycle and curvature in this case. For
example it is clear from these expressions that one has

sup
{
N(C)(ω), ω ∈ Ω1

0(R2 × S1), ‖ω‖∞ ≤ 1
}

= 2L+ 2

∫ L

0

|κ(s)|ds,

and further one gets the length and the integral of the absolute value of the curvature
as

L =
1

2
sup

{
N(C)(ω), ω ∈ Ω1

0(R2 × S1), ‖ω‖∞ ≤ 1, ω̄n = 0
}

= N(C)(ω1),

∫ L

0

|κ(s)|ds =
1

2
sup

{
N(C)(ω), ω ∈ Ω1

0(R2 × S1), ‖ω‖∞ ≤ 1, ω̄p = 0
}
,

which can be also localized : for any Borel subset B ∈ R2,

H1(C ∩B) = N(C)(ω1x1P−1
X (B))∫

γ−1(C∩B)

|κ(s)|ds =
1

2
sup

{
N(C)(ω), ω ∈ Ω1

0(R2 × S1),

‖ω‖∞ ≤ 1, ω̄p = 0,∀x ∈ R2 \B,ω(x, n) = 0
}
.

This clearly shows that curvature is encoded in the normal cycle representation of the
curve. However, applying N(C) to the Lipschitz-Killing form ω0 gives the following
(since ω0 = ε̃1 = (0, e1)):

N(C)1(ω0) =

∫ L

0

κ(s)ds, N(C)2(ω0) = −
∫ L

0

κ(s)ds,

so that N(C)(ω0) = 0. In fact the sign of the scalar curvature depends on the choice of
orientation of the curve, whereas the normal cycle does not encode orientation. Thus
it is normal that one cannot hope to retrieve the integral of the signed curvature from
the full expression of the normal cycle. The non trivial application of theorem 16 in
this case appears when considering the normal cycle of the compact domain V ⊂ R2

such that ∂V = C (which exists via Jordan’s theorem). It can be easily seen that
N(V ) = N(C)1, so that the curvature measure C1(V, ·) corresponds to the integral of
κ:

C0(V ;B) =

∫
γ−1(C∩B)

κ(s)ds.

In general however, when considering non closed curves in R2 or curves in R3, C does
not correspond to the boundary of any domain, and there is no way to get rid of the
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cancelling effect. In fact, it can be shown that Cm−i vanishes for i odd, in the case
of a m submanifold of Rd. But one should not misinterpret this point: it only means
that the Lipschitz-Killing forms and the curvature measures are not the right tool in
this context ; the normal cycle itself still encodes all curvature information.

We now specify Theorem 16 in the case of a regular surface in R3. The Lipschitz-
Killing 2-differential forms on R3 are

ω0 =
ε̃1 ∧ ε̃2

4π
, ω1 =

ε̃1 ∧ ε2 + ε1 ∧ ε̃2

4π
, ω2 =

ε1 ∧ ε2

2

where we keep the same notations as in Definition 15. For the sake of simplicity, we
will consider a domain M of R3 (i.e. a submanifold of dimension 3), with border
S = ∂M . S is an orientable surface, with outward normal vector field n.

One can show that the application

ϕ : S → NM ∩ (S × Sd−1), x 7→ (x, n(x))

is a diffeomorphism, and using Note 9, it can be shown that Ck(X,B) = Ck(X,B ∩
Bdry(X)) where Bdry(X) = X \ X̊. (here Bdry(M) = ∂M = S). We have

Ck(M ;B) = N(M)
(
ωkx1P−1

M (B)

)
= N(M)

(
ωkx1P−1

S (B)

)
and thus

N(M)
(
ω1x1P−1

S (B)

)
=

∫
NM∩P−1

S (B)

ω1 =

∫
ϕ(S∩B)

ω1

=

∫
S∩B
〈ω1(ϕ(x))|dϕu(b1(x)) ∧ dϕu(b2(x))〉 dH2(x, n)

where the last row is obtained by a change of variable for differential forms. Since
dϕu =

(
IdR3 dnx

)
(where the bi appearing in this theorem are the eigenvectors of

dnx), we get :

N(M)
(
ω1x1P−1

S (B)

)
=

1

4π

∫
S∩B

〈(
0
b1

)
∧
(
b2
0

)∣∣∣∣( b1
k1b1

)
∧
(
b2
k2b2

)〉
+

1

4π

∫
X∩B

〈(
b1
0

)
∧
(

0
b2

)∣∣∣∣( b1
k1b1

)
∧
(
b2
k2b2

)〉
=

1

4π

∫
S∩B

(k1(x) + k2(x))dH2(x) = C1(X;B)

We retrieve the mean curvature measure of X thanks to the normal cycle of X. With
the same calculation, we obtain :

N(M)
(
ω0x1P−1

S (B)

)
=

1

4π

∫
S∩B

k1(x)k2(x)dH2(x)

which is the Gauss curvature measure on X up to a constant, and

N(M)
(
ω2x1P−1

S (B)

)
=

1

2

∫
S∩B

dH2(x) =
1

2
H2(S ∩B)

which is the area measure on S up to a constant.
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1.2.4. Unions of Sets with Positive Reach. We have seen here how to rep-
resent some shapes with normal cycles : C2 compact submanifolds and convex sets for
example are sets with positive reach and have such a representation. However polyhe-
dral approximations of curves and surfaces do not have positive reach anymore, and
these are the objects we will consider to derive practical algorithms. But fortunately
the theory of normal cycles can be extended to a class of sets containing unions of sets
with positive reach, as developed in [29, 23, 25]. We briefly introduce this extension
here, referring to these works for all details. The UPR class is defined as the class of
sets X which can be written as a locally finite union of sets Xi, i ∈ N, such that for
any finite subset of indices I ⊂ N, ∩i∈IXi is of positive reach. In particular sets of
positive reach belong of course to this class, and it contains also all finite unions of
non-empty closed convex sets. The normal cycle N(X) associated to a set X ∈ UPR
can be defined (see [23]) as an extension of the previous definition, using the index
function : for a closed subset X ⊂ Rd, x ∈ Rd and n ∈ Sd−1, we define :

iX(x, n) = 1X(x)

(
1− lim

ε→0
lim
δ→0

χ
(
X ∩B(x+ (ε+ δ)n, ε)

))
where χ is the Euler-Poincaré characteristic. The normal bundle of X ∈ UPR is then

(6) NX =
{

(x, n) ∈ Rd × Sd−1 : iX(x, n) 6= 0
}

It can be shown ([23]) that NX is a (d− 1)-rectifiable set and the index function
can be seen as a multiplicity function for the tangent space of the normal bundle at
point x, with direction n. We define the normal cycle for a set X ∈ UPR as

(7) N(X)(ω) :=

∫
NX
〈iX(x, n)ω(x, n)|τNX (x, n)〉 dHd−1(x, n)

ix(x, n) can be seen as the multiplicity of the tangent plane of the normal bundle
at point (x, n). With this definition, the following fundamental additive property is
satisfied:

Proposition 18 (Additive property). Assume that sets X, Y , X ∩Y and X ∪Y
all belong to the UPR class. Then we have

(8) N(X ∪ Y ) = N(X) +N(Y )−N(X ∩ Y )

In the case of a finite union of sets with positive reach : X = ∪ni=1Xi, belonging to
UPR, it is easy to see that any combination of unions and intersections of the Xi also
belongs to UPR. Hence the additive formula allows to write a recursive expression for
the normal cycle of X, which can serve as an alternative definition in this case : for
1 ≤ 2 ≤ n, one has

N(X1 ∪ · · · ∪Xk) = N(X1 ∪ · · · ∪Xk−1) +N(Xk)−N((X1 ∪ · · · ∪Xk−1) ∩Xk)

1.2.5. Transport of Normal Cycles with Diffeomorphisms. Now, we have
a coherent framework to represent both continuous and discrete shapes. For a match-
ing purpose, we will consider diffeomorphisms transforming our shapes. To fit the
shape representation with normal cycles into a matching problem, it is necessary to
describe how a diffeomorphism acts on the normal cycle associated with a shape. For
this, we define two actions : the pull-back action of diffeomorphisms on differential
forms, and the dual push-forward action on currents :
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Definition 19. Let ω ∈ Ωm0 (Rd), x ∈ Rd and τ1 ∧ · · · ∧ τm ∈ Λm(Rd), ϕ a
diffeomorphism of Rd.

• The pull-back action of ϕ on ω, ϕ]ω is :〈
ϕ]ω(x)

∣∣τ1 ∧ · · · ∧ τm〉 = 〈ω(ϕ(x))|dϕx.τ1 ∧ · · · ∧ dϕx.τm〉

• The push-forward action of ϕ on T ∈ Ωm0 (Rd)′, ϕ]T is :

ϕ]T (ω) = T (ϕ]ω)

The push-forward action on currents is geometric in the sense that if X is a m-
rectifiable set of Rd, then ϕ][X] = [ϕ(X)]. Since a normal cycle is a current whose
support lives in Rd × Sd−1, we will use straightforwardly this action. The question is
: given a diffeomorphism ϕ and a set X with positive reach, in Rd, what is the action
of ϕ on the normal bundle ? Let (x, n) ∈ NX . One can show that ϕ : X → ϕ(X)
induces a diffeomorphism ψ : NX → Nϕ(X) :

ψ(x, n) =

(
ϕ(x),

dϕ−tx n∥∥dϕ−tx n
∥∥
)

where dϕ−tx =
(
dϕ−1

x

)t
. This diffeomorphism ψ is defined such that the action of a

diffeomorphism ϕ on normal cycles satisfies:

ϕ.N(X) = ψ]N(X) = ψ][NX ] = [ψ(NX)] = [Nϕ(X)] = N(ϕ(X))

which is a geometric action as well.
It is possible to explicit this action: one needs to compute dψ(x,n). As we will

see, the second differential of ϕ is involved, which again is not surprising in view of
the link between normal cycles and curvatures. We will compute the differential with
respect to x : dxψ(x,n) and the differential with respect to n : dnψ(x,n). For this,
recall that

d

(
u 7→ u

‖u‖

)
u

h =
1

‖u‖

(
h−

〈
h,

u

‖u‖

〉
u

‖u‖

)
Then, using the chain rule for differentials, and denoting n′ =

dϕ−tx n

‖dϕ−tx n‖ we get :

dnψ(x,n) =

(
0,

1∥∥dϕ−tx n
∥∥ (dϕ−tx − 〈n′, dϕ−tx 〉n′)

)

and
dxψ(x,n) =

(
dϕx, −dϕ−tx d2ϕx(., .)tn′ +

〈
n′, dϕ−tx d2ϕx(., .)tn′

〉
n′
)

where d2ϕx is the second differential of ϕ. If we let p(n′)⊥ be the orthogonal projection

on (n′)⊥, we can write these differentials :

dxψ(x,n) =
(
dϕx, −p(n′)⊥dϕ

−t
x d2ϕx(., .)tn′

)
dnψ(x,n) =

(
0, p(n′)⊥

dϕ−tx∥∥dϕ−tx n
∥∥
)

(9)

To clarify the notation, let (x, n) ∈ Rd × Sd−1 and (τ, ν) ∈ Rd × Rd . We have
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dψ(x,n).

(
τ
ν

)
=

 dϕx.τ

−p(n′)⊥dϕ
−t
x d2ϕ(τ, .)t.n′ + p(n′)⊥

dϕ−tx .ν

‖dϕ−tx n‖


To conclude this section, we have seen that the theory of normal cycles is a way to
represent shapes as currents with support in Rd×Sd−1. The additive property allows
in particular to include polygonal meshes in the setting, and thus to consider both
continuous shapes and their discrete representations in the same framework. This
representation is independent of the initial orientation of the shapes, and encodes
curvature information. Moreover, it can fit well in a matching problem with an
explicit action of diffeomorphisms on normal cycles. The next step is now to define a
metric on normal cycles in order to have a notion of closeness between shapes.

2. Kernel metrics on normal cycles. The idea of normal cycles (resp. cur-
rents) is convenient to embed shapes in a vectorial space : the space of (d − 1)-
currents in Rd × Sd−1 (resp. the space of m-current in Rd). These spaces, defined
as dual of spaces of differential forms, come with a dual norm : if T ∈ Ωm0 (Rd)′,
we define M(T ) := sup

{
T (ω), ω ∈ Ωm0 (Rd), ‖ω‖∞ ≤ 1

}
, called the mass norm in

geometric measure theory. It would be tempting to use this norm as a distance
between shapes. However this norm is not interesting for a matching purpose. In-
deed, if C and S are two m-rectifiable sets, non intersecting, then one can show
that M([S] − [C]) = Hm(C) +Hm(S), and this independently of any relative close-
ness between the two sets. This happens because the set of test functions ω is
too large, and thus discriminates completely the two shapes. Another norm which
turns out to be useful in geometric measure theory is the flat norm : F (T ) :=
sup

{
T (ω), ω ∈ Ωm1,0(Rd) ‖ω‖∞ ≤ 1, ‖dω‖∞ ≤ 1

}
where dω is the exterior derivative

of ω. Though, this distance has several drawbacks, the main one being its non closed
form. For our numerical purpose, we need a computable expression for the dissimi-
larity between shapes. In the very same spirit of [16], we will use kernel metrics on
normal cycles as dissimilarity measures. The theory of reproducing kernels comes from
the seminal work of [2] and is now widely used in computational anatomy ([16, 11, 8]).
A brief reminder of reproducing kernel will be developed in the next section.

2.1. Vector-valued Reproducing Kernel Hilbert Spaces. For a study of
some properties of Reproducing Kernel Hilbert spaces in the vectorial case, one can
refer to [19].

Let H be a Hilbert space of functions from Rd to a euclidean space E : H ⊂
F(Rd, E) . We denote 〈., .〉H the scalar product on H and 〈., .〉E the one on E.

Definition 20 (Reproducing Kernel Hilbert Space). H is a Reproducing Kernel
Hilbert Space if the evaluation functionals u ∈ H 7→ 〈u(x), α〉E, α ∈ E, x ∈ Rd, u ∈ H
are continuous, i.e. δαx ∈ H ′.

As detailed in [19], a RKHS is canonically associated to a positive definite kernel,
and conversely (see again [19] for a definition of positive definite kernel).

For our need, we will rather consider the second aspect : the space H is con-

structed with a kernel K ( e.g. K(x, y) = exp
(
−‖x−y‖σ2

)
Id), i.e the kernel K gen-

erates a prehilbertian space : H0 = Vect
{
K(x, .)α|x ∈ Rd, α ∈ E

}
⊂ F(Rd, E), with



14 P. ROUSSILLON, AND J. A. GLAUNÈS

scalar product :〈
n∑
i=1

K(xi, .)αi,

m∑
j=1

K(yj , .)βj

〉
:=

n∑
i=1

m∑
j=1

〈αi,K(xi, yj)βj〉E

so that the scalar product, and the norm is explicit. The space H is obtained by
completion of H0 with respect to the scalar product (see [2] for technical details).
This theory is widely used in computational anatomy either to have an explicit dis-
tance between shapes (as we will see in the next paragraph) or to have a space of
deformations whose equations are easy to implement numerically.

2.2. Kernel metrics on currents. The theory of reproducing kernel provides
a powerful tool to construct a Hilbert space with explicit scalar product. We will see
how to use it in the context of currents. All this has been developed in [16], [26].

In [16], J. Glaunès defines a RKHS W in the space of m-differential forms Ωm0 (Rd)
(i.e. with the previous notation, E = Λm(Rd)∗) using a positive definite kernel KW .
We suppose that W ↪→ Ωm0 (Rd), i.e. for every ω ∈ W , ‖ω‖∞ ≤ c ‖ω‖W . Then if S is
a compact, m-rectifiable set of Rd, we have

(10) |S(ω)| ≤
∫
S

|ω| ≤ Hm(S)c ‖ω‖W

so that the restriction of [S] to W belongs to W ′. Hence a m-rectifiable set can be
considered as an element of the Hilbert W ′, whose norm is explicit by the reproducing
kernel. This raises the question of choosing a positive definite kernel on the space of
differential forms. Here we will use scalar kernels : we define for every α, β ∈ Λm(Rd),
for every x, y ∈ Rd

〈KW (x, y)α, β〉Λm(Rd) = kW (x, y) 〈α, β〉Λm(Rd)

where kW is a scalar kernel, for example kW (x, y) = exp
(
−|x−y|2
σ2
W

)
, with σW a pa-

rameter. This is a positive definite kernel (see [2] for example) and defines a RKHS
W of m-differential forms. We have to be sure that this kernel defines a RKHS W
embedded in the space Ωm0 (Rd):

Proposition 21 ([16], Chap 2. Th. 9). Let p ∈ N, and a positive definite kernel
K : Rd × Rd → L(E), with derivatives at order ≤ 2p which are continuous and
bounded. Suppose that for every x ∈ Rd, K(x, .) vanishes at infinity, and so do its
derivatives at order ≤ p. Then the RKHS W associated with K is embedded into
Cp0 (Rd, E).

All the kernels in this paper will fulfill the previous proposition. For example a
scalar Gaussian kernel guarantees that its RKHS is embedded in a space as regular
as we want (∀p ∈ N,W ↪→ Cp0 (Rd, E)).

Now let S be a m-rectifiable set in Rd, α ∈ Λm(Rd), and x ∈ Rd. From the
reproducing property, we have

〈α,KW [S](x)〉Λm(Rd) = 〈δαx |KW [S]〉

= 〈[S]|KW (x, .)(α, .)〉

=

∫
S

kW (x, y) 〈α, τS(y)〉 dHm(y).
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Thus the scalar product between two m-rectifiable orientable sets S and C can be
expressed as

(11) 〈[S], [C]〉W ′ =

∫
S

∫
C

kW (x, y) 〈τS(x), τS(y)〉Λm(Rd) dH
m(x)dHm(y)

where τS(x) is the m-vector associated with a positively oriented orthonormal basis
of TxS.

The distance between two shapes S and C is then

d(C, S)2 = ‖[S]− [C]‖2W ′ = 〈[S], [S]〉W ′ − 2 〈[S], [C]〉W ′ + 〈[C], [C]〉W ′

2.3. Kernel metrics on normal cycles. Normal cycles are (d − 1)-currents
on the space Rd × Sd−1, Ωd−1

0 (Rd × Sd−1)′. Thus, the previous construction can be
used to define a distance between shapes as the norm of the difference of their normal
cycles for a given kernel metric. This requires only to choose a scalar positive definite
kernel k on Rd × Sd−1. We define k as a product of two positive definite kernel : a
point kernel kp and a normal kernel kn :

k((x, u), (y, v)) = kp(x, y)kn(u, v)

which is a positive definite kernel ([2]). Defining k as a product of two kernels is
justified by the fact that the point-space Rd and the normal-space Sd−1 have dif-
ferent geometric meanings and therefore should be considered separately. We can

choose kp(x, y) = exp
(
−|x−y|2
σ2
W

)
a Gaussian kernel or kp(x, y) = 1

1+
|x−y|2

σ2
W

a Cauchy

kernel. For the normal kernel kn we will chose a reproducing kernel of a Sobolev
space Hs(Sd−1) of order s. Even if the expression of this Sobolev kernel is not ex-
plicit at first, we will see that it can be expressed with spherical harmonics when
dealing with three dimensional problems. Now the reproducing kernel for normal
cycles will be 〈KW ((x, u), (y, v))η, ν〉Λd−1(Rd×Rd) = kp(x, y)kn(u, v) 〈η, ν〉Λd−1(Rd×Rd)

with x, y ∈ Rd, u, v ∈ S, η, ν ∈ Λd−1(Rd × Rd).
Remark 22. Instead of the canonical scalar product on Rd × Rd, we can choose

a weighted scalar product, as for example : 〈(τ1, ν1), (τ2, ν2)〉λ := τ1 · τ2 + λν1 · ν2,
where τi, νi ∈ Rd and λ > 0. The scalar product on Λd−1(Rd × Rd) is then :

〈u1 ∧ · · · ∧ ud−1, v1 ∧ · · · ∧ vd−1〉λ := det (〈ui, vi〉λ)

where ui, vi ∈ Rd × Rd. This introduces a new weight parameter in the model,
but is justified again by the fact that the two Rd spaces in the cartesian product
have different geometric meanings. Also, as we will see in section 5, when analyzing
homogeneity properties of the functional with respect to scaling, it seems clear that
λ should depend on the scale σW of the space kernel kp.

Proposition 23. If kp is a scalar kernel, kp(x, .) ∈ C1
0(Rd,R), kn is the repro-

ducing kernel of Hs(Sd−1), s > d+1
2 , then W ↪→ C1

0

(
Rd × Sd−1,Λd−1(Rd × Rd)

)
.

Proof. If we choose s > d+1
2 for the Sobolev kernel kn, then we have Sobolev

injections (see [7], Chap. IX. The results can be applied straightforwardly to the
case of compact submanifolds without boundaries using partition of unity on a fi-
nite atlas of the manifold) : Hs(Sd−1) ↪→ Cj(Sd−1), ∀0 ≤ j < s − d−1

2 . Thus
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if s > d+1
2 , Hs(Sd−1) ↪→ C1(Sd−1). KW , which is a tensor product of kp and

kn is such that ∂1∂2K (with the same notations as [19]) exists, and is continuous,
and locally bounded. Moreover, KW (., (x, u))τ ∈ C1

0

(
Rd × Sd−1,Λd−1

(
Rd × Rd

))
because kp(x, .) ∈ C1

0(Rd,R). By Theorem 2.11 of [19], we conclude that W ↪→
C1

0

(
Rd × Sd−1,Λd−1(Rd × Rd)

)
.

And for the same reason as for classical currents (see (10)), for every S set with
positive reach, N(S) ∈ W ′. Thus the Hilbert norm on W ′ is a dissimilarity measure
for normal cycles and the scalar product between two shapes S and C (which are both
sets with positive reach) is

(12) 〈N(C), N(S)〉W ′ =

∫
NC

∫
NS

kp(x, y)kn(u, v) 〈τNS (x, u), τNC (y, v)〉Λd−1(Rd×Rd)

dHd−1(x, u)dHd−1(y, v)

The kernel in this formula takes into account both the spatial localization and
the normal position through the kernel and the tangent plane of the normal bundle
(〈τNS (x, u), τNC (y, v)〉). The square of the distance between shapes is then :

(13) d(S,C)2 = ‖N(S)−N(C)‖2W ′ = 〈N(S), N(S)〉W ′
+ 〈N(C), N(C)〉W ′ − 2 〈N(S), N(C)〉W ′

2.4. Reproducing kernel on S2. As we said before, we consider some Sobolev
space Hs(S2). For s > 2, we have Hs(S2) ↪→ C1(S2), and Hs(S2) is a reproducing
kernel. We denote it kn. In order to have an explicit expression of kn, we will use
expansion on spherical harmonics (See Appendix A). We recall that the spherical
harmonics (Yl,m), for l ∈ N,−l ≤ m ≤ l form an Hilbert frame of L2(S2). The
operator associated with kn is L = (Id − ∆)s. And we have by definition of L :
Lkn(x, .) = δx. Using an expansion on spherical harmonics of kn(x, .) for x ∈ S2, we

get kn(x, .) =
∑
l∈N
∑l
m=−l αl,m(x)Ylm. By the reproducing property, we have

〈kn(x, .), Yl′,m′〉Hs(S2) = Yl′m′(x)

And also, by definition of the scalar product and the operator L :

〈kn(x, .), Yl′,m′〉Hs(S2) = 〈kn(x, .), LYl′m′〉L2(S2)

=

〈∑
l∈N

l∑
m=−l

αl,m(x)Ylm, (1 + l(l + 1))sYl′m′

〉
L2(S2)

= αl′m′(x)(1 + l(l + 1))s = Yl′m′(x)

which gives :

(14) kn(x, y) =
∑
l∈N

l∑
m=−l

1

(1 + l(l + 1))s
Ylm(x)Ylm(y)

This is the kernel we will use for computational purpose in the following sections.

Remark 24. Conversely, we could have fixed the eigenvalues λl at first instead of
1 + l(l + 1), and defined the kernel kn as in (14). All rotation invariant reproducing
kernels on the sphere can be obtained with this procedure.
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3. Computational framework. The aim of this section is to derive all the
theory developed in this article into the special case of a polyhedral approximation
of shapes. Expression (12) is the key to compute distance between shapes, and it can
be simplified a lot when dealing with discrete approximations as we will see later on.
We will compute (12) in the case of a union of segments in R3.

3.1. Convergence towards the continuous shape. In the former sections
we have seen the reproducing kernel theory, applied to obtain an explicit metric on
the space on (d − 1)-currents on Rd × Sd−1 (and in particular on the normal cycles
associated with union of sets with positive reach). Now in computational anatomy,
a continuous shape is approximated with a polyhedral shape. In order to have a
consistent framework, we would like that the normal cycle of the approximation we are
dealing with is not too far from the theoretical one. Or at least having a convergence
result for the kernel metric when the diameter of meshes is close to 0. The theorem we
will use here is from J. Fu [14]. In order to have a convergence result for normal cycle,
we have to keep in mind some pathological examples as the Schwarz polyhedron (see
the discussion in [22]) : it is possible to have a polyhedral approximation of a cylinder,
with diameter of meshes going to zero, and yet the area of the approximations blowing
up. And as a consequence of Theorem 16 and discussion below, the convergence of
normal cycles implies the convergence of areas. This is why it seems necessary to have
a control of the way diameters tend towards 0. More precisely for the next result, we
will need the notion of fatness of a triangulation.

Definition 25. Let T be a k-simplex, with vertices v0, . . . , vk. The size of T is

η(T ) := max |vi − vj |

The fatness of T is

Θ(T ) := min

{
Hj(µ)

η(T )j
, µ is a j dimensional face of T, j = 0, . . . , k

}
Let ∆ be a triangulation. The fatness of ∆ is

Θ(∆) := min {Θ(T ), T is a k-simplex of ∆}

This definition of fatness is less restrictive than the usual definition because it takes
into account all the j-dimensional faces. Bounding below the fatness of a triangulation
guarantees that the angles of the triangles are not too close to 0. Hence we avoid
pathological cases as the Schwarz polyhedron.

Now let X be a smooth submanifold in Rd. To have a convergence result for the
approximations, we will demand that the approximations are closely inscribed in X :

Definition 26. A triangulation ∆ is inscribed in X if :
1. All vertices of ∆ lie in X
2. All vertices of ∂∆ lie in ∂X.

∆ is closely inscribed in X if, additionally :
1. ∆ ⊂ Xr and the projection on X restricted to ∆ is one-to-one.
2. ∂∆ ⊂ (∂X)r and the projection on ∂X restricted to ∂∆ is one-to-one.

We can now state J. Fu’s theorem :

Theorem 27. Let (Pn)n∈N be a sequence of triangulations of a smooth subman-
ifold X in Rd, closely inscribed in X. Suppose that Pn → X and ∂Pn → ∂X in the
Hausdorff metric on subsets of Rd, and that for every n ∈ N, Θ(Pn) ≥ c, for some
constant c > 0. Then N(Pn) −−→

n∞
N(X) for the flat metric.
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The proof of this theorem is far beyond the scope of this article, thus we will only
make a few remarks on it. The proof relies on the theory of compactness for integral
currents (see [13], 4.2) coupled with a uniqueness result for normal cycles ([15], 3.).
A direct corollary is the convergence of the curvatures of the approximations, in the
sense of weak convergence for measures. It can be obtained using the Lipschitz-
Killing differential forms (Definition 15, [29], [21] chap. 21). Since this theorem uses
compactness, it prevents us from a quantification of the rate of convergence. Note
that in [10], [21], the authors use a different argument in order to have a bound for
the convergence of curvature measures and tensors, using normal cycles.

This theorem guarantees that under not so restrictive conditions on the triangu-
lations, we have convergence of the normal cycles of the approximations towards the
normal cycle of the smooth manifold, for the flat norm. Then it is sufficient that W
is continuously embedded in Ωd−1

1,0 (Rd × Sd−1) equipped with the flat norm to have
the same result with the kernel metric. The next proposition shows that it depends
only on the regularity of the kernel.

Proposition 28. Let k be a positive kernel on the product space Rd×Sd−1, such
that k is twice continuously differentiable, with bounded first derivatives. Suppose in
addition that for any (x, u) ∈ Rd × Sd−1, k((x, u), .) and its first order derivative
vanish at infinity. Then, the RKHS associated with k is continuously embedded in
Ωd−1

1,0 (Rd × Sd−1) with the flat norm on differential forms.

Proof. Following the proof of [16], theorem 9, chapter 2, we can show that for
any ω ∈W ,

‖ω‖1,∞ ≤
√
‖k‖2,∞ ‖ω‖W .

Here ‖ω‖1,∞ = ‖ω‖∞ + ‖Dω‖∞, where Dω refers to the differential of ω, i.e. ω is

seen as an application from Rd × Sd−1 to the vector space Λd−1(Rd × Rd)∗. This is
not exactly the flat norm, which is ‖ω‖F := ‖ω‖∞+ ‖dω‖∞, where dω designates the
exterior derivative of ω. However ‖ω‖F ≤ cste ‖ω‖1,∞. dω(x, u) is indeed obtained
by making Dω(x, u) into an alternating map in all of its d arguments (and not only
in the last d− 1 ones) :

dω(x, u)(v1 ∧ · · · ∧ vd) =

d∑
i=1

(−1)iDω(x, u)(vi)(v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vd)

where vi ∈ Rd. Thus a control of the uniform norm of Dω ensures a control on the
uniform norm of dω. So, there exists C > 0 such that for every ω ∈ Ωd−1

0 (Rd×Sd−1)

‖ω‖F ≤ C
√
‖k‖2,∞ ‖ω‖W

which proves the embedding.

Thereby, the dual application ι∗ : Ωd−1
1,0 (Rd × Sd−1)′ ↪→ W ′ is continuous, and

provides a pseudo-distance on Ωd−1
1,0 (Rd × Sd−1)′, resulting for the Hilbert structure

of the RKHS W . This, combined with theorem 27 guarantees the convergence of the
approximations for the kernel metric on normal cycles, under the same conditions.

Theorem 29. Let (Pn)n∈N be a sequence of triangulations of a smooth subman-
ifold X in Rd, closely inscribed in X. Suppose that Pn → X and ∂Pn → ∂X in the
Hausdorff metric on subsets of Rd, and that for every n ∈ N , Θ(Pn) ≥ c, for some
constant c > 0. Then N(Pn) −−→

n∞
N(X) for the kernel metric.
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3.2. Representation of Discrete Curves with Normal Cycles.

3.2.1. Decomposition of the Normal Cycle for Unions of Segments.
The intersection of two non parallel segments is either empty or a single point. This
means that we can always consider the normal cycle associated with an intersection of
two segments. Thus, the formula (8) makes always sense when dealing with a union
of segments. However, this formula is not ready to use. In order to overcome this
difficulty, we introduce here a new decomposition of the normal bundle of a union
of segments. As we will see, this decomposition will make the additive property
straightforward and the normal cycle of each part of this cutting will be explicit.

Let a, b ∈ Rd and C = [a, b] be the segment with extremities a and b. We denote
C̃ = C \ {a, b}. Following the reasoning in Example 10 one can make explicit the
normal bundle of C. The notations are the same as in Definition 7 : for x ∈ C̃,
Nor(C, x) is a (d − 2)-sphere, orthogonal to C : Nor(C, x) = (b − a)⊥ ∩ Sd−2. For
x = a or b, Nor(C, x) is a half (d − 1)-sphere, oriented in the outward direction
to the segment : Nor(C, a) = S+

a−b and Nor(C, b) = S+
b−a, where we recall that

S+
u = {v ∈ Sd−1|u.v ≥ 0}.

Thus, the unit normal bundle is composed of two parts, a cylindrical part and
a spherical part. By cylindrical part, we mean a subset of the normal bundle whose
tangent spaces have one dimension in the spatial space and one dimension in the
normal space. By a spherical part, we mean a subset for which the tangent spaces
all belong to the normal space. More precisely, NC = N cyl

C ∪ N sph
C with N cyl

C :=

C̃ × ((b − a)⊥ ∩ Sd−1) and N sph
C := ({a} × S+

a−b) ∪ ({b} × S+
b−a). These two parts

are disjoint and the normal cycle N(C) satisfies N(C) = N(C)cyl + N(C)sph with

N(C)cyl := [N cyl
C ] and N(C)sph := [N sph

C ].
In order to get a nice decomposition in the case of unions of segments, it is

convenient to define the normal cycle associated to the ”open” segment C̃ as: N(C̃) :=
N(C)−N({a})−N({b}). Since the normal bundles of {a} and {b} are entire spheres,
we see that N(C̃) expresses also as a sum of a cylindrical part and a spherical part:
N(C̃) = N(C)cyl +N(C̃)sph with N(C̃)sph := −[{a} × S+

b−a]− [{b} × S+
a−b].

Now let C1∪· · ·∪Cn be a union of n segments in Rd. We can consider without loss
of generality that the intersection of two segments Ci∩Cj is either empty or composed
of a single point. Using the additive property (8) and the previous definition of the
normal cycles of an ”open” segment, it can be easily seen that the normal cycle of
a union of segments can be obtained by summing the normal cycles associated to
open segments and vertices. More precisely, if we denote {v1, . . . , vN} the vertices of
∪ni=1Ci, our decomposition of the normal bundle satisfies :

(15) N(C1 ∪ · · · ∪ Cn) =

n∑
i=1

N(C̃i) +

N∑
j=1

N({vi})

Even though the additive property is now straightforward, we will go a bit further
in this decomposition, as it will prove to be more efficient with the kernel metric. We
can decompose (15) into cylindrical and spherical parts as follows :

(16) N(C1 ∪ · · · ∪ Cn) =

(
n∑
i=1

N(Ci)
cyl

)
+

 n∑
i=1

N(C̃i)
sph +

N∑
j=1

N({vi})


This decomposition is sketched in Figure 2.
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Fig. 2. Decomposition of the normal bundle of a union of segments. In green, the spherical part
(of a single point and of an extremity) and in red the cylindrical part. Note that this representation
is only illustrative, as the true normal bundle belongs to the space R2 × S1 in this case.

Remark 30. A slightly more complex decomposition would be necessary for a
union of triangles in R3, and would involve also a planar part (two dimensions in the
spatial space, zero in the normal space). We do not investigate this in this work.

3.3. Computation of the Kernel Metric for Unions of Segments. In this
section, we will apply the decomposition of the normal cycle (16) with the framework
of kernel metric on normal cycles in order to get an explicit expression of the distance
between two discretized curves. We use the kernel metric presented in subsection 2.3.

Let C = C1 ∪ · · · ∪ CnC , S = S1 ∪ · · · ∪ SnS be two unions of segments. The
calculation of the expression of (12) in this case is simplified by the following property:

Theorem 31. The cylindrical part and the spherical part are orthogonal with
respect to the kernel metric presented in section 2.

Proof. Equation (12) takes into account the scalar product in Λd−1(Rd × Rd)
between the tangent spaces of the two normal bundles we are considering. Here, we
are interested in the scalar product between a cylindrical part and a spherical part.
The respective typical d− 1-vector associated with the tangent spaces are of the form
τ = (τ1, 0) ∧ (0, τ2) ∧ . . . ∧ (0, τd−1) and ν = (0, ν1) ∧ . . . ∧ (0, νd−1), and the scalar
product between those two vectors is :

〈τ, ν〉 =

∣∣∣∣∣∣∣∣∣
(τ1, 0).(0, ν1) (τ1, 0).(0, ν2) · · · (τ1, 0).(0, νd−1)
(0, τ2).(0, ν1) (0, τ2).(0, ν2) · · · (0, τ2).(0, νd−1)

...
...

...
(0, τd−1).(0, ν1) (0, τd−1).(0, ν2) · · · (0, τd−1).(0, νd−1)

∣∣∣∣∣∣∣∣∣ = 0

since all coefficients in the first line of the above matrix equal to zero. Thus the scalar
product of a cylindrical part and a spherical part of normal cycles vanishes.
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Remark 32. If we consider the weighted scalar product on Rd×Rd (see Note 22),
then it can be easily shown that we have :

〈N(C), N(S)〉W ′λ =
〈
N(C)cyl, N(S)cyl

〉
W ′

+ λ
〈
N(C)sph, N(S)sph

〉
W ′

where 〈·, ·〉W ′λ denotes the Hilbert metric induced by the weighted metric on Rd×Rd.

We see here how convenient the decomposition (16) is : we only need to compute
scalar products between spherical parts, and scalar products between cylindrical parts.
That is what we will do right below.

We sum up the context : we choose the kernel metric on normal cycles to be as
in subsection 2.3, with normal kernel kn as in subsection 2.4. We denote x1, . . . , xNC
(resp. y1, . . . , yNS ) the vertices of C (resp. of S) and fi = xf2

i
− xf1

i
, 1 ≤ i ≤ nC

(resp. gj = yg2j − yg1j , 1 ≤ j ≤ nS) the edges of C (resp. S). For an edge fi, xf1
i

and

xf2
i

are its two vertices. Moreover, we define ci = 1
2 (xf1

i
+ xf2

i
), dj = 1

2 (yg1j + yg2j ) the

middles of the edges fi and gj , and, θij = arccos
(〈

fi
|fi| ,

gj
|gj |

〉)
the unoriented angle

between fi and gj (θij ∈ [0, π]). We will now define the following approximation of
the normal cycles N(C) and N(S):

Definition 33. For any x, v ∈ Rd, v 6= 0, we define δx,v⊥ as the current such
that for any (d− 1)-form ω in Rd × Sd−1,

δx,v⊥(ω) =

∫
S⊥v

〈ω(x, n)|(v, 0) ∧ ν(n)〉 dHd−2(n),

with S⊥v := Sd−1∩v⊥ and ν(n) = (0, u1)∧. . .∧(0, ud−2) such that (v/‖v‖, u1, . . . , ud−2, n)
is a positively oriented orthonormal basis. Next we define

N(C)approx := N(C)sph +N(C)cylapprox,

with

N(C)cylapprox :=

nC∑
i=1

δci,f⊥i .

Similarly, N(S)approx := N(S)sph +N(S)cylapprox with

N(S)cylapprox :=

nS∑
j=1

δdj ,g⊥j .

In short, this means we approximate integration of the differential form in the
spatial domain by a single evaluation, and keep integration in the normal domain.
This choice can be intuitively justified by the following reasoning: when considering
a sequence of polygonal approximations of possibly non regular curves, the length of
segments will always tend towards zero but some angles between segments will remain
large. The computation of the scalar product between N(C)approx and N(S)approx
for the kernel metric uses expansions in spherical harmonics for the normal part. It
is detailed in Appendix C and Appendix D. The final expressions are:

Theorem 34.

(17)
〈
N(C)cylapprox, N(S)cylapprox

〉
W ′

=

nC∑
i=1

nS∑
j=1

kp(ci, dj) 〈fi, gj〉
∑
m≥0

am cos(mθij)
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and

〈
N(C)sph, N(S)sph

〉
W ′

=

NC∑
k=1

NS∑
l=1

kp(xk, yl)

(
1− nxk + nyl

2

)
β

+

nC∑
i=1

nS∑
j=1

2∑
a,b=1

b0 + (−1)a+b
∑
m≥0

bm cos(mθij)

 kp(xfai , ygbj )

(18)

where nxk (resp. nyl) is the number of edges adjacent to the vertex xk (resp. yl).

The constant β and the am and bm coefficients have explicit expansions in spher-
ical harmonics, and are pre-computationable. See Appendix C and Appendix D, for
their expressions. Here, we just precise that the (am)m≥0 and (bm)m≥0 vanish for
m even. This is compatible with the fact that normal cycles are unoriented objects:
by inverting the orientation of the edges (i.e. if we invert xf1

i
and xf2

i
), the scalar

product remains unchanged. With these two scalar products, we have all we need to
implement an algorithm which computes dissimilarity between two discrete curves.
This is the first step to have a matching algorithm.

Error of the approximation. We focus here on the error of approximation between
N(C)approx previously defined, and N(C), where C is a discretized curve in Rd. More
precisely, if we consider a segment S with extremities a and b, and ω ∈ Ωd−1(Rd ×
Sd−1), we have for the cylindrical part of the original normal cycle :

N(S)cyl(ω) =

∫
(b−a)×S⊥b−a

〈ω(x, n)|(τ, 0) ∧ ν(n)〉 dHd−1(x, n)

where τ = b−a
‖b−a‖ , and ν(n) is defined as in Definition 33 (for v = b− a).

Proposition 35. Assume that W is continuously embedded in Ωd−1
1,0 (Rd×Sd−1).

Then if C is a discretized curve, we have

‖N(C)−N(C)approx‖W ′ ≤ Kl(C)δ(C)

where l(C) = H1(C) is the length of C, and δ(C) is the maximal length of the segments
of C. K is a constant.

Proof. We recall that we do not use any approximation on the spherical part and
that the cylindrical part and the spherical part are orthogonal with respect to the
kernel metric. Thus, to estimate the error, it is sufficient to look at the cylindrical
part of the normal cycles involved.

Let ω ∈ Ωd−1
1,0 (Rd × Sd−1) and S = [a, b] be a single segment. We have :
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(19)∣∣(N(S)cyl −N(S)cylapprox
)

(ω)
∣∣ =

∣∣∣∣∣
∫

(b−a)×S⊥b−a
〈ω(x, n)|(τ, 0) ∧ ν(n)〉 dHd−1(x, n)

−
∫
S⊥b−a

〈ω(c, n)|(b− a, 0) ∧ ν(n)〉 dHd−2(n)

∣∣∣∣∣
=

∫
(b−a)×S⊥b−a

|〈ω(x, n)− ω(c, n)|(τ, 0) ∧ ν(n)〉| dHd−1(x, n)

Since W is assumed to be continuously embedded in the space of C1 differential
forms, then we have |ω(x, n)− ω(c, n)| ≤ ‖ω‖1,∞ |x− c| ≤ K ‖ω‖W |c− x|.

Thus ∣∣(N(S)cyl −N(S)cylapprox
)

(ω)
∣∣ ≤ K ′ ‖ω‖W |b− a|2

where K ′ is a constant taking into account K and the Hausdorff measure of S⊥b−a.For
the total discretized curve C, we get :∣∣(N(C)cyl −N(C)cylapprox

)
(ω)
∣∣ ≤ C ‖ω‖W l(C)δ(C)

which proves the result.

4. Curve Matching via Normal Cycles. Given two curves C, S in R3, we
define the curve matching problem as the minimization of a functional over a given
set of deformations G. This functional takes the form

(20) ϕ0 = arg min
ϕ∈G

E(ϕ) +A(ϕ.C)

where E(ϕ) is an energy term which ensures regularity of the mapping and A is a
data attachment term which defines a closeness between the deformed shape ϕ.C and
the target shape S (S is fixed). ϕ.C denotes the action of the diffeomorphisms on our
shape C.

A coherent framework necessitates a combination of two aspects : a well defined
group G with an associated energy E, and a space where our shapes are represented.
In our experiments we chose to use the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework for defining the space G of deformations and the
energy E. But of course other frameworks for non-rigid registration could be used,
such as for example Thin Plate Splines ([6]). Our shape space will rely on the theory
of normal cycles previously developed.

4.1. Large Deformation Diffeomorphic Metric Mapping (LDDMM),
continuous case. The idea of LDDMM is close to fluid mechanics : if we consider
the evolution of particles along a time varying vector field, the resulting deformation
at time one of the system will be obtained by integrating this vector field. And the
energy of this deformation is the integration of the infinitesimal cost of displacement
of the particles.

It is possible to write it in a more formal way : let V ↪→ C1
0(Rd,Rd) be a

Hilbert of vector fields, whose norm ‖.‖V represents the infinitesimal cost of dis-
placement. Notice here that V is thus a RKHS, with kernel KV . We define L2

V =
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(vt)0≤t≤1 ∈ V [0,1]|

∫ 1

0
‖vt‖2V dt < +∞

}
, the set of all time-varying vector fields with

finite energy (with respect to the norm on V ). The group GV of diffeomorphisms will
be defined as GV :=

{
ϕv1, v ∈ L2

V

}
with
∂ϕvt
∂t

= vt ◦ ϕvt
ϕ0 = Id

which means that we consider deformations at time one, with finite energy (with
respect to the norm V ). All this construction has been widely detailed for example
in [4], [27], Chap. 8. and following. An exact matching problem between two shapes
C and S can then be formulated as follows :

(21)


min

v∈L2([0,1],V )
J(v) :=

∫ 1

0

‖vt‖2V dt

∂ϕvt
∂t

= vt ◦ ϕvt
ϕv1.C = S, ϕv0 = Id

The LDDMM framework is convenient since we forget the shapes we are working
with, and focus our modelling effort on the groupGV . Thus, it can be applied in a wide
range of matching problems (images, landmarks, curves, surfaces, etc.). However, the
exact matching problem supposes that given two shapes, one can perform a perfect
matching. This assumption being unrealistic, we will rather consider the inexact
matching problem :

(22) min
v∈L2

V

∫ 1

0

‖vt‖2V dt+A (ϕv1.C, S)

where A is a dissimilarity measure between the deformed shape ϕv1.C and the target
shape S. The next theorem tackles the existence of a solution for (22) :

Theorem 36 ([16]). If, for every C, S, v 7→ A (ϕv1.C, S) is weakly continuous
from L2

V to R then (22) has a solution.

As announced, we will use here a representation of the shapes with normal cycles
and a kernel metric on normal cycles as a dissimilarity measure introduced in this
article :

A(C, S) = ‖N(C)−N(S)‖2W ′

The minimization problem with dual Hilbert norm on normal cycles as data at-
tachment term is then :

(23) min
v∈L2

V

γ

∫ 1

0

‖vt‖2V dt+ ‖ϕv.N(C)−N(S)‖2W ′

We state now the theorem of existence of a minimizer for (23) :

Theorem 37 (Existence of a minimizer for (23)). Assume that one has the em-
beddings V ↪→ C3

0(Rd,Rd), and W ↪→ C1
0

(
Rd × Sd−1,Λd−1(Rd × Rd)∗

)
. Then there

exists a minimizer for the problem (23).
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We will prove Theorem 37 using Theorem 36. For this, we have to show that
v 7→ A(ϕv.C, S) = ‖ϕv.N(C)−N(S)‖2W ′ is weakly continuous. The first step is
to verify that if vn ⇀ v, then ψv

n → ψv and dψv
n → dψv, uniformly on every

compact (where the diffeomorphism ψ, representing the deformation of the normal
cycle associated with ϕ, is defined in subsection 1.2.5). We will need the theorem :

Theorem 38 ([16]). Suppose that V ↪→ Cp0 (Rd,Rd) (for the topology of uniform
convergence for a function and its derivatives). If vn weakly converges towards v in
L2
V , then dkϕv

n

converges uniformly on every compact sets towards dkϕv, ∀0 ≤ k ≤ p.

From this, we can state the next proposition :

Proposition 39. Suppose that V ↪→ C3
0(Rd,Rd). If vm ⇀ v in L2

V , then on
every compact sets of Rd × Sd−1, ψv

m → ψv, dψv
m → dψv

Proof. If we suppose that vm ⇀ v in L2
V , then on every compact sets of Rd,

we have : ϕv
m → ϕv, dϕv

m → ϕv and d2ϕv
m → d2ϕv uniformly. Now, let K be

a compact set of Rd. On K, ϕv
n

converges uniformly toward ϕv, which proves the
uniform convergence for the first component of ψ. For the second component, we
consider the application θ :

θ : (A,n) ∈ GLd(R)× Sd−1 7→ A−tn

‖A−tn‖
∈ Sd−1

where the notation A−t stands for (A−1)t, the transpose of the inverse. θ is continuous
and then is uniformly continuous on every compact sets of GLd(R)×Sd−1. Moreover,

ψ(x, n) =
(
ϕ(x), θ(dϕx, n)

)
Denoting dϕ(K) = {dϕx|x ∈ K}, dϕ(K) is a compact of GLd(R) (the image of a
compact by a continuous application is compact) θ is then uniformly continuous on
dϕ(K) × Sd−1. Since the uniform convergence is preserved by the composition with
a uniformly continuous function, and since dϕv

m

uniformly converges toward dϕv,
it proves that the second component of ψv

m

converges uniformly on every compact
sets of Rd × Sd−1. Which proves that ψv

m

converges uniformly towards ψv on every
compact sets.

The proof of the uniform convergence of dψv
m

is similar, using the uniform con-
vergence of d2ϕv

m

.

We recall here a proposition from [16], proposition 34.

Proposition 40. Let W be a RKHS of m-differential forms continuously em-
bedded in Ωm1,0(Rd). Let S be a m-rectifiable set. If φn and dφn converge uniformly
towards φ and dφ on the support S, then φn] S converges towards φ]S in W ′.

We can now prove Theorem 37 :

Proof. Suppose that vn ⇀ v in L2
V . By Proposition 39, ψv

n → ψv and dψv
n →

dψv. Then, with Proposition 40, and the fact that W is embedded in
C1

0

(
Rd × Sd−1,Λd−1(Rd × Rd)

)
we have ψv

n

] N(C) → ψv]N(C) in W ′, which implies

that
∥∥∥ψvn] N(C)−N(S)

∥∥∥2

W ′
→
∥∥∥ψv]N(C)−N(S)

∥∥∥2

W ′
and this is exactly the weak

continuity of our data attachment term. We conclude using Theorem 36.

In this article, KV will be a Cauchy kernel, with width σV : KV (x, y) = 1

1+
|x−y|2

σ2
V

,

and W is as in Proposition 23. So that we have existence of a minimizer for 23.
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Knowing that a minimizer exists is a first step, and we will focus now on the
problem to find such a minimizer.

In the next section, we focus on the discrete problem : we consider discrete shapes
Cd and Sd. The geodesic equation followed by ϕvt are simpler and we will explicit
the approximations made for the data attachment term in order to have a tractable
algorithm for the minimization procedure.

4.2. LDDMM, computational framework. A discrete shape Cd is defined as
a set of N points (xi)1≤i≤N in Rd (the vertices), with a connectivity matrix describing
the connexion between the vertices. This applies for curves in R3 but also for any
polyhedral shape in Rd. However, we will restrain our problem to curves in Rd, and
we will use the approximation of normal cycles for segments seen in Definition 33 .
The functional to minimize is then :

(24) J ′(v) =

∫ 1

0

‖vt‖2V dt+ ‖ϕv1.N(Cd)
approx −N(Sd)

approx‖2W ′

However, ϕv1.N(Cd)
approx = ψv1]N(C)approx is too complex to be implemented nu-

merically. To overcome this difficulty, we approximate the action of ϕv on Cd. For
this purpose, we define Cd,ϕv as the discrete curve with vertices (ϕv1(xi))1≤i≤N with
the same connectivity matrix as Cd. This means that we consider that ϕv induces a
displacement of the vertices only, and the displaced vertices are linked with straight
lines. From this, we introduce the approximate matching problem, with the functional
J̃ :

(25) J̃(v) =

∫ 1

0

‖vt‖2V dt+ ‖N(Cd,ϕv )approx −N(Sd)‖2W ′

As shown in [16], if we denote by qi(t) = ϕvt (xi) the points trajectories, the energy
term in (25) enforces the optimal vector field to be a geodesic path and to write

(26) vt =

N∑
i=1

KV (·, qi(t))pi(t)

where the pi(t) ∈ Rd are auxiliary variables and are called momentum vectors. Fur-
ther, it was shown in [20] (and detailed in an optimal control point of view in [1])
that the problem can be written in Hamiltonian form : if we denote Hr the reduced
Hamiltonian :

Hr(p(t), q(t)) =
1

2

N∑
i=1

N∑
j=1

pj(t)
TKV (qi(t), qj(t))pi(t) = ‖vt‖2V ,

qi and pi must satisfy coupled geodesic equations which write

(27)


q̇i(t) =

N∑
j=1

KV (qi(t), qj(t))pj(t) =
∂Hr

∂pi

ṗi(t) = −(dqi(t)vt)
∗pi(t) = −∂Hr

∂qi
.
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This Hamiltonian is constant along geodesic path and thus is a function of the initial
momenta p0 and the initial positions q0. As could be expected, this implies that the
optimal velocity vector field vt in (26) is of constant norm : ‖vt‖2V = cste = Hr(q0, p0).
Initial positions being fixed, we can consider Hr and further ϕv as function of the p0

only ϕp0 . The Hamiltonian formalism reduces the initial problem of minimization on
an infinite dimensional Hilbert space V (25) to a minimization on (Rd)N :

(28) min
p0∈(Rd)N

Hr(p0, q0) + ‖N(Cd,ϕp0 )approx −N(Sd)‖2W ′

and where q and p follow the coupled geodesic (27). The second term depends only
on the position of the final vertices : (qi(1))1≤i≤N = (ϕp01 )1≤i≤N that we will denote
q(1). The data attachment term is then a function of q(1) : A(q(1)).

(29) min
p0∈(Rd)N

J(p0) := γHr(p0, q0) +A(q(1))

with q and p following (27). As said before, A is a measure of the residual dissimilarity
between the deformed shape at time 1 with vertices q(1) and the target shape Sd.

This function can be computed explicitely using the expressions for the scalar
products (17), (18). We refer to [20, 1] for an explicit algorithm to minimize (29)
with a gradient descent on initial momenta). This algorithm is called geodesic shoot-
ing. A numerical implementation of the minimization requires the computation of
∇A((xk)1≤k≤N )), which takes an explicit form by deriving these expressions. See
Appendix E.

5. Application to 3D Curve Matching. In our numerical implementation,
we use the shooting algorithm and optimize the functional depending on p0 with
a quasi Newton Broyden Fletcher Goldfarb Shanno algorithm with limited memory
(L-BFGS) [18]. The step in the descent direction is fixed by a Wolfe line search.
For the numerical integrations, a Runge-Kutta (4,5) scheme is used (function ode45
in Matlab). For the deformation model, we set KV to be a scalar Cauchy kernel
KV (x, y) = 1/(1 + |x− y|2/σ2

V )Id, with σV a scale parameter. For the normal cycles,
the point kernel kp is a Gaussian kernel, with width σW , and the normal kernel kn
is a Sobolev kernel, associated with the operator L = (I −∆)3. We used a spherical
harmonics expansion of this kernel truncated at order 10 for the numerical purpose.
We chose to use a weighted scalar product for normal cycles (see Note 22 and Note 32)
with weight λ of the form λ = ασ2

W , where α > 0 is a fixed parameter. Setting λ to
be proportional to σ2

W comes from a simple homogeneity analysis of the functional
(29) : when scaling the data coordinates by a factor η, scaling accordingly the width
parameters σV and σW by the same factor, and evaluating at p′0 = ηp0, the energy
term Hr and the cylindrical parts of the scalar products in the normal cycles term are
multiplied by η2, while the spherical part is kept unchanged. Hence multiplying the
spherical part by a factor proportional to σ2

W ensures homogeneity of the functional
with respect to scaling. In all our experiments, we set α = 10.

In this section, we show some of our results on synthetic data and compare them
with the varifolds method and currents method. The point kernel chosen for the
varifolds is a Gaussian kernel, with the same width σW as for normal cycles. The
kernel associated with the Grassmanian is chosen linear (see [8]), so that no parameter
is involved as for the normal kernel with normal cycles. Lastly, a Gaussian kernel is
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used as well for currents, again with width σW . The trade-off parameter γ is set to
γ = 0.1 in all experiments. All the numerical computations have been done on a
laptop using Matlab.

Registrations of branching curves (Figure 3). The first example of registration
is two 3D curves with branching. These curves were chosen because the distance
between them is large compared to their typical sizes, the curves have some high local
curvature and the size of the corresponding branches implies high local deformations.
Besides, we would like to see the behaviour of normal cycles with respect to connecting
points.

The two curves are enclosed in a cubic box of size one. Both curves have 150
vertices. In Figure 3, we show two views of a matching using with normal cycles,
varifolds and currents. The kernel KV associated to the deformation space is chosen
to be a Cauchy kernel, with width σV = 0.2. Computation time for registration with
currents and varifolds were 178 and 316 seconds respectively. Computations with
normal cycles are more expensive and took 811 seconds. For validation prurposes, in
order to have a measurement of the closeness between the two matched curves and
compare the different registrations, we computed the Hausdorff distance and a mean
Hausdorff distance defined as

ds(S,C
′) = max

(
sup
x∈C′

d(x, S), sup
x∈S

d(y, C ′)

)
,

dm(S,C ′) =
1

H1(C ′) +H1(S)

(∫
C′
d(x, S)dH1(x) +

∫
S

d(y, C ′)dH1(y)

)
.

In practice these quantities were approximated by subsampling each polygonal curve
and evaluating all pairwise distances between vertices.

Registration of fishes contours (Figure 4). Here a registration between two fishes
contours is performed (see [24] for the original data). Even if they are 2D objects, we
consider them as 3D objects with no z variation. In this example, fishes have around
100 vertices. A first optimization of the momenta was performed with parameters
σW = 0.75 and σV = 0.2. This can be seen as an initialization step to avoid local
minima. Then minimization was done with σW = 0.2 and σV = 0.2. Computation
time was 149 seconds for normal cycles and 64 seconds for varifolds. The main diffi-
culty here is the trade off to find between the matching of the long tail of the stingray
(in green in Figure 4) and the high local curvature in the upper part of the fish in
dark. The results in Figure 4 show that a perfect matching with normal cycles can
be achieved, even with σW = 0.2 which is quite large compared to the local feature
in the upper part of the fish. With varifolds, one can see that this local feature still
remains in the green matched curve. To avoid this behaviour, one can decrease the
size of σW , but it would lead to a bad matching of the tail.

Registration of brain sulci (Figure 5). We show here an example on real data.
The data consist of brain sulcal curves that were automatically segmented and la-
belled from anatomical Magnetic Resonance Imaging (MRI) brain images, following
the method described in [3]. We chose two individuals and six labelled correspond-
ing sulcal curves for each individual. The matching is performed with a single de-
formation, but 6 data attachment terms with normal cycles : one for each pair of
corresponding sulci. Processing times were 29 min using normal cycles and 21 min
with varifolds. The matching is complex since the number of branching points is not
necessary the same for corresponding curves, and two curves to match can be really
twisted from one to another. Moreover, the fact that a single deformation is required



KERNEL METRICS ON NORMAL CYCLES 29

(a) Normal cycles, view 1,
ds = 0, 0261, dm = 0, 0048

(b) Normal cycles,
view 2,

(c) Varifolds, view 1, ds =
0, 0681, dm = 0, 0236

(d) Varifolds, view 2

(e) Current, view 1, ds =
0, 0962, dm = 0, 0314

(f) Currents, view 2

Fig. 3. Registration of two 3D curves with different data attachment terms. Initial curve is in
black, target curve in red, and deformed curve in green. Trajectories of vertices along the flow are
displayed in blue. Parameters are σV = 0.2 and σW = 0.3

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) Normal cycles, ds = 0, 0236, dm =
0, 0082
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−0.5

0

0.5

1

(b) Varifolds, ds = 0, 0416, dm = 0, 0110

Fig. 4. Registration of a dark fish to a red fish. In green the dark deformed fish matching the
red one. We used normal cycles and varifolds with the same parameters σV = 0.2 and σW = 0.2.
The registration with currents is worse than with varifolds.
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(d) t = 1

(e) Zoom

Fig. 5. Registration of brain sulci of two subjects with normal cycles. σV = 10 and σW = 7.
The size of the kernels are given in mm. dS = 2, 90 dm = 0, 54 . The registration has also been
done with varifolds with the same parameters and we obtain : ds = 4.46 and dm = 0.84.

for the whole brain implies high local variations. We see in the result that the end
points and corresponding branching points are always well matched. Moreover, the
registration driven by normal cycles allows complex local deformation (even though
it is expensive) to reduce the data attachment term.
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In conclusion we have seen that despite an increase of the calculation time, nor-
mal cycles improve the matching, especially for branching curves, or curves with end
points. Besides taking into account the curvature of the curves, we believe that an-
other advantage of using normal cycles for the matching of such structures is the
”connection cost”. Indeed the norm of two segments at distance ε with ε→ 0 is dif-
ferent from the norm of the joint segments, and the difference is exactly the norm of
a sphere. This observation is clear when looking at the decomposition of the normal
bundle used (Subsection 3.2.1). This cost of connection does not appear for currents
or varifolds. More generally, currents and varifolds are m-dimensional measures as-
sociated with a m-dimensional objects, and thus are insensitive to the boundaries
(which is m − 1 dimensional). Since normal cycles consider currents associated with
the normal bundle, the boundaries are also taken into account during the registration,
and are enforced to match as well.

6. Perspectives. In this article, we have presented the first application of nor-
mal cycles in the context of 3D curve registration. We have seen that the represen-
tation with normal cycle encodes all the curvature information of a shape. As for
currents, a kernel metric is used to provide a closed form for the distance between
two curves, and a numerical derivation is done for curves approximated by unions
of segments. The first results on synthetic data are promising and suggest that nor-
mal cycles perform better on connection points and regions with high curvature. Of
course, taking into account the curvature can be problematic if the data are noisy.
For such problem, a matching with currents would be more efficient. More exhaus-
tive studies on synthetic and real data are necessary to validate this method. The
next stage will be the registration using normal cycles for surfaces. This case is more
intricate, at least numerically since the decomposition of normal bundle as seen in
section 3 is more complex. This brings us to the question of good approximations for
normal cycles, in order to reduce the numerical complexity of the matching algorithm.
Moreover, the set up of the computational framework for the matching problem made
in subsection 4.2 is a first step for the study of the gamma convergence of our discrete
problems. We also would like to investigate the link between varifolds and normal
cycles, as we believe that varifolds can be seen in our context as a projection of normal
cycles, by ignoring variation in Sd−1.

Acknowledgments. We thank Guillaume Auzias for extracting and providing
us the dataset of sulcal curves used in our experiments.

Appendix A. Spherical Harmonics. The sphericals harmonics are eigen-
vectors of the spherical Laplacian. In the same spirit as Fourier expansion, spherical
harmonics are useful to expand a function on the sphere since they form an orthonor-
mal basis of the Hilbert space L2(S2). This basis encodes spatial frequencies on the
latitude and the longitude : the first spherical harmonics describe low spatial varia-
tion on the sphere, and the more we expand a function on this basis, the more details
about the spatial frequencies of this function we get.

Spherical harmonics will be useful in this paper to explicit the normal kernel :
since the RKHS we chose on the sphere is a Sobolev Hilbert space, it can be expressed
as the RKHS defined by an operator LV = (Id−∆)s, and the normal kernel will have
an explicit expansion.

A scalar function on the unit sphere can be seen as a function of two variables θ, ϕ,
where θ ∈ [0, π] is the polar angle and ϕ ∈ [0, 2π] the azimuthal angle (see Figure 6)
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Fig. 6. Spherical coordinates, ϕ ∈ [0, 2π] and θ ∈ [0, π]

There are 2l + 1 spherical harmonics of order l, denoted (Yl,m)−l≤m≤l and satis-
fying the equations

(30)


−∆S2Yl,m(θ, ϕ) = l(l + 1)Yl,m(θ, ϕ)

−∂Yl,m
∂ϕ

= mYl,m(θ, ϕ)

The (Yl,m) l≥0
−l≤m≤l

form an orthonormal basis of L2(S2), endowed with its usual

scalar product. Thus, any f ∈ L2(S2) can be written

f =
∑
l≥0

l∑
m=−l

αl,mYl,m

where the limit is in L2. We have explicit expression of the spherical harmonics with
the Legendre polynomials . We will rather use the real spherical harmonics :

(31)



Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ)

Y clm(θ, ϕ) =

√
2l + 1

2π

(l −m)!

(l +m)!
Pml (cos θ) cos(mϕ)

Y slm(θ, ϕ) =

√
2l + 1

2π

(l −m)!

(l +m)!
Pml (cos θ) sin(mϕ)

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l

=
∑
l
2≤k≤l

(−1)l−k
(2k − 1)!!

(l − k)!(2k − l)!2l−k
x2k−l

and
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Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x)

= (−1)l+m(1− x2)m/2
∑

m+l
2 ≤k≤l

(−1)k
(2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k
x2k−(m+l)

with (2n+ 1)!! = 1 ∗ 3 ∗ · · · ∗ (2n+ 1) et (2n)!! = 2 ∗ 4 ∗ · · · ∗ 2n.

Appendix B. Some Notations.

akl :=

∫ π

0

sink θ cosl θdθ =
l − 1

k + 1
ak+2,l−2

We get obviously with induction :

akl =



0 if l is odd

2(k − 1)!!(l − 1)!!(k + l − 1)!!

(k + l)!
if l is even and k odd

(l − 1)!!(k − 1)!!

(k + l − 1)!!

(k + l)!

(k + l)!!2
π if k, l are even

With these notations, we have :

Dl,0,i,j =

√
2l + 1

4π

∫ π

0

Pl(cos θ) sini θ cosj θdθ

=

√
2l + 1

4π

∑
l/2≤k≤l

(−1)l−k
(2k − 1)!!

(l − k)!(2k − l)!2l−k
ai,2k−l+j

et

Dl,m,i,j =

√
2l + 1

2π

(l −m)!

(l +m)!

∫ π

0

Plm(cos θ) sini θ cosj θdθ

=

√
2l + 1

2π

(l −m)!

(l +m)!

×
∑

m+l
2 ≤k≤l

(−1)k+l+m(2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k

∫ π

0

sinm+i θ cos2k−m−l+j θdθ

=

√
2l + 1

2π

(l −m)!

(l +m)!

∑
m+l

2 ≤k≤l

(−1)k+l+m(2k − 1)!!

(l − k)!(2k − (m+ l))!2l−k
am+i,2k−m−l+j

(32)

Appendix C. Computing the scalar product between cylindrical parts
(17).

We compute here the approximate scalar product between the cylindrical parts of
two segments, C1 and S1. C1 = [c0, c1] and S1 = [s0, s1]. We use the same notations
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as in subsection 3.2.1 If we denote α = c1−c0
‖c1−c0‖ and β = s1−s0

‖s1−s0‖ (notice that for every

x ∈ C1, y ∈ S1, τC1
(x) = α and τS1

(y) = β) we have :

〈
N(C1)cylapprox, N(S1)cylapprox

〉
W ′

=
〈
δ c0+c1

2 ,α⊥
, δ s0+s1

2 ,β⊥

〉
W ′

and we can sum up the scalar product :
(33)〈

N(C1)cylapprox, N(S1)cylapprox
〉

=

{
kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

}
×

{∫
S⊥α

∫
S⊥β

kn(u, v)
〈
τS⊥α (u), τS⊥β (v)

〉
dH1(u)dH1(v)

}

The first factor necessitate only the evaluation of the point kernel at the middle of the
segments. The second factor is more involved : we will use the expansion on spherical
harmonics of the normal kernel developed in subsection 2.4.

A first and very important remark is the future use of the invariance of the normal
kernel under a rotation. This means that, if u, v ∈ S2, kn(u, v) depends only of the
relative position of u and v. And by invariance of the kernel, we can suppose that
α = (1, 0, 0) and β = (cosϕ, sinϕ, 0) where ϕ ∈ [0, π] is the unoriented angle between
α and β (the notations were defined in Figure 6). We will now formulate the integral
with the parametrization of the sphere (ϕ, θ). One should be cautious that the tangent
vector τC(x) should have a coherent orientation with α and u, i.e. τS⊥α (u) = −α ∧ u,

with u =

sin θu cosϕu
sin θu sinϕu

cos θu

, et τS⊥β (v) = −β∧v, avec β =

cosϕv
sinϕv

0

. u should describe

all S⊥α , which means ϕu = ±π2 , θu ∈ [0, π] and v should describe all S⊥β , which means
ϕv = ±π2 + ϕ, θv ∈ [0, π]. Then, we get
(34)〈

N(C1)cylapprox, N(S1)cylapprox
〉
W ′

= kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉∑

ϕu=±π2

∑
ϕv

=ϕ±π2

∫ π

0

∫ π

0

kn(u, v)(cosϕ cos θv cos θu + sin θu sinϕu sin θv sin(ϕv − ϕ))dθudθv
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Developing kn in spherical harmonics and regrouping the terms gets :

〈
N(C1)cylapprox, N(S1)cylapprox

〉
W ′

= kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

∑
ϕu=±π2

∑
ϕv

=ϕ±π2∑
l≥0

1

λl

{∫ π

0

Yl0(x) cos θudθu

∫ π

0

Yl0(y) cos θvdθv cosϕ

+

∫ π

0

Yl0(x) sin θudθu

∫ π

0

Yl0(y) sin θvdθv sinϕu sin(ϕv − ϕ)

+

l∑
m=1

∫ π

0

Y clm(x) cos θudθu

∫ π

0

Y clm(y) cos θvdθv cosϕ

+

∫ π

0

Y clm(x) sin θudθu

∫ π

0

Y clm(y) sin θvdθv sinϕu sin(ϕv − ϕ)

+

l∑
m=1

∫ π

0

Y slm(x) cos θudθu

∫ π

0

Y slm(y) cos θvdθv cosϕ

+

∫ π

0

Y slm(x) sin θudθu

∫ π

0

Y slm(y) sin θvdθv sinϕu sin(ϕv − ϕ)

}

Using the notations of Appendix B, we get :

〈
N(C1)cylapprox, N(S1)cylapprox

〉
W ′

= kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

∑
ϕu=±π2

∑
ϕv

=ϕ±π2∑
l≥0

1

λl

{
D2
l,0,0,1 cosϕ+D2

l,0,1,0 sinϕu sin(ϕv − ϕ)

+

l∑
m=1

D2
l,m,0,1 cosϕ cos(m(ϕu − ϕv))

+

l∑
m=1

D2
l,m,1,0 cos(m(ϕu − ϕv)) sinϕu sin(ϕv − ϕ)

}

Since

∑
ϕu∈{±π2 }

∑
ϕv∈{ϕ±π2 }

cosϕ cos(m(ϕu − ϕv)) =

{
0 if m odd

4 cosϕ cos(mϕ) if m even

and

∑
ϕu∈{±π2 }

∑
ϕv∈{ϕ±π2 }

sinϕu sin(ϕv − ϕ) cos(m(ϕu − ϕv)) =

{
0 if m even

4 cos(mϕ) if m odd
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We gather the terms and get

〈
N(C1)cylapprox, N(S1)cylapprox

〉
W ′

= kp

(
c0 + c1

2
,
s0 + s1

2

)
〈c1 − c0, s1 − s0〉

×
∑
l≥0

1

λl
{(4D2

l,0,0,1 + 2D2
l,2,0,1 + 4D2

l,1,1,0) cosϕ

+

l∑
m=3
m odd

[
4D2

l,m,1,0 + 2D2
l,m−1,0,1 + 2D2

l,m+1,0,1

]
cos(mϕ)}

Interverting the summation symbols, we obtain

〈
N(C1)cylapprox, N(S1)cylapprox

〉
W ′

= kp

(
c0 + c1

2
,
s0 + s1

2

)
× 〈c1 − c0, s1 − s0〉

∑
m≥0

am cos(mϕ)
(35)

with



a1 =
∑
l≥0

1

λl
(4D2

l,0,0,1 + 2D2
l,2,0,1 + 4D2

l,1,1,0)

a2m−1 =
∑

l≥2m−1

1

λl
(4D2

l,2m−1,1,0 + 2D2
l,2m−2,0,1 + 2D2

l,2m,0,1)

a2m = 0

Appendix D. Computing the scalar product between the spherical
parts. This computation is somehow similar to the previous one. However, one
should be cautious at the different terms involved in the computation. As seen in
(16), there are different objects in the spherical scalar product : the half sphere, as-
sociated with the extremities of the segments, and the sphere, associated with the
vertices. Thus the scalar product involves cross term. We begin with the scalar prod-
uct between two spheres, i.e. the normal cycles associated with isolated vertices a and
b. One should be cautious when parametrizing the integral, as the volume element on
the sphere is non trivial.

〈N({a}), N({b})〉W ′ =kp(a, b)

∫ 2π

0

∫ π

0{∫ 2π

0

∫ π

0

kn(u, v)(sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv) sin θvdϕvdθv

}
sin θudϕudθu
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With an expansion on spherical harmonics of kn :

〈N({a}), N({b})〉W ′ = kp(a, b)

∫ 2π

0

∫ π

0


∫ 2π

0

∫ π

0

∑
l≥0

1

λl

(
Yl0(x)Yl0(y)

+

l∑
m=1

Y clm(x)Y clm(y) + Y slm(x)Y slm(y)
)

×
(

sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv
)

sin θvdθvdϕv
}

sin θudθudϕu

= kp(a, b)
∑
l≥0

1

λl

(
4π2D2

l,0,1,1

+

∫ 2π

0

∫ π

0

Y cl,1(x) sin2 θudθu

∫ 2π

0

∫ π

0

Y cl,1(y) sin2 θv cos(ϕu − ϕv)dϕudθvdϕv

+

∫ 2π

0

∫ π

0

Y cl,1(x) sin θu cos θudθu

∫ 2π

0

∫ π

0

Y cl,1(y) sin θv cos θvdϕudθvdϕv︸ ︷︷ ︸
=0

+

∫ 2π

0

∫ π

0

Y sl,1(x) sin2 θudθu

∫ 2π

0

∫ π

0

Y sl,1(y) sin2 θv cos(ϕu − ϕv)dϕudθvdϕv

+

∫ 2π

0

∫ π

0

Y sl,1(x) sin θu cos θudθu

∫ 2π

0

∫ π

0

Y sl,1(y) sin θv cos θvdϕudθvdϕv︸ ︷︷ ︸
=0

)

The integral of the variables ϕu et ϕv cancels all the other terms:∫ 2π

0

∫ 2π

0

cos(mϕu) cos(mϕv) cos(ϕu − ϕv)dϕudϕv = 0, ∀m ≥ 2

and for m = 1,∫ 2π

0

∫ 2π

0

cos(ϕu) cos(ϕv) cos(ϕu − ϕv)dϕudϕv = π

∫ 2π

0

cos2 ϕvdϕv = π2

=

∫ 2π

0

∫ 2π

0

sin(ϕu) sin(ϕv) cos(ϕu − ϕv)dϕudϕv

With the same calculus as in Appendix C we get :

(36) 〈N({a}), N({b})〉W ′ = kp(a, b)
∑
l≥0

1

λl

(
4π2D2

l,0,1,1 + 2π2D2
l,1,2,0

)
The scalar product between a half-sphere S+

α at point a, and a sphere follows the
exact same calculus and we get :

(37)
〈
[{a} × S+

α ], N({b})
〉
W ′

= kp(a, b)
∑
l≥0

π

λl

(
2πD2

l,0,1,1 + πD2
l,1,2,0

)
For the scalar product between two half spheres, S+

α and S+
β at point a and b :〈

[{a} × S+
α ], [{b} × S+

β ]
〉
W ′

= kp(a, b)I(α, β)
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where

I(α, β) =

∫ π

0

∫ π
2

−π2

{∫ π

0

∫ ϕ+π
2

ϕ−π2
kn(u, v)(sin θu sin θv cos(ϕu − ϕv)

+ cos θu cos θv) sin θvdϕvdθv
}

sin θudϕudθu

Again, with an expansion on spherical harmonics :

I(α, β) =
∑
l≥0

1

λl

∫ π
2

−π2

∫ π

0

∫ ϕ+π
2

ϕ−π2

∫ π

0

(
Yl0(x)Yl0(y) +

l∑
m=1

Ylm(x)Ylm(y)
)

[sin θu sin θv cos(ϕu − ϕv) + cos θu cos θv] sin θv sin θudθvdϕvdθudϕu

Integration on θu and θv gets (with notations of Appendix B) :

I(α, β) =
∑
l≥0

1

λl

{
D2
l,0,2,0

∫ π
2

−π
2

∫ ϕ+π
2

ϕ−π2
cos(ϕu − ϕv)dϕvdϕu︸ ︷︷ ︸

=4 cosϕ

+π2D2
l,0,1,1

+

l∑
m=1

D2
l,m,1,1

∫ π
2

−π2

∫ ϕ+π
2

ϕ−π2

(
cos(mϕu) cos(mϕv) + sin(mϕu) sin(mϕv)

)
dϕvdϕu

+

l∑
m=1

D2
l,m,2,0

∫ π
2

−π2

∫ ϕ+π
2

ϕ−π2

(
cos(mϕu) cos(mϕv) + sin(mϕu) sin(mϕv)

)
cos(ϕu − ϕv)dϕvdϕu

}

I(α, β) =
∑
l≥0

1

λl

4D2
l,0,2,0 cosϕ+ π2D2

l,0,1,1 +
π2

2
D2
l,1,2,0 +

l∑
m=1
m odd

4D2
l,m,1,1

m2
cos(mϕ)

+

l∑
m=1

m even

D2
l,m,2,0

[
2

(m− 1)2
cos((m− 1)ϕ) +

2

(m+ 1)2
cos((m+ 1)ϕ)

]
We can write :

I(α, β) =
∑
l≥0

1

λl

l∑
m=0

al,m cos(mϕ)

=
∑
m≥0

∑
l≥m

al,m

 cos(mϕ)

So

(38)
〈

[{a} × S+
α ], [{b} × S+

β ]
〉
W ′

= kp(a, b)
∑
m≥0

bm cos(mϕ)
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where bm =
∑
l≥m al,m with

b0 =
∑
l≥0

π2D2
l,0,1,1

λl
+
∑
l≥1

π2

2λl
D2
l,1,2,0

b1 =
∑
l≥0

4D2
l+1,1,1,1

λl+1
+

4D2
l,0,2,0

λl
+

2D2
l+2,2,2,0

λl+2

bm =
1

m2

∑
l≥m

4D2
l,m,1,1

λl
+

2D2
l−1,m−1,2,0

λl−1
+

2D2
l+1,m+1,2,0

λl+1
if m odd ,m > 1

bm = 0 if m even ,m > 0

Appendix E. Computing the Gradient of the Norm Associated with a
Kernel Metric on Normal Cycles.

Here, we compute in the discrete case the gradient of the cylindrical part of the
kernel metric on normal cycles.

Acyl(C1, C2) :=
∥∥N(C1)cyl −N(C2)cyl

∥∥2

=
∥∥N(C1)cyl

∥∥2
+
∥∥N(C2)cyl

∥∥2 − 2
〈
N(C1)cyl, N(C2)cyl

〉
If we keep the same notations as in the previous appendixes, with

θij = arccos

(〈
fi
|fi|

,
fj
|fj |

〉)
, we have (by composing the differentiation) :

∂xkA
cyl =

n∑
i=1

∂piA
cyl ◦ ∂xkpi + ∂x

f1
i

Acyl ◦ ∂xkxf1
i

+ ∂x
f2
i

Acyl ◦ ∂xkxf2
i

with

∂piA
cyl =

n∑
j=1

(∂1kp(pi, pj) + ∂2kp(pj , pi)) 〈fi, fj〉
∑
m≥0

am cos(mθij)

− 2

m∑
j=1

∂1kp(pi, qj) 〈fi, gj〉
∑
m≥0

am cos(mϕij)

∂f2
i
Acyl = 2

 n∑
j=1

kp(pi, pj)
∑
m≥0

am cos(mθij)fj −
m∑
j=1

kp(pi, qj)
∑
m≥0

am cos(mϕij)gj


+ 2

 n∑
j=1

kp(pi, pj) 〈fi, fj〉
∑
m≥0

δi 6=j
m sin(mθij)

| sin(θij)|
1

|fj |

(
fj
|fi|
−
〈
fi
|fi|

,
fj
|fi|

〉
fi
|fi|

)

−
m∑
j=1

kp(pi, qj) 〈fi, gj〉
∑
m≥0

am
m sin(mϕij)

| sin(ϕij)|
1

|gj |

(
gj
|fi|
−
〈
fi
|fi|

,
gj
|fi|

〉
fi
|fi|

)
here, we use :
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∂f2
i

cos(mϕij) =
m sin(mϕij)

| sin(ϕij)|
∇f2

i

〈
fi
|fi|

,
gj
|gj |

〉
=
m sin(mϕij)

| sin(ϕij)|
1

|fi|

(
gj
|gj |
−
〈
fi
|fi|

,
gj
|gj |

〉
fi
|fi|

)
=
m sin(mϕij)

| sin(ϕij)|
1

|fi|
pf⊥i

gj
|gj |

with pf⊥i is the orthogonal projection on f⊥i , and

 ∂xkpi =
1

2

(
δ{k=f1

i } + δ{k=f2
i }

)
Id

∂xkxf1
i

= δ{k=f1
i }Id

Then, we get for the gradient of Acyl :

∇Acyl((xk)1≤k≤N ) =

 n∑
i=1

 n∑
j=1

(∇1kp(pi, pj) +∇2kp(pj , pi)) 〈fi, fj〉
∑
m≥0

αm cos(mθij)

−2

m∑
j=1

∇1kp(pi, qj) 〈fi, gj〉
∑
m≥0

am cos(mϕij)

 1

2
(δ{k=f1

i } + δ{k=f2
i })

+ 2

n∑
i=1

 n∑
j=1

kp(pi, pj)
∑
m≥0

am cos(mθij)fj −
m∑
j=1

kp(pi, qj)
∑
m≥0

am cos(mϕij)gj


× (δ{k=f2

i } − δ{k=f1
i })

+ 2

n∑
i=1

 n∑
j=1

kp(pi, pj) 〈fi, fj〉
∑
m≥0

δi 6=jam
m sin(mθij)

| sin(θij)|
1

|fi|
pf⊥i

fj
|fj |

−
m∑
j=1

kp(pi, qj) 〈fi, gj〉
∑
m≥0

am
m sin(mϕij)

| sin(ϕij)|
1

|fi|
pf⊥i

gj
|gj |


× (δ{k=f2

i } − δ{k=f1
i })

]
1≤k≤N

One can check that ∇Acyl((xk)1≤k≤N ) ∈ (R3)N

With the same type of calculus, that we do not detail here, we get also the gradient
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for the spherical part :

∇Asph((xk)1≤k≤N ) =

(
N∑
l=1

(∇1kp(xk, xl) +∇2kp(xl, xk))

[(
1− nxk + nxl

2

)
K

+

n∑
i=1

m∑
j=1

(δ{k=f1
i } − δ{k=f2

i })(δ{l=f1
j } − δ{l=f2

j })
∑
m≥0

bm cos(mθij)


− 2

M∑
l=1

∇1kp(xk, yl)

[(
1− nxk + nyl

2

)
K

+

n∑
i=1

m∑
j=1

(δ{k=f1
i } − δ{k=f2

i })(δ{l=g1j} − δ{l=g2j})
∑
m≥0

bm cos(mϕij)


+ 2

∑
s vertex

linked to k

N∑
l=1

kp(xs, xl)
n∑
i=1

m∑
j=1

(2δk=s − 1)(δ{l=f2
j } − δ{l=f1

j })(δ{s=f1
i } + δ{s=f2

i })

×
∑
m≥1

bm
m sin(mθij)

| sin(θij)|
1

|fi|
pf⊥i

gj
|gj |

− 2
∑

s vertex
linked to k

M∑
l=1

kp(xs, yl)

n∑
i=1

m∑
j=1

(2δk=s − 1)(δ{l=g2j} − δ{l=g1j})(δ{s=f1
i } + δ{s=f2

i })

×
∑
m≥0

bm
m sin(mϕij)

| sin(ϕij)|
1

|fi|
pf⊥i

gj
|gj |

)
1≤k≤N
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