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Huong LE THI, Université Côte d’Azur, LJAD, CNRS & Inria, Nice, France & Department of Mathematics and
Informatics, Thang Long University, Ha Noi City, Viet Nam.
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ABSTRACT. This contribution explores the free dynamics of a simple two-degree-of-freedom vibro-impact
oscillator. One degree-of-freedom is unilaterally constrained by the presence of a rigid obstacle and periodic
solutions involving one sticking phase per period (1-SPP) are targeted. A solution method to obtain such
orbits is proposed: it provides conditions on the existence of 1-SPP as well as closed-form solutions. It is
shown that 1-SPP might not exist for a given combination of masses and stiffnesses. The set of 1-SPP is at
most a countable set of isolated periodic orbits. The construction of 1-SPP requires numerical developments
that are illustrated on a few relevant examples. Comparison with nonlinear modes of vibration involving one
impact per period (1-IPP) is also considered. Interestingly, an equivalence between 1-SPP and a special set
of isolated 1-IPP is established. It is also demonstrated that the prestressed system features sticking phases
of infinite duration.

KEYWORDS. vibration; impact; sticking phase; periodic solutions.

1. INTRODUCTION

In the context of vibration and modal analysis of vibro-impact oscillators, nonlinear modes of vibration
with non-grazing impact are explored in [15, 13, 9, 11, 19, 17]. In these works, a single degree-of-freedom
(dof) is unilaterally constrained by the presence of a rigid foundation: the dynamics is purely linear when
the contact constraint is not active, and governed by an impact law otherwise. Accordingly, the contact
force arising when the system interacts with the foundation is a periodic distribution of Dirac deltas.

Instead, the present work pays attention to periodic solutions involving long “sticking” contact phases,
thus discarding impulse-driven dynamics reported in the previous works, during which the contacting
mass rests against the obstacle for a finite amount of time. Let us clarify the terminology now: as
explained later, “sticking” here means that the impacting mass will rest on the rigid foundation for a
finite or infinite amount of time during its motion even though there is no “adhesion force” arising from
the rigid foundation and acting on the impacting mass. An equivalent terminology would be “lasting
non-impulsive” contact phases. This investigation is motivated by the fact that in a continuous setting in
space and time, unilateral contact forces are known to be discontinuous functions at most [8] while they
become impulsive after a semi-discretization in space via the Finite Element technique. The question is
then: are there non-impulsive solutions in the Finite Element framework and alike?

The N -degree-of-freedom case has been recently investigated in [18] with another approach. Some
important features of the singular dynamics near contacts with zero velocity have been presented in
[7, 10].

k1 k2 d
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m1 m2

FIGURE 1. Two degree-of-freedom vibro-impact system at equilibrium, d > 0

The system of interest is an oscillator with two masses m1 and m2 linearly connected through two
springs of stiffness k1 and k2 respectively, as depicted in Figure 1. The dynamics of interest reads:

M RuCKu D r (1.1a)

u.0/ D u0; Pu.0/ D Pu0 (1.1b)

u2.t/ � d; R.t/ � 0; .u2.t/ � d/R.t/ D 0; 8t (1.1c)
Pu>M PuC u>Ku D E.t/ D E.0/ (1.1d)
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where

M D
�
m1 0

0 m2

�
; K D

�
k1 C k2 �k2

�k2 k2

�
; u.t/ D

�
u1.t/

u2.t/

�
and r.t/ D

�
0

R.t/

�
:

Above, uj , Puj , and Ruj represent the displacement, velocity, and acceleration of mass j , j D 1; 2,
respectively. The fixed gap d is defined between the obstacle and the equilibrium position of the second
mass. It is the algebraic distance between mass 2 at rest without any external force and the rigid wall
and might thus be negative in the prestressed case. The quantity R.t/ is the reaction force of the wall on
mass 2.

Matrices M and K are symmetric positive definite so that there is a matrix P of eigenmodes which
simultaneously diagonalizes both of them, that is P>MP D I and P>KP D �2

D diag.!2
i /jiD1;2 where

I is the 2 � 2 identity matrix and !2
i , i D 1; 2 are the eigenfrequencies of the linear system without

unilateral contact.
Equation (1.1d) reflects the conservative nature of the system. Energy is preserved along a motion.

Equation (1.1d) implies the existence of a perfectly elastic impact law of the form PuC2 D �e Pu�2 with
e D 1 where Pu�2 and PuC2 respectively stand for the pre- and post-impact velocities of mass 2. As detailed
later, 1-SPP orbits are defined to be independent of the restitution coefficient e. Thus 1-SPP still exist
for e 2 Œ0 I 1�. However, the framework e D 1 is chosen for comparison with another class of periodic
solutions with nonzero velocity at the impact. Moreover, the structure of a general solution is simpler
when e D 1. This initial-value problem with conserved energy is known to be well-posed [14, 4]. The
sticking phase is known to appear as a limit of a chattering sequence [3, 7, 6, 12]. However in the present
work, there is no source term and sticking periodic solutions can still occur.

The paper is organized as follows. In Section 2, the definition of a “sticking phase” is provided and
conditions for its occurrence are stated. Then, necessary conditions satisfied by periodic solutions with
one sticking phase per period (1-SPP) are given in terms of the free flight duration s. The parameter s
appears to be the key parameter and a root of an explicit nonlinear function. Furthermore, when s is
known, the corresponding 1-SPP is expressed in closed form. The method and numerical examples are
described in Section 3 in order to find all 1-SPP.

Mathematical proofs are detailed in Section 4, 5 and 6. More precisely, Section 4 deals with the
structure of the space of solutions with a sticking phase. Section 5 is devoted to prove Theorem 2.1 on
1-SPP. The existence result of an infinite set of admissible initial data such that the associated solutions
satisfy the constraint u2 � d near the sticking phase is proven in Section 6. The existence of 1-SPP
satisfying the constraint u2 � d during the whole period remains an open problem. The prestressed
case with d � 0 is discussed in Section 7. Section 8 concludes the paper. In this work, all numerical
simulations are performed using the parameters m1 D m2 D 1 and k1 D k2 D 1, unless indicated
otherwise.

2. MAIN RESULTS

The occurrence of a sticking phase is first defined with necessary and sufficient conditions in Section 2.1.
Then, in Section 2.2, periodic solutions with one sticking phase per period, the so-called 1-SPP, are
characterized through necessary conditions to exhibit them all. Throughout the current work, internal
resonances are discarded, i.e. \2

jD1TjN D ;, unless stated otherwise.

2.1. Sticking phase. A sticking phase occurs when the mass number 2 stays at u2 D d on a proper time
interval.

Definition 2.1 — Sticking phase and its duration. Let u be a solution to System (1.1). A sticking phase
arises if there exist t0 2 R and T > 0 such that

u2.t/ D d; 8t 2 Œt0 I t0 C T �: (2.1)

Moreover, when there exists 0 < ı � 1 such that 8t 2 �0 I ıŒ

u2.t0 � t / < d and u2.t0 C T C t / < d; (2.2)

then t0 is the starting time and T is the duration of the sticking phase.
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The central reference [4] is used throughout the paper: existence is recalled, uniqueness and continuous
dependence to the initial data is proved. Moreover, in the conservative case, it is shown that there is no
impact accumulation. Accordingly, before and after the sticking phase, condition (2.2) above is sufficient
to properly define the beginning and the end of a sticking phase of finite duration. More precisely, it is
proven in Proposition 19 of [4] that the impact times are isolated for the perfectly elastic impact law. It
does not hold true when 0 < e < 1 since chattering might occur [7].

In the present work, the finite duration of the sticking phase for d > 0 is a consequence of Theorem 2.1.
This is not always true, as for example with the prestressed case d � 0 detailed in Section 7. Such
conditions are known to be related to the sign of the acceleration [7] just before impact and are already
precisely established for our two-dof system [9].

Theorem 2.1 — Sticking contact. Assume d > 0. There exists a sticking phase exactly starting at time
t0 and persisting on its right neighbhourhood if and only if:
(1) u2.t0/ D d , Pu�2 .t0/ D 0, u1.t0/ > d , or
(2) u2.t0/ D d , Pu�2 .t0/ D 0, u1.t0/ D d , Pu1.t0/ > 0.

The second case where u1.t0/ D d and Pu1.t0/ > 0 corresponds to the beginning of the sticking phase.
The duration of the sticking phase T then only depends on

v D Pu1.t0/; and

T .v/ D
2

!
arctan.�v/ where ! D

s
k1 C k2

m1
and � D

p
.k1 C k2/m1

k1 d
: (2.3)

The state of system at the end of the sticking phase is:

u2.t0 C T / D d; Pu�2 .t0 C T / D 0; u1.t0 C T / D d; Pu1.t0 C T / D �v: (2.4)

Moreover, the regularity of the curve f.u2.t/; Pu2.t//; t 2 Rg is C 1:5 at the point .u2; Pu2/ D .d; 0/ which
corresponds to the time interval Œt0; t0 C T �.

The starting of the sticking phase corresponding to the second case stated in Theorem 2.1 is only true
for e D 1 since there is the uniqueness of solution in the past for e D 1 [4]. For e < 1, the beginning
of the sticking phase can be for u1.t0/ > d . It is easy to see for e D 0. The proof of this theorem is
written in Section 4. The space C s is the Sobolev space W s;1 when s is a fractional number [2] which
is a generalization of Hölder spaces for s > 1. It should also be highlighted that there is no unilateral
constraint on mass 1. The expression u1 > d sometimes used below does not mean that the mass 1 hits
wall since u1 is the displacement and not the position of mass 1. In the sequel, we do not restrain u1.

The loss of regularity at the sticking point is quite clear in Figure 2. This is the least smooth point on
the curve f.u2.t/; Pu2.t//; t 2 Rg. Locally, the orbit is very similar to the graph of t 7! .d � jt j1:5; t /.
Elsewhere, the curve is analytic.

Incidentally, the proof of Theorem 2.1 leads to an explicit classification of all possible contact patterns.
There is no accumulation of impacts and only three distinct contact configurations arise. At t D t0, let us
assume u2.t0/ D d , then contact is
(1) an impact if Pu�2 .t0/ > 0;
(2) a grazing contact if Pu2.t0/ D 0 and R.t/ D 0 for all t � t0;
(3) a sticking contact if Pu2.t0/ D 0 and R.t/ < 0 for some t � t0.

Since the velocity of mass 2 shall be discontinuous, Pu2̇ .t0/ denotes its left/right limit. Due to energy
conservation, PuC2 .t0/ D �Pu�2 .t0/ in our model; in particular, when the incoming velocity vanishes, that is
Pu�2 .t0/ D Pu

C
2 .t0/ D Pu2.t0/ D 0, the velocity is continuous.

Sticking contact and grazing contact are the two possible contact occurrences [7] for an impact with
zero velocity. In general, it is challenging to know whether a zero velocity impact generates a reaction of
the wall without further information. For the considered two-dof system, simple conditions are given on
the position and velocity of mass 1 to distinguish a grazing contact from a sticking contact.
(1) An impact yields an instantaneous rebound with PuC2 .t0/ D �Pu�2 .t0/ < 0.
(2) A grazing contact means that the trajectory would not change irrespective of the presence of the wall.

As a corollary of Theorem 2.1, the data at time t0 is either u1.t0/ < d , u2.t0/ D d , and Pu2.t0/ D 0

or u1.t0/ D d , Pu1.t0/ � 0, u2.t0/ D d , and Pu2.t0/ D 0. Moreover, there exists " > 0 such that
R.t/ D 0 for all t 2 �t0 � " I t0 C "Œ;
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FIGURE 2. Admissible 1-SPP with a singularity 1:5 at the intersection between the red
trajectory and the wall, d D 1 and initial data U.0/ D Œ1; 1; 5:8624394; 0�. (a) Orbits
f.ui .t/; Pui .t//; t 2 Rg, i D 1; 2. (b) Displacements t 7! ui .t/, i D 1; 2. (c) Reaction of
the wall t 7! R.t/

(3) A sticking contact can be divided into three sequential steps:
(a) the beginning of a sticking contact: u1.t0/ D d , Pu1.t0/ > 0, u2.t0/ D d , and Pu2.t0/ D 0.

There exists " > 0 such thatR.t/ D 0 for all t 2 �t0�" I t0Œ andR.t/ < 0 for all t 2 �t0 I t0C"Œ;
(b) the resting phase of a sticking contact: u1.t0/ > d , u2.t0/ D d , and Pu2.t0/ D 0. There exists

" > 0 such that R.t/ < 0 for all t 2 �t0 � " I t0 C "Œ;
(c) the end of a sticking contact: u1.t0/ D d , Pu1.t0/ < 0, u2.t0/ D d , and Pu2.t0/ D 0. There

exists " > 0 such that R.t/ < 0 for all t 2 �t0 � " I t0Œ and R.t/ D 0 for all t 2 �t0 I t0 C "Œ.

2.2. Periodic solutions with one sticking phase per period. The main result of this paper is concerned
with the possible existence and computation of 1-SPP.

Definition 2.2 — One sticking phase per period solution. A function u is called a 1-SPP, if there exist
0 < T < T such that u is a T -periodic solution to (1.1) with one sticking phase per period, that is to say
up to a time translation that
(1) u2 D d on Œ0 I T �,
(2) u2 < d on �T IT Œ, and
(3) u.T / D u.0/ and Pu�.T / D Pu�.0/.

Condition (2) above can be relaxed to u2.t/ � d on �T IT Œ only. This yields admissible periodic
solutions with potentially many grazing contacts and sticking phases.

In order to find and characterize all 1-SPP, the following notations are needed:

P D
�
P11 P12

P21 P22

�
; B D P�1

D

�
B11 B12

B21 B22

�
(2.5)
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ˆj .s/ D
sin.!j s/

!j .1 � cos.!j s//
D

1

!j
cot
�!j s

2

�
; (2.6)

akj D �PkjBj1; bkj D
akj

!j
; ˛j D b1j � b2j ; ˇj D b1j ; (2.7)

wk.s/ D

2X
jD1

akjˆj .s/ D

2X
jD1

bkj cot
�!j s

2

�
; (2.8)

with j D 1; 2 and k D 1; 2. Note that the interaction coefficients akj in [11] and in this work have
opposite sign. If a 1-SPP exists, then there is only one control parameter, the duration of the free flight s,
which uniquely determines the 1-SPP through Theorem 2.2. The initial data and the period T are functions
of s. Conversely, such initial data may generate a ghost solution [15] if u2 becomes greater than d during
the free flight.

The natural way to obtain periodic solutions for System (1.1) is to look for the fixed points of the
associated first return map (FRM). From an quasi-explicit expression of the FRM, it appears that closed
forms except for an unknown parameter: the free flight time which is a root of an explicit function h.
The roots of h are carefully explored to obtain a countably infinite set of initial data which yields 1-SPP
if and only if the constraint u2 < d is satisfied during the free flight. This approach generalizes to the
prestressed case d � 0.

Theorem 2.2 — 1-SPP characterization. Assume u is a 1-SPP of System (1.1), then:
(1) The duration of the free flight s > 0 is necessarily a root of

h.s/ D w1.s/ � w2.s/ D

2X
jD1

˛j cot
�!j s

2

�
D 0: (2.9)

(2) The solution u corresponds to the initial data

Œu1.0/; u2.0/; Pu1.0/; Pu2.0/� D Œd; d; v; 0� where v D v.s/ D d=w1.s/: (2.10)

(3) The period T of u is a function of s: T .s/ D s C T .v.s// where T is defined in (2.3).
(4) The orbit is symmetric: u.� C t / D u.� � t /, 8t where � WD T C s=2.

The proof of this theorem is given in Sections 5.1 and 5.2.
Remark 2.1. Instead of s, the parameter characterizing a 1-SPP could be the velocity v of the first mass
at the beginning of the sticking phase. Choosing v specifies all the initial data (2.10) at the beginning
of the sticking phase for a 1-SPP and then the 1-SPP for all time. Accordingly, there is a one-to-one
correspondence between the set of 1-SPP and the set of initial velocity v D Pu1.t0/ which yields a 1-SPP.
However, the 1-SPP closed-form expressions are simpler with s which is chosen in the remainder.
Remark 2.2. The set of 1-SPP is at most countable and corresponds to a subset of roots of the analytic
function h.�/ defined in Equation (2.9).

The roots of the quasi-periodic function h.�/ are the first ingredients to be investigated to look for 1-SPP.
In addition, the velocity of the first mass at the beginning of the sticking phase has to be positive, see
Theorem 2.1. The sign of this velocity is governed by the sign of w1.s/.

The sticking phase can now be exactly computed. Without loss of generality, assume t0 D 0. The end
of the sticking phase is the beginning of the free flight. Denoting

N
u the free flight portion of the solution

with T D T .s/ leads to

.
N
u; P
N
u/.T / WD .u; Pu/.T / (2.11)

M R
N
u.t/CK

N
u.t/ D 0; 8t 2 �T IT Œ: (2.12)

A solution to Equations (2.11)-(2.12) is a physically admissible solution to System (1.1) if it satisfies the
constraint

N
u2.t/ < d; T < t < T: (2.13)
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If condition (2.13) is violated, then the 1-SPP is not admissible: this is a “ghost” solution [15]. Hence,
introducing the following sets:

Z D fs > 0; h.s/ D 0g; (2.14)

Z� D fs 2 Z and w1.s/ < 0g; (2.15)

Z0
D fs 2 Z and w1.s/ D 0g; (2.16)

ZC D fs 2 Z and w1.s/ > 0g; (2.17)

Zad
D fs 2 ZC and (2.13) is satisfiedg � ZC (2.18)

and Z D ZC [Z0 [Z�, the admissible free flight times s belongs to ZC which also corresponds to the
“admissible” initial data. Furthermore, from the admissible initial data, the set of admissible 1-SPP has
a one-to-one correspondence with Zad. Is Zad empty or not? It is not easy to answer due to the global
constraint (2.13) during the full free flight. However, we can quantify the size of ZC which leads to
solutions satisfying (2.13) at least near the sticking phase. The following assumption 2.1 is needed to
avoid that ZC D ;, see Section 6 below.

Assumption 2.1. det
�
˛1 ˛2

ˇ1 ˇ2

�
¤ 0:

Notice that if Assumption 2.1 is violated and .˛1; ˛2/ ¤ .0; 0/, .ˇ1; ˇ2/ ¤ .0; 0/ then h.�/ and w1.�/

have the same roots, i.e. Z D Z0, and ZC D ; and there is no 1-SPP.

Theorem 2.3 — Countable infinity of ZC. If !1=!2 … Q then Z is countably infinite. Moreover, if
Assumption 2.1 holds, ZC is also countably infinite.

The proof of this theorem is exposed in Section 6. It is straightforward to show that Z is countably
infinite when !1=!2 … Q since h.�/ is quasi-periodic with many vertical asymptotes. The challenging
part in Theorem 2.3 is to prove that ZC is also infinite. Incidentally, it turns out that Z� is also infinite
and more precisely that card.ZC \ Œ0 IA�/ � card.Z� \ Œ0 IA�/ for large A. It means that many roots of
h do not correspond to 1-SPP. Not only a 1-SPP is a rare object but among the roots of the function h,
only a few correspond to a admissible 1-SPP.

In the next Section, the procedure to find 1-SPP numerically is detailed.

3. EXAMPLES

To construct 1-SPP, Theorems 2.1 and 2.2 are interpreted as follows: let s > 0 satisfy h.s/ D 0 and
w1.s/ > 0. Such s is a candidate to construct a 1-SPP u of Problem (1.1) corresponding to the initial data
Œu1.0/; u2.0/; Pu1.0/; Pu2.0/�

> D Œd; d;Cv; 0�> where v D d=w1.s/ with a sticking phase on Œ0 I �� and
then a free-flight on Œ� I � C s� with � D T .s/; more precisely:
� sticking phase for t 2 Œ0 I ��: mass 2 sticks to the wall and mass 1 behaves as a 1-dof linear oscillator.
� free flight for t 2 �� I � C sŒ: System (1.1a) is solved with following “initial” data at time � D T .s/:

Œu1.�/; u2.�/; Pu1.�/; Pu2.�/�
>
D Œd; d;�v; 0�>:

The condition u2.t/ < d is to be checked on the interval �� I � C sŒ to obtain a real solution of
Problem (1.1). Otherwise, an impact emerges before � C s and the assumption of a free flight is
violated on �� I � C sŒ so that the corresponding u.t/ is not a 1-SPP.

Accordingly, building one 1-SPP requires two numerical steps:
(1) Compute the roots of h.�/: Figure 3 depicts the set of roots as the intersections of h.�/ and the x-axis.
(2) Check the admissibility of the associated solution: check if v > 0 and if u2.t/ < d for all

t 2 �T .s/ I T .s/C sŒ. From the symmetry of the solution during the free flight, it is sufficient to
check u2.t/ < d for all t 2 �T I T C s=2Œ.

First numerical examples are provided with m1 D m2 D 1 kg, k1 D k2 D 1 N=m. Hence, the two natural
periods of the unconstrained linear System (1.1a) are T1 � 10:17 s and T2 � 3:88 s.

Figure 2 shows the simplest 1-SPP one can find: only one loop for the orbit of the second mass. This
orbit is very smooth except at one point corresponding to the whole sticking phase. At this sticking point,
a C 1:5-regularity only is achieved as discussed in Section 4.3. Various examples featuring other responses
are introduced in Figures 4 and 5. Many roots of h belonging to ZC do not correspond to 1-SPP. For
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FIGURE 4. Admissible 1-SPP with k1 D k2 D 1Im1 D 100Im2 D 1, initial data
U.0/ D Œ1; 1; 0:7070682; 0�: s � 34:412 s and T � 20:804 s. (a) Orbits. (b) Displace-
ments

instance, for s � 17:97 2 ZC, the free-flight is not acceptable since the second mass penetrates the
rigid obstacle, as pictured in Figure 6. The condition s 2 ZC only stipulates that the non-penetration
constraint (2.13) is satisfied near the sticking phase. Although ZC is countably infinite, it is challenging
to find the set Zad � ZC yielding 1-SPP. At first, for large s, the free-flight lasts a long period of time
and the possibility that u2 exceeds d seems to increase. Nevertheless, 1-SPP with large s are founded in
Figures 4-5.

4. STICKING CONTACT

This Section is devoted to the mathematical proof of Theorem 2.1 concerned with the necessary and
sufficient conditions on the occurrence of a sticking phase1. The theory for such systems with impacts can
be found in [1, 4, 7, 5, 16].

In order to experience a sticking phase, the first necessary condition is a zero-velocity of the contacting
mass when the gap is being closed, see below or [4, 7]. Then, the sticking phase holds whenever there is a
positive force generated from mass 1 on mass 2. This force is explicit through the last equation of (1.1a).
Next, the sticking system is presented. Via Lemma 4.1, it is clear that the energy of the unconstrained

1This Theorem was also stated in [9].
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U.0/ D Œ1; 1; 0:6525913; 0�. (b) k1 D 1; k2 D 100k1 andm2 D 1,m1 D 100m2, initial
data U.0/ D Œ1; 1; 0:6409175; 0�.
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FIGURE 6. Non-admissible 1-SPP with initial data U.0/ D Œ1; 1; 1:4447006; 0�: mass 2
penetrates the wall during the free flight. (a) Orbits. (b) Displacements.

linear free flight system is conserved by the sticking system which becomes simply a 1-dof problem: the
closed-form solution as well as the explicit duration of sticking phase are obtained.

The solution is analytic away from the beginning and the end of the sticking phase [4]. It can be seen
from Figure 2(c) that the contact force is only Lipschitz at the beginning and at the end of the sticking
phase. Thus, Ru2 is a Lipschitz function, so the function u2 belongs to the Sobolev space W 3;1. The
smoother function u1 belongs to C 4 \W 5;1: for both functions u1 and u2, the singularity is located on
the boundary of the sticking phase. The orbit f.u2.t/; Pu2.t//; t 2 Rg has only a C 1:5-regularity at the
sticking point. The singularity C 1:5 is visible in Figure 2 and is caused by the zero velocity and zero
acceleration of mass 2 exactly when the sticking phase starts and ends. This loss of regularity is explored
at the end of this Section. The prestressed case d � 0 is covered in Section 7 with the occurrence of
sticking phases of infinite duration.

4.1. Occurrence of a sticking phase. The proof for the necessary and sufficient conditions for a sticking
phase to occur as stated in Theorem 2.1 is now given for d > 0. The case d < 0 is explained just after
this proof.

Proof. The right and left analyticity of the solution for the perfect elastic rebound is used (Proposition
19 in [4]). Notice that the condition of a closed contact, i.e. u2.0/ D d , with zero velocity Pu�2 .0/ D 0

is mandatory. Otherwise Pu�2 .0/ > 0, PuC2 .0/ D �Pu�2 .0/ < 0 and the mass immediately leaves the wall,
that is u2.t/ < d for t > 0 and t � 0 such that there is no sticking phase. The second equation of



PERIODIC SOLUTIONS OF A VIBRO-IMPACT OSCILLATOR WITH STICKING PHASES 9

System (1.1a) is rewritten with the aforementioned initial data for mass 2 only:

m2 Ru2.t/ D k2.u1.t/ � u2.t//CR.t/

u2.0/ D d; Pu�2 .0/ D 0; R.t/ � 0
(4.1)

During a sticking phase u2.t/ � d so Ru2.t/ � 0 and Equation (4.1) yields the relation between the
reaction R.t/ and the displacement u1.t/:

R.t/ D k2.d � u1.t// (4.2)

which is non-positive if and only if

u1.t/ � d (4.3)

Let us emphasize that Condition (4.3) is important in this work even though there is no unilateral constraint
on u1 in the formulation of System (1.1). During the sticking phase, Inequality (4.3) is satisfied. As a
consequence, Pu2.0/ D 0 is not a sufficient condition to ensure the existence of a sticking phase starting at
time t D 0. Various situations depending on the state .u1.0/; Pu1.0// should be scrutinized:
u1.0/ < d : The left-hand side of (4.1) is strictly negative and so is RuC2 .0/. There is no sticking

phase. More precisely, u2 is a piecewise analytic function [4] and its Taylor series in the right
neighbhourhood of 0 is:

u2.t/ D d C t
2 Ru
C
2 .0/

2
CO.t3/ < d

u1.0/ > d : Since u1 is continuous, it remains larger than d in a right neighbhourhood Œ0 I "2Œ of t D 0.
Thus, there is a positive force F.t/ D k2.u1.t/ � u2.t// acting on mass 2, and by Newton’s third
law, there exists a reaction R.t/ such that R.t/ D �F.t/. Substitution into (4.1) yields Ru2.t/ D 0,
8t 2 Œ0 I "2Œ. Hence u2.t/ D d , 8t 2 Œ0 I "2Œ, i.e. a sticking phase emerges.

u1.0/ D d : RuC2 .0/ D 0 and there are three possibilities for the velocity of mass 1:
(1) If Pu1.0/ > 0, u1.t/ becomes immediately larger than d for t > 0 small enough. This is similar

to the previous case where a sticking phase occurs.
(2) If Pu1.0/ < 0 then u1.t/ becomes immediately smaller than d and no sticking phase occurs.

More precisely from Equation (4.1), m2«u
C
2 .0/ D k2. Pu1.0/� Pu2.0// < 0 and the Taylor series

of u2 in the right neighbhourhood of 0 is

u2.t/ D u2.0/C t Pu2.0/C
t2

2
RuC2 .0/C

t3

6
«uC2 .0/CO.t

4/ D d C 0C 0C t3
«uC2 .0/
6
CO.t4/ < d

(3) If Pu1.0/ D 0, then RuC1 .0/ D �k1d=m1 < 0. Thus m2«u
C
2 .0/ D k2. Pu1.0/ � Pu2.0// D 0

and m2u
.4/C
2 .0/ D k2. Ru

C
1 .0/ � Ru

C
2 .0// < 0. Similarly, a Taylor series of u2 in the right

neighbourhood of 0 shows that u2.t/ < d for t > 0 and t � 0. Thus, there is no sticking
phase.

Note that only the last case u1.0/ D d and Pu1.0/ D 0 crucially depends on the sign of d . It is further
discussed in Section 7 when d � 0. Moreover, all piecewise analytic solutions presented above preserve
energy. It is clear for the grazing case since R � 0. When sticking occurs, energy conservation is a
consequence of Lemma 4.1. In conclusion, every introduced case corresponds to the unique solution
preserving energy [4]. �

Remark 4.1. The duration of the sticking phase directly relates to the reaction R.t/. The sign of R.t/ is
given by the sign of d � u1.t/ via (4.2). Thus, for d < 0, an infinite sticking phase appears when the
solution u1 of the sticking equation (4.6) satisfies u1.t/ � d D �jd j for all time, which is possible as
detailed in Section 7.

4.2. Sticking system. It is now shown that the solution with a sticking phase expounded in Section 4.1 is
the unique solution which preserves the total energy, see [4].

The notion of sticking system is explained in [7]. It is the reduced system during the sticking phase.
Since the last mass is at rest, the system loses one degree of freedom. From the previous developments,
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the sticking system complemented by the initial data at the beginning of a sticking phase is explicitly
derived as

m1 Ru1 C .k1 C k2/u1 � k2u2 D 0; u1.0/ D d; Pu1.0/ D v > 0; (4.4)

m2 Ru2 D 0; u2.0/ D d; Pu2.0/ D 0: (4.5)

The sticking system (4.4), (4.5) becomes simply a sticking equation (4.6). The initial data for mass 1
has to be clarified. If u1.0/ > d then this inequality is also valid locally in the past, and the sticking
phase exists before t D 0. If u1.0/ D d and Pu1.0/ > 0, then there exists � > 0 such that u1.t/ < d for
�� < t < 0 so there is no sticking phase just before t D 0, in other words, t D 0 is the beginning of
the sticking phase. The grazing contact case Pu1.0/ D 0 and the case where constraint (2.13) is violated,
Pu1.0/ < 0, do not have to be considered.

During free-flight, there is a total energy (1.1d) for the symmetric system (2.12). However, during the
sticking phase, system (4.4)–(4.5) is not symmetric. Accordingly, the question of conservation of energy
during the sticking phase is not obvious. It is proven in the next lemma.

Lemma 4.1. The solution to Equations (4.4) and (4.5) conserves the energy E (1.1d).

Proof. Assume that t D 0 is the beginning of a sticking phase and t D � , the end. During this sticking
phase on the interval Œ0 I ��, the governing equations are

m1 Ru1 C .k1 C k2/u1 D k2d; (4.6)

u2 D d: (4.7)

The first equation conserves the energy around the new equilibrium u1 D k2d=.k1 C k2/:

E1.t/ D m1 Pu
2
1.t/C .k1 C k2/.u1.t/ � u1/

2
D E1.0/:

Moreover, since u1.t/ D .u1.t/ � u1/C u1 and u2.t/ D d , an easy computation yields:

.k1 C k2/u
2
1.t/ D .k1 C k2/.u1.t/ � u1/

2
C 2k2u1.t/u2.t/C C

and C D �.k1 C k2/u
2
1. The energy of System (1.1) can be calculated. Since Pu is continuous along a

sticking phase, the exponents˙ are dropped.

E.t/ D Pu>.t/M Pu.t/C u>.t/Ku.t/

D m1 Pu
2
1.t/C .k1 C k2/u

2
1.t/Cm2 Pu

2
2.t/C k2u

2
2.t/ � 2k2u1.t/u2.t/

D m1 Pu
2
1.t/C .k1 C k2/.u1.t/ � u1/

2
C 2k2u1.t/u2.t/C C C 0C k2d

2
� 2k2u1.t/u2.t/

D E1.t/C C C k2d
2
D E1.0/C C C k2d

2
D E.0/:

This ends the proof: the total energy of the system is constant for all 1-SPP. �

The sticking system is now solved and the sticking time is explicitly exhibited: this is an interesting
feature of our 2-dof mechanical system. The 1-dof linear oscillator problem with a constant force (4.6)
has the explicit solution

u1.t/ D A cos.!t C �/C
k2

k1 C k2
d where ! D

s
k1 C k2

m1
:

The expression of the constants A and � stems from the initial condition Œu1.0/; Pu1.0/�
> D Œd; v�> as

follows

A D
k1d

.k1 C k2/ cos.�/
and � D � arctan.�v/ with � D

p
.k1 C k2/m1

k1d

and T is the first positive time satisfying u1.T / D d , that is T D 2 arctan.�v/=!. Due to the symmetry
of the solution to the 1-dof Problem (4.6) with respect to the u1 axis in the plane .u1; Pu1/, u1.T / D d
and Pu1.T / D �v which also means that T is the end of the sticking phase via Theorem 2.1.
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4.3. 1:5-singularity at the sticking point. The following Proposition states precisely the regularity near
a sticking phase, essentially C 2 and almost C 3. The lower C 1:5-regularity of the orbit is obtained at the
end of the Section.

Proposition 4.2 — Regularity of solutions. Assume u.�/ is a solution of System (1.1) on ŒT0 IT1�

with only a sticking phase on Œ0 I T � and a free flight elsewhere with T0 < 0 < T < T1. Then
u1 2 C

4.ŒT0 IT1�/ \W
5;1.ŒT0 IT1�/ and u2 2 C

2.ŒT0 IT1�/ \W
3;1.ŒT0 IT1�/.

Proof. Away from the strict beginning and end of the sticking phase, the solution is regular: analytic
outside Œ0 I T �, u1 is analytic and u2 is constant inside �0 I T Œ. The solution regularity at t D 0 and t D T
is of higher interest. Only the case t D 0 is considered since the other case t D T is quite similar. The
initial data at t D 0 is Œu.0/>; Pu.0/>�> D Œd; d; v; 0�>. The second Equation within (1.1a) is

m2 Ru2.t/ D k2.u1.t/ � u2.t//CR.t/: (4.8)

During the sticking phase, 0 < t < T , u2.t/ D d so Ru2.t/ D 0 and RuC2 .0/ D 0 and before the
sticking phase, t < 0, since u2.t/ < d , R.t/ D 0 and lim0>t!0 u2.t/ D d D lim0>t!0 u1.t/ so from
Equation (4.8) Ru�2 .0/ D 0, thus Ru2 is continuous at time t D 0 and Ru2.0/ D 0. However, the third
derivative of u2 on the left of t D 0 does not vanish since m2«u

�
2 .0/ D k2. Pu1.0/ � Pu2.0// D k2v > 0

and «u2 is then bounded. Hence, u2 2 C
2.Œ0 IT �/ \W 3;1.Œ0 IT �/.

The regularity of u1 is investigated from the first Equation of (1.1a) which reads

m1 Ru1 C .k1 C k2/u1 D k2u2 (4.9)

and shows that Ru1 and u2 have the same regularity. Accordingly, Ru1 2 C
2.Œ0 IT �/ \W 3;1.Œ0 IT �/ that

is u1 2 C
4.Œ0 IT �/ \W 5;1.Œ0 IT �/. �

We now prove the C 1:5-regularity of the orbit without using explicit formula.

Proof. The C 1:5-smoothness of the projection of the orbit on the last component, more precisely the
regularity of the set

�2 D f.t/ D .u2.t/; Pu2.t//; 0 � t � T g � R2 (4.10)

is explored. By T -periodicity, this parametrization is defined for all time. During the sticking phase,
the last mass rests against the foundation, .t/ D .0/ D .d; 0/, P.t/ D .0; 0/ for 0 � t � T and the
parametrization is then singular. Instead, a regular parametrization of �2 is thus proposed in the form
Q.t/ D .t � T /, T � t � T . In other words, Q is  where the sticking phase has been removed. Also,
Q is defined for all time through s-periodicity with s D T � T . The set Q�2 D Q.Œ0 I s�/ is exactly �2.
The curve is analytic away from the sticking point .d; 0/. A precise study of Q.t/, jt j < " should now be
undertaken for " > 0 sufficiently small. To this end, the left and right derivatives are computed since the
solution is left and right analytic at the sticking point [4]:

dk

dtk
Q�.0/ D dk

dtk
�.0/; dk

dtk
QC.0/ D dk

dtk
C.T /: (4.11)

To compute the successive left and right derivatives, the ODE

m2 Ru2.t/ D k2.u1.t/ � u2.t// (4.12)

is used just before the sticking phase and just after the sticking phase. Recall that u1.0/ D d and
Pu1.0/ D v > 0, u2.0/ D d and Pu2.0/ D 0, u1.T / D d and Pu1.T / D �v < 0, u2.T / D d and
Pu2.T / D 0. The ODE gives m2 Ru

�
2 .0/ D k2.d � d/ D 0, RuC2 .T / D 0, so PQ˙.0/ D .0; 0/. The

parametrization is still singular and higher derivatives of u2 are computed by differentiating the ODE,
that is

m2«u2.t/ D k2. Pu1.t/ � Pu2.t//

RQ�.0/ D .0; ˇ/; RQC.0/ D .0;�ˇ/; ˇ D k2v=m2 > 0

m2¬u2.t/ D k2. Ru1.t/ � Ru2.t//

«Q�.0/ D .ˇ; ı/; RQC.0/ D .�ˇ; ı/; ı D �k2k1d=.m2m1/ < 0
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where the second derivative of u1 comes from the equation m1 Ru1.t/ D �k1u1.t/ � k2.u1.t/ � u2.t//:
Ru1.0/ D �k1d=m1 < 0. The local behaviour at t D 0 is then for˙t > 0:

Q.t/ D .d; 0/C
1

2
sign.t/.0; ˇ/t2 C

1

6
.sign.t/ˇ; ı/t3 CO.t4/: (4.13)

There are two singularities for this parametrization: the left and right expansions for ˙t > 0, and the
more important PQ.0/ D .0; 0/. To clearly identify the regularity of the curve at t D 0, a last change of
variable is performed [15]: � D sign.t/t2 and O.�/ D Q.t/ such that:

O.�/ D .d; 0/C
1

2
.0; ˇ/� C

1

6
.ˇ; sign.�/ı/j� j1:5

CO.�2/: (4.14)

The C 1:5-regularity is then identified since PO.0/ ¤ .0; 0/ and this is optimal. �

5. BUILDING 1-SPP

This Section addresses the construction of the 1-SPP developed in Section 2.2. An explicit formula
for T is obtained and the set of admissible initial data is derived. The initial velocity of the first mass
depends on the free flight time s and it is proven that s can be found in the infinite set of roots of h.�/. The
symmetry of the solutions is also discussed.

5.1. Initial data. Without loss of generality, the initial data is defined in the Poincaré section u2 D d .
The problem is to find a periodic function u generated by the initial data Œd; d; v; 0�> such that there is
one sticking phase per period. As explained previously, T and T are parametrized by s. The sticking
solution and the sticking time T > 0 are calculated explicitly in Section 4.2.

By denoting U D Œu>; Pu>�>, a free flight starts with the following initial data at time T :

U.T / D Œd; d;�v; 0�>: (5.1)

It can be written as

U.T / D SU.0/ where S D
�

I 0
0 L

�
and L D

�
�1 0

0 1

�
: (5.2)

Away from the sticking phase, system (1.1a) simplifies to

M RuCKu D 0: (5.3)

Through the change of variable u D Pq, Equation (5.3) becomes

I RqC�2q D 0 (5.4)

which features the following block matrix solution

Q.t/ D
�

q.t/
Pq.t/

�
D R.t � T /

�
q.T /
Pq.T /

�
; 8t 2 �T IT Œ (5.5)

where

R.t/ D
�

cos.t �/ ��1 sin.t �/

�� sin.t �/ cos.t �/

�
: (5.6)

We shall find the solution u and the period T such that

Q.T / D Q.0/: (5.7)

By denoting s D T � T , Equation (5.7) projected onto modal coordinates reads

R.s/ QSQ.0/ D Q.0/ where QS D ŒB�S ŒP� and ŒP� D
�

P 0
0 P

�
which can be expressed as .R.s/ QS � I/Q.0/ D 0 with

R.s/ QS � I D
�

cos.�s/ � I ��1 sin.�s/BLP
�� sin.�s/ cos.�s/BLP � I

�
The computations are similar to those introduced in [11]. This similarity will be explained later through
the relationship between 1-SPP and the one-Impact-Per-Period solutions (1-IPP) detailed in [11]2.

2Note that there is a change of sign in w.s/ due to the coefficient akj D �PkjBj1 instead of PkjBjN in [11].
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The duration s is assumed not to be a period of the linear differential system, s … [2
jD1TjZ where

Tj D 2�=!j , j D 1; 2 are frequencies of the linear system. Then, the following quantities are well
defined:

.s/ D .I � cos.�s//�1��1 sin.�s/; (5.8)

w.s/ D P.s/BLe1; e1 D .1; 0/
>; (5.9)

w1.s/ D e>1 w.s/: (5.10)

The solution set of initial data yielding 1-SPP, possibly “ghost” solutions if constraint (2.13) is violated, is
described explicitly via the following lemma:

Lemma 5.1. If s … [2
jD1TjZ then the system

R.s/ QSQ.0/ D Q.0/ (5.11)

defines a one dimensional vector space parametrized by c 2 R given in variables�
u.0/
Pu.0/

�
D P

�
q.0/
Pq.0/

�
D c

�
w.s/
e1

�
(5.12)

Proof. Compute ker.R.s/ QS � I/ by blocks (see [11]):�
cos.�s/ � I ��1 sin.�s/BLP
�� sin.�s/ cos.�s/BLP � I

�
�

�
cos.�s/ � I ��1 sin.�s/BLP

0 .LC I/P

�
(5.13)

because the matrix .I � cos.�s//�1B is invertible. Since Pu D P Pq, the right lower block in (5.13)
simplifies to .LC I/ Pu D 0, that is Pu D ce1 with c 2 R. Similarly, the upper block provides the expression
q D c.I � cos.�s//�1��1 sin.�s/BLe1. �

The assumption of lemma 5.1 is always valid and proven in the next lemma: the free flight duration of
any 1-SPP is never a (multiple of a) period of the linear system.

Lemma 5.2. For a 1-SPP, the duration s of the free-flight is not a linear period: s … [2
jD1TjZ.

Proof. It is proven that there is no 1-SPP involving a free-flight duration as a linear period. In other
words, if s 2 [2

jD1TjZ, i.e. there exists k; ` 2 Z such that s D kT1 or s D `T2, then the corresponding
solutions must be linear grazing modes.

Firstly, let us emphasize that all the components of the matrix P D .Pij /
2
i;jD1 are nonzero in our case

of study, a chain of two masses. The matrix P of eigenvectors can be computed explicitly and has the
following formula

P D

2666664
aC
p
a2 C b2q

m1..aC
p
a2 C b2/2 C b2/

a �
p
a2 C b2q

m1..a �
p
a2 C b2/2 C b2/

bq
m2..aC

p
a2 C b2/2 C b2/

bq
m2..a �

p
a2 C b2/2 C b2/

3777775
where

a D
1

2

� k2

m2
�
k1 C k2

m1

�
; b D

k2
p
m1m2

:

Hence, Pij ¤ 0 for all i; j D 1; 2.
Secondly, one shows that if s D kT1 then the periodic solutions with the free-flight duration s must be

the first linear grazing mode. Consider s D kT1, then the matrix R.s/ QS � I becomes2664
0 0 0 0

0 C2 � 1 S2=!2A21 S2=!2A22

0 0 A11 � 1 A12

0 �!2S2 C2A21 C2A22 � 1

3775
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where C2 D cos.2�!2=!1/, S2 D sin.2�!2=!1/, and A D BLP. With the assumption of no internal
resonance, C2 ¤ 0, C2 � 1 ¤ 0 and S2 ¤ 0. Hence, after simple calculations, the last three equations
become24C2 � 1 S2=!2A21 S2=!2A22

0 A11 � 1 A12

�!2S2 C2A21 C2A22 � 1

35 � 24C2 � 1 S2=!2A21 S2=!2A22

0 A11 � 1 A12

0 A21 A22 C 1

35
The last two equations can be rewritten as .AC L/ Pq.0/ D 0 or .LPC PL/ Pq.0/ D 0. Since LPC PL D
diag.�2P11; 2P22/, where P11 and P22 are nonzero, this yields Pq.0/ D 0. By substituting into the second
equation, it follows that q2.0/ D 0 or u1.0/ D �B22=B21d . Therefore, the initial data is Œu1.0/; d; 0; 0�

which corresponds to the first linear grazing mode.
Similarly, if s D `T2 then the periodic solutions with the free-flight duration s must be the second

linear grazing mode. One obtains a similar expression .A � L/ Pq.0/ D 0 or .LP � PL/ Pq.0/ D 0. Since

LP � PL D
�

0 �2P12

�2P21 0

�
where both P12 and P21 are both non-vanishing terms, then Pq.0/ D 0. Consequently, the initial data
obtained correspond to the second linear grazing mode. �

The parameter c D PuC1 .0/ D v is identified from the third row of (5.12). By expressing the initial
condition�

u1.0/

u2.0/

�
D

�
d

d

�
D v

�
w1.s/

w2.s/

�
D c P.s/BLe1 (5.14)

System (5.14) simplifies to w1.s/ D w2.s/ or

h.s/ D w1.s/ � w2.s/ D

2X
jD1

˛j cot
�!j s

2

�
D 0

and the initial velocity of the first mass is found from

v D
d

w1.s/
; w1.s/ > 0: (5.15)

If !1=!2 … Q, the function h.�/ exhibits a countably infinite set of roots. Moreover the set of s such that
h.s/ D 0 and v.s/ > 0 is also countably infinite by Theorem 2.3. The particular case when !1=!2 2 Q
is discussed in Section 6.

5.2. Symmetry. To conclude the validation of Theorem 2.2, the symmetry of 1-SPP is proven.

Proof. Through periodicity, it is sufficient to check the symmetry of the solutions on one period only. The
symmetry is satisfied during the sticking phase and the free flight. Since only the first mass oscillates
during the sticking phase, the solution is symmetric. Let us check the symmetry of solutions during the
free flight time t 2 ŒT IT � where u.T / D u.T / and PuC.T / D �Pu�.T /. Denoting � D .T C T /=2, it is
sufficient to show that u.� C t / D u.� � t /, 8t 2 I D Œ�s=2 I s=2�. Let zC be the function defined on
I such that zC.t/ D u.� C t /. Then zC is a well defined smooth function on I with zC.s=2/ D u.T /
and PzC.s=2/ D Pu�.T /. Similarly, by defining the function z�.t/ WD u.� � t /, for t 2 I , it can be
checked that z�.s=2/ D u.T / and Pz�.s=2/ D �PuC.T /. Furthermore, both zC and z� are solutions
to the linear differential system MRzC Kz D 0 on I . Notice that zC and z� have the same initial data
zC.s=2/ D z�.s=2/ and PzC.s=2/ D Pz�.s=2/. Hence, by the uniqueness of the initial value problem, it is
deduced that zC.t/ � z�.t/ on I . This completes the proof on the symmetry of solutions. �

5.3. Relationship between 1-SPP and 1-IPP. For this two-degree-of-freedom vibro-impact system, a
relationship between one-sticking-phase-per-period and one-impact-per-period solutions [11] is exhibited.
It clarifies the similarities and differences of such periodic solutions.

Consider the two Figures 2(a) and 2(b) showing a single loop in �2. Figures 7(a) and 7(b) are then
obtained by “deleting” the sticking phase on the whole interval �0 I T Œ such that a 1-IPP solution [9, 11] is
identified, where the jump occurs on mass 1 (instead of mass 2) when u1.0/ D d as well as u2.0/ D d .
Take note that u1.t/ � d for all time. It is important to note that this 1-IPP is “unique” is the sense that
it satisfies u2.0/ D d ; it is denoted 1-IPPp in the remainder. The correspondence between 1-SPP and
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FIGURE 7. (a) Is a 1-IPP or a 1-SPP without sticking phase drawn? (b) Displacements

this particular 1-IPPp is now detailed. To this end, generalized 1-SPP and 1-IPPp, ie G1-SPP and G1-IPPp
respectively, are first defined: they are unconstrained 1-SPP and 1-IPPp during the free flight and u1 as
well as u2 might exceed d 3. By definition, a G1-SPP u satisfies the following requirements:
(1) s 2 Z,
(2) T D s C T is the fundamental period with T D T .s/,
(3) a sticking phase on �0 I T .s/Œ with u1.0/ D d , Pu1.0/ D v D v.s/, u2.0/ D d , Pu2.0/ D 0,
(4) a free flight on �T IT Œ with u1.T / D d , Pu1.T / D �v, u2.T / D d , Pu2.T / D 0, M RuCKu D 0.

The one-to-one correspondence from Figure 2 to Figure 7 is formalized aseu.t/ D u.T C t /; 0 < t < s; (5.16)

whereeu is taken s-periodic so thateu�.0/ D u.0/,euC.0/ D u.T /. As a consequence,eu satisfies
(1) s is the fundamental period,
(2) eu1̇ .0/ D d , Peu�1 .0/ D Pu1.0/ D v, PeuC1 .0/ D Pu1.T / D �v,
(3) eu2̇ .0/ D d , Peu2̇ .0/ D 0,
(4) a free flight on �0 I sŒ: M ReuCKeu D 0.

We can check that Qu is a G1-IPPp. The only surprising condition is Peu2.0/ D 0 but zero velocity is
automatically achieved by a G1-IPP [4, 11].

Proposition 5.3 — G1-SPP, G1-IPPp. There is a one-to-one correspondence between G1-SPP with a
sticking phase for the mass 2 and G1-IPPp.

Proof. This is a brief sketch. G1-SPP) G1-IPPp was explained previously. Conversely, from a given
G1-IPPp, it is possible to build a sticking phase as in the proof of Theorem 2.1 in Section 4 with a free
flight duration s to then define a unique G1-SPP. �

The key parameter s appears to be simply the period of the associated G1-IPPp. This proposition shows
that the setZ corresponds exactly to the set of all G1-IPPp. Let us state briefly the correspondence between
ZC and Zad and the corresponding subset of all G1-IPPp.

Concerning generalized solutions with a positive velocity at the impact (v > 0), it can be said that for
all s 2 ZC there exists a unique G1-SPP and a corresponding unique G1-IPPp which has a physical initial
data at the impact time (no violation of the constraint near the impact time). Conversely, if a G1-IPPp is
such that, at the impact time, the incoming velocity of mass 1 is positive then the period belongs to ZC
which corresponds to a unique G1-SPP.

Finally, a 1-SPP, i.e. a G1-SPP satisfying the constraint u2.t/ � d for all time, is in a unequivocal
correspondence with a G1-IPPp satisfying the same constraint. This condition is not the constraint to
be a 1-IPP since the constraint for 1-IPP is on the mass 1. Figures 2 and 7 show a perfect and rare

3The G1-IPP in this paper has a counterpart in [11]: it is a G1-IPP where the jump in velocity affects the second mass instead
of the first mass here. As such, we know that there is a unique G1-IPP for all positive periods. This is the reason why the
formulas in Section 5 are slightly different from [11]. The condition on mass 1 in Theorem 2.1 corresponds to an elastic impact
for mass 1.
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correspondence between a 1-SPP and a 1-IPP since the associated G1-IPPp satisfies the two constraints
uk.t/ � d for all time and k D 1; 2. As a consequence, 1-SPP are isolated solutions. The reason lies in
the fact that the space of G1-IPP is a one-dimensional manifold which intersectseu2 D d on a discrete
set such that the G1-IPP become isolated. Another possible consequence of Proposition 5.3, which is
not further discussed here, is to prove the existence of 1-SPP through the proof of the existence of such
particular G1-IPP.

6. THE COUNTABLE SET Z˙

In order to find admissible solutions, the set Z˙ are defined to encompass the corresponding set of
initial data of admissible solution: Vad

0 . Admissible initial data is defined by a constraint on the associated
solution: u2.t/ � d at least locally near the sticking phase. The problem to satisfy this constraint is only
at the end and the beginning of the sticking phase but not for all time. Thus, a question of interest emerges:
how large is this set “admissible initial data”? The set of admissible initial data VC0 contains Vad

0 . In this
Section, the sets ZC and Z� are proven to be countably infinite if some generic assumptions are fulfilled.
The proof of Theorem 2.3 is similar for the two sets and only the proof for ZC is provided.

6.1. Z˙ is infinite with no resonance. Before stating the main proof with !1=!2 … Q, we start with
Lemma 6.1 below. First, the orbit O is defined in the torus … D R=2�Z � R=2�Z:

O D f.x; y/ D .Nt; �t/jt > 0g (6.1)

where Nt D t C 2�Z and �, a constant.

Lemma 6.1 — Transversality and density. Let f be a 2��periodic continuously differentiable function
from Œ0 I 2�Œ to Œ0 I 2�Œ. For any irrational number �, if .x0; y0 D f .x0// located on the curve C defined
by the graph of f satisfies the transversal condition between C and O, that is

Pf .x0/ ¤ � (6.2)

then 8" > 0, 9t > 0 such that �t D f .Nt / and jNt � x0j < ".

In other words, every point on the curve C at which the tangent is transverse to the orbit O is an
accumulation point of O \ C, see Figure 8. Precisely, the set O \ C is dense in f.x; f .x//j Pf .x/ ¤ �g.

0 �=2 � 3�=2 2�

0
�
=
2

�
3
�
=
2

2
�

FIGURE 8. Density of O \H in H

Moreover, for all A > 0, the set OA D f.x; y/ D .Nt; �t/jt > Ag shares the same property.

Proof. Assume � > 0, the cases � D 0 and � < 0 follow immediately.
Since Pf .x0/ ¤ � and Pf is continuous, there exists "0 > 0 small enough such that Pf .x/ ¤ �

8x 2 Œx0 � "0 I x0 C "0�. Without loss of generality, assume that Pf .x/ > �, 8x 2 Œx0 � "0 I x0 C "0�.
Since O is dense in …, 8" > 0, there exists t0 > 0 such that z D .t0; �t0/ belongs to O close enough to
.x0; y0/, i.e. jt0 � x0j < " and j�t0 � y0j < ": if z is on the curve C then t is chosen to be t0, else z is
above the curve C, i.e. �t0 > f .t0/.

We will show that the orbit O intersects the curve C inside the box �x0�"0 I x0C"0Œ� �y0�k"0 Iy0C

k"0Œ where k is the maximum of j Pf j on Œx0 � "0 I x0 C "0� as shown in Figure 9. For this purpose, we
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FIGURE 9. Zoom in the box �x0 � "0 I x0 C "0Œ � �y0 � k"0 Iy0 C k"0Œ when P .x0/ > �

use a line d2 under the curve on the right of .x0; y0/. From p D minŒx0�"0 Ix0C"0�
Pf , the equation of the

line d2 with slope p passing through .x0; y0/ is y D p.x � x0/C y0. The line d with slope � passing
through .t0; �t0/ and associated to the orbit O is defined by y D �.x � t0/C �t0. Let I.xI ; yI / be the
intersection of those two lines. Since p > �, we have

xI D
px0 � y0 � �t0 C �t0

p � �
:

Choosing " small enough such that " < "0.jp � �j/=.�C k/ implies xI 2 Œx0 � "0 I x0 C "0�.
Consider the two curves d2 and C intersecting at .x0; y0/ and satisfying Pf .x/ > p for all x 2

Œx0 � "0 I x0 C "0�. Since p > �, d intersects d2 at I . Hence, there exists an intersection of C and d in
the interval �x0 I xI Œ. In other words, there exists t > 0 such that �t D f .Nt / and jNt � x0j < "0. The proof
for the case z is under the curve C is similar. �

The proof of Theorem 2.3 starts by showing that the set Z D fs > 0; h.s/ D 0g is countably infinite.
It is true for the set f.!1s; !2s/; h.s/ D 0g and will be useful to prove that the set ZC of free flight times
s with admissible initial velocity v.s/ > 0 is also countably infinite.

Proof. Set '.t/ D cot.t=2/, then h.s/ D ˛1'.!1s/C ˛2'.!2s/ and w1.s/ D ˇ1'.!1s/C ˇ2'.!2s/

where ˇj D b1j , and ˛j ; bkj are defined in Equation (2.7). For every .x; y/ 2 … D R=2�Z � R=2�Z,
the two functions H.x; y/ D ˛1'.x/ C ˛2'.y/ and W.x; y/ D ˇ1'.x/ C ˇ2'.y/ correspond to
h.s/ D H.!1s; !2s/, w1.s/ D W.!1s; !2s/. In order to simplify, the sets O D f.!1s; !2s/js > 0g,
H D f.x; y/ 2 …jH.x; y/ D 0g, and W D f.x; y/ 2 …jW.x; y/ D 0g are defined on the torus …; WC,
W� are denoted as the domains of … where W.x; y/ > 0 and < 0, respectively.

The set O is equal to O with � D !2=!1. Consider the map  W RC ! O, s 7! .!1s; !2s/, then  is
bijective for !2=!1 … Q and

.Z/ D O \H (6.3)

.ZC/ D O \H \WC (6.4)

Hence, instead of proving the set Z is countably infinite, the stronger result O \H D H is proven. This
implies O \H is countably infinite. This stronger result shows that ZC is countably infinite by pointing
out the density of O \H \WC in H \WC and the countable infinity of H \WC.

To show that O \H D H, assume ˛2 ¤ 0, rewrite H.x; y/ D 0 to have y D  .x/ where  D
'�1.r'/ and r D �˛1=˛2.
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FIGURE 10. (a) or (b) H \WC corresponds to the half of the red curve which lies in
the grey domain; (c) The set O \H \WC is the set of all intersections between the red
curve and the orange lines within the grey domain

(1) We show that P ¤ � almost everywhere. Since  is an analytic function on I D �0 I 2�Œ, so is P .
After simplification, the derivative of  becomes

P D
r.1C '2/

1C r2'2
D
1

r

�
1C

r2 � 1

1C r2'2

�
(6.5)

which degenerates to a constant function for r D ˙1. Otherwise, P is not a constant function and
the set fx 2 I j P .x/ D �g is empty or countable. Hence, P ¤ � holds almost everywhere. It is still
true if ˛2 D 0 since H.x; y/ becomes a periodic function of x, and H then degenerates to a vertical
line in the torus ….

(2) Through Lemma 6.1 where f D  is periodic of period 2� , the set O is O where � is the ratio
!2=!1 and O \H is dense in f.x; y/ 2 H j P .x/ ¤ �g follows. In addition, it is proven above that
P ¤ � almost everywhere, thus O \H D H, since H is infinite, thus O \H is countably infinite. In

particular, there is a countably infinite set of s > 0 such that h.s/ D 0.
To complete the proof, we show that ZC is countably infinite by proving that .ZC/ D O \H \WC
is countably infinite. In a similar manner, it is sufficient to show that O \H \WC D H \WC and
H \WC is an infinite set. If ˇ2 ¤ 0, denote � D �ˇ1=ˇ2, the curve W then corresponds to the function
y D Q .x/ where Q D '�1.�'/ which has the same properties with  . The result still holds if ˇ2 D 0

since W degenerates to the vertical line in …. By Assumption 2.1, r ¤ � and it follows that H and W
cannot coincide and the determinant of the coefficient matrix of the homogeneous system

H.x; y/ D 0

W.x; y/ D 0

is nonzero. Therefore, it has a trivial solution '.x/ D '.y/ D 0, i.e. . N�; N�/ is one intersection between H
and W. Assumption 2.1 is optimal to have ZC is infinite. Otherwise, if Assumption 2.1 does not hold,
H DW, thus H \WC D ¿ and ZC is empty.

Assumption 2.1 implies that P . N�/ ¤ PQ . N�/ since P . N�/ D r and PQ . N�/ D �, thus the curves are
transverse. Moreover, since the signs of the derivatives of  and Q depend on the signs of r and �,
respectively,  and Q are monotonic functions, in which case, H \WC is a half of the curve H which
lies in the region WC (see Figures 10(a) and 10(b)).

As WC is an open set and O \H D H, then O \H \WC D H \WC. It follows that O \H \WC
is infinite (Figure 10c.). Hence, ZC is infinite which concludes the proof. �

6.2. Internal resonances. The situation is much simpler when the ratio !1=!2 is rational. All the
functions involved are periodic with the same period and the set O \H is finite or empty. Thus, the set of
initial velocity fv.s/; s 2 Zg is finite which also means that the set of generalized 1-SPP is finite. ZC
can be an empty set for instance if Z D ;: with the parameters ˛1 D 1, ˛2 D �1, and !1=!2 D 2, the
graph of function h.s/ is depicted in Figure 11. As a consequence, 1-SPP do not exist in this case.
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7. PRESTRESSED STRUCTURE

In this Section, the structure of the 1-SPP when d � 0 is discussed. An argument on the occurrence of
the sticking phase is stated in Proposition 7.1. Precisely, sticking phases of unbounded duration can arise
besides the solutions with finite sticking phases, when the initial velocity of m1 is zero. 1-SPP for d < 0
and d D 0 are also explored and illustrated through appropriate numerical examples.

Proposition 7.1. Assume d � 0. Up to a time translation, periodic solutions with a permanent sticking
phase has a one-to-one correspondence to the solutions with initial data:

u2.0/ D d; Pu2.0/ D 0; d � u1.0/ � u1 WD
k2

k1 C k2
d; and Pu1.0/ D 0: (7.1)

Otherwise, if

u2.0/ D d; Pu2.0/ D 0; u1.0/ D d; and Pu1.0/ > 0; (7.2)

then a sticking phase with finite duration occurs.

The above proposition calls for a few comments:
� for d D 0, there is only one periodic solution with infinite duration displayed below in Figure 14.
� for d < 0, the set of periodic solutions with infinite duration is infinite (continuous set).
� It suffices to start at time t D 0 but not necessarily when u1 reaches its minimum. More precisely, a

solution has a sticking phase for all t > 0 if and only if the minimum of u1 during the sticking phase
is greater or equal to d . An easy computation of the 1-dof dynamics of u1 during the sticking phase
can be written with the energy E1 (see in the proof of Lemma 4.1) as follows.

u2.0/ D d; Pu2.0/ D 0; and m1. Pu1.0//
2
C .k1 C k2/.u1.0/ � u1/

2
�
.k1d/

2

k1 C k2
: (7.3)

Proof. The proof is a consequence of the proof of Theorem 2.1 together with Remark 4.1 and the 1-dof
periodic dynamics of u1 around u1 during the sticking phase. The conditions given in (7.1) (or (7.3))
for u1 are just the conditions such that u1.t/ � d during the period of the “sticking equation” (4.6) then
u1.t/ � d for all t � 0 and mass 2 remains sticked for all time in the future. For the periodic solution, up
to a time translation, it is only assumed that u1 reaches its minimum at t D 0.

In general, the conditions u1.0/ > d or fu1.0/ D d and Pu1.0/ > 0g are necessary to enjoy the
existence of a sticking phase. However, the latter implies that u1.t/ gets strictly smaller than d in the past
and by the periodicity in the future, the sticking phase stops. �
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7.1. Strictly prestressed structure. The dynamics is explored with d < 0.

Sticking phase of finite duration. From Proposition 7.1, at the beginning of the sticking phase, the initial
data is Œu.0/; Pu.0/�> D Œd; d; v; 0�> where v > 0. It directly follows, from Equation (5.15) when d < 0,
that the admissible initial data is found in the set Z� instead of ZC. Z� is also countably infinite as
stated in Theorem 2.3. In a manner similar to the case d > 0, an infinite set of admissible initial data is
expected when d < 0.

A 1-SPP is depicted in Figure 12 where d D �1; the positive initial velocity is v � 2:26. With a period
T � 5:42, the sticking phase occurs until T � 1:58 and is then followed by a free flight of duration
s � 3:84.
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FIGURE 12. 1-SPP with finite sticking phase for d D �1 and v > 0, m1 D 1:0; m2 D

6:0; k1 D 1:0; k2 D 4:0 and initial data U.0/ D Œ�1;�1; 2:2686626; 0�: (a) Orbits.
(b) Displacements

Sticking phase of infinite duration. The initial data corresponding to the periodic solution with the largest
u1 in magnitude is Œu.0/; Pu.0/�> D Œd; d; 0; 0�>. The first mass then follows the oscillation around its
new equilibrium u1. Moreover, 0 is the minimum point of u1, thus u1.t/ � d for all t . By Theorem 2.1,
it follows that the sticking phase never ends. This argument is illustrated in Figure 13.
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FIGURE 13. Sticking phase of infinite duration for d D �1 < 0 and v D 0, m1 D 10;
m2 D 6; k1 D 2; k2 D 3 with initial data U.0/ D Œ�1;�1; 0; 0�. (a) Orbits.
(b) Displacements
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7.2. Statically grazing system. The dynamics is explored with d D 0.

Finite duration sticking phase. From Proposition 7.1, the sticking phase of finite duration exists if the
initial data satisfies u2.0/ D 0, Pu2.0/ D 0, u1.0/ D 0, and Pu1.0/ D v > 0. The set of free flight time s
is found from Equation (5.14) where d D 0, i.e. vw1.s/ D 0 and vw2.s/ D 0. Hence, v is arbitrarily
positive and s satisfies h.s/ D w1.s/ � w2.s/ D 0 and w2.s/ D 0 or�

˛1 ˛2

ˇ1 ˇ2

� �
'.!1s=2/

'.!2s=2/

�
D

�
0

0

�
Through Assumption 2.1, this linear system has the unique solution

'.!1s=2/ D 0

'.!2s=2/ D 0

where '.t/ D cot.t=2/. It follows that
!1

!2
D
2k C 1

2l C 1
with k; l 2 Z (7.4)

condition which loosely speaking represents half of the rationals. It should be satisfied to observe a
sticking phase of finite duration when d D 0 while the initial velocity of massm1 can be chosen arbitrarily
positive. Such a 1-SPP when !1=!2 D 1=5 is shown in Figure 14.
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FIGURE 14. 1-SPP with finite sticking phase for d D 0 and v D 10 (any arbitrary
positive number is acceptable). (a) Orbits. (b) Displacements.

Infinite duration sticking phase. The unique initial data in this case is Œu.0/; Pu.0/�> D Œ0; 0; 0; 0�>. The
equilibrium u � 0 is a solution in which mass m2 always grazes with the wall since the two masses stay
at their equilibrium position when d D 0 and Pu1.0/ D 0.

It should thus be noted that generically, there is no 1-SPP except the equilibrium when d D 0.

8. CONCLUSION

The free dynamics of a two-degree-of-freedom linear oscillator subject to a unilateral constraint on one
of its mass is investigated. Generically, a Newton-like impact law has to be incorporated in the formulation
to guarantee well-posedness. In this work, periodic orbits with one sticking phase per period (1-SPP) are
considered: it is shown that they are independent of the impact law. They might not always exist and
whenever they exist, they are isolated as opposed to one-impact-per-period solutions (1-IPP) known to be
organized on manifolds [11]. Also, they cannot be obtained through usual perturbation methods.

The whole set of 1-SPP is characterized by only one parameter belonging to a discrete set: the free
flight duration of the trajectories. This parameter belongs to a countable set which can be empty, or even
infinite in some circumstances.

A systematic numerical procedure is designed to find all possible 1-SPP. It involves two numerical
steps:
(1) finding the roots of an explicit quasi-periodic function, and
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(2) checking that the corresponding closed-form trajectory satisfies the unilateral condition on the whole
period of motion.

Many examples are presented but the existence of 1-SPP remains an open problem. The situation is worse:
conditions for the non-existence of 1-SPP are provided. However, under generic assumptions on the mass
and stiffness matrices, a countable infinite set of initial data including all the initial data of 1-SPP can be
exhibited. The closed-forms emanating from this set (of initial data) satisfy the unilateral constraint at
least near the sticking phase. The prestressed structure is also explored. The picture is similar except that
1-SPP with infinite sticking time are also found.

Extension to n degrees-of-freedom with n > 2 is not straightforward: the symmetry u.t/ D u.�t /,
property heavily used in this work, is unknown and the sticking dynamics is more complicate, the sticking
system has dimension n � 1 > 1.
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