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Periodic solutions of a two-degree-of-freedom autonomous vibro-impact
oscillator with sticking phases

Huong LE THI, Stéphane JUNCA,
Laboratoire de Mathématiques J.A. Dieudonné and Team Coffee INRIA, Université de Nice Sophia Antipolis, France

Mathias LEGRAND

Department of Mechanical Engineering, McGill University, Canada

ABSTRACT This contribution explores the free dynamics of a simple two-degree-of-freedom vibro-impact oscillator. One
degree-of-freedom is limited by the presence of a rigid obstacle and periodic solutions involving one sticking phase
per period (1-SPP) are targeted. A method to obtain such orbits is proposed: it provides conditions on the existence
of 1-SPP as well as closed form solutions. It is shown that 1-SPP might not exist for a given combination of masses
and stiffnesses. The set of 1-SPP is at most a countable set of isolated periodic orbits. The construction of 1-SPP
requires numerical developments that are illustrated on a few relevant examples. Comparison with nonlinear modes
of vibration involving one impact per period (1-IPP) is also considered. Interestingly, an equivalence between 1-SPP
and a special set of isolated 1-IPP is established. It is also demonstrated that the prestressed system features sticking
phases of infinite duration.
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1. Introduction In the context of vibration and modal analysis of vibro-impact oscillators, nonlinear modes
of vibration with non-grazing impact are explored in [7, 8, 10, 12, 14, 15]. In these works, one degree-of-
freedom (dof) is unilaterally constrained by the presence of a rigid foundation: the dynamics is purely
linear when the contact constraint is not active, and governed by an impact law otherwise. Accordingly,
the contact force arising when the system interacts with the foundation is a periodic distribution of Dirac
deltas. Instead, the present work pays attention to periodic solutions involving finite time sticking contact
phases — thus discarding impulse-driven dynamics reported in the previous works — during which the
contacting mass rests against the obstacle. Is considered a simple mechanical system of two masses

k1 k2 d

u1.t/ u2.t/

m1 m2

Figure 1: Investigated two-degree-of-freedom vibro-impact system with d > 0
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linearly connected through two springs, as depicted in Figure 1, and the dynamics reads

M RuCKu D r (1.1a)

u.0/ D u0; Pu.0/ D Pu0 (1.1b)

u2.t/ � d; R.t/ � 0; .u2.t/ � d/R.t/ D 0; 8t (1.1c)
Pu>M PuC u>Ku D E.t/ D E.0/ (1.1d)

where

M D
�
m1 0

0 m2

�
I K D

�
k1 C k2 �k2

�k2 k2

�
I u.t/ D

�
u1.t/

u2.t/

�
I r.t/ D

�
0

R.t/

�
:

The two restoring forces stem from the action of stiffnesses k1 and k2; the corresponding masses are
m1 and m2. Quantities uj , Puj , and Ruj represent the displacement, velocity, and acceleration of mass
j , j D 1; 2, respectively. The gap d separates the obstacle and the equilibrium position of the second
mass1. R.t/ is the reaction force of the wall on mass 2. Matrices M and K are symmetric positive definite
so that there is a matrix P of eigenmodes which diagonalizes them simultaneously, that is P>MP D I
and P>KP D �2

D diag.!2
i /jiD1;2 where I is the identity matrix in R2 and !2

i , i D 1; 2 are the
eigenfrequencies of the linear system without unilateral contact. For the well-posedness of the initial-value
problem with conserved energy, see [3, 11]. When external forcing is introduced, sticking phases are
known to emerge as limits of a chattering sequence [2, 5, 6, 9]. There is no source term in this work but
sticking periodic solutions can still occur.

The natural way to obtain periodic solutions to System (1.1) is to look for the fixed points of the
associated first return map (FRM) which can be exhibited almost explicitly. Closed forms are obtained
as in [8] except for an unknown parameter: the free flight time which is a root of an explicit function h.
The roots of h belong to a countably infinite set of initial data which yield one-sticking-phase-per-period
periodic solutions (1-SPP) if and only if the constraint u2 < d is satisfied during the free flight. This
extends to the prestressed case d � 0.

The paper is organized as follows. In Section 2, the “sticking phase” definition is provided and the
conditions on its occurrence are stated. Then, necessary conditions satisfied by 1-SPP are given on the
period through the free flight duration s which is the key parameter, root of h. Furthermore, when s is
known, the corresponding 1-SPP is expressed in a closed form. The method and numerical examples
are described in Section 3 in order to find all 1-SPP. Mathematical proofs and comments are detailed
in Sections 4, 5 and 6. More precisely, Section 4 deals with the structure of the solution space with a
sticking phase. Section 5 is devoted to prove Theorem 2.1 on 1-SPP. The existence of an infinite set of
admissible initial data satisfying the constraint u2 � d near the sticking phase is proven in Section 6. The
existence of 1-SPP satisfying the constraint u2 � d during the whole period remains an open problem.
The prestressed case with d � 0 is discussed in Section 7. Section 8 concludes the paper.

2. Main results The sticking phase is first defined with necessary and sufficient conditions on its occurrence
in Section 2.1. Then, in Section 2.2, periodic solutions with one sticking phase per period, the so-called
1-SPP, are characterized with necessary conditions needed to list them all.

2.1. Sticking phase A sticking phase occurs when the second mass stays at u2 D d during a finite time
interval.

Definition 2.1 [Sticking phase and its duration] Let u be the solution to System (1.1). A sticking phase
arises if there exist t0 2 R and T > 0 such that

u2.t/ D d; 8t 2 Œt0 I t0 C T �: (2.1)

Moreover, when there exists 0 < ı � 1 such that 8t 2 �0 I ıŒ

u2.t0 � t / < d and u2.t0 C T C t / < d; (2.2)

then t0 is the starting time and T is the duration of the sticking phase.

The central reference [3] is used throughout the paper: existence is recalled, uniqueness and continuous
dependence to the initial data is proved. Moreover, in the conservative case, it is shown that there is no

1 d is the algebraic distance between the equilibrium position of mass 2 and the rigid wall, and might be negative with prestress.
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impact accumulation. Accordingly, before and after the sticking phase, Condition (2.2) is sufficient to
define the beginning and the end of a sticking phase of finite duration. More precisely, it is proved in [3],
Proposition 19 and Subsection 6.4, that the impact times are isolated for the perfectly elastic impact law.

In the present work, the finite duration of the sticking phase for d > 0 is a consequence of Theorem 2.1.
This is not always true, as for example with the prestressed case d � 0 detailed in Section 7. Such
conditions are well known to be related with the sign of the acceleration [6] and are specified and
developed for our 2-dof system as in [7].

Theorem 2.1 [Sticking contact] There exists a sticking phase exactly starting at time t0 and persisting on
its right neighbourhood if and only if:

1. u2.t0/ D d , Pu�2 .t0/ D 0, u1.t0/ > d , or
2. u2.t0/ D d , Pu�2 .t0/ D 0, u1.t0/ D d , Pu1.t0/ > 0.

The second case where u1.t0/ D d and Pu1.t0/ > 0 corresponds to the beginning of the sticking phase.
The duration of the sticking phase T then only depends on

v D Pu1.t0/ (2.3)

with

T .v/ D
2

!
arctan.�v/ where ! D

s
k1 C k2

m1
and � D

p
.k1 C k2/m1

k1 d
: (2.4)

The state of system at the end of the sticking phase is

u2.t0 C T / D d; Pu�2 .t0 C T / D 0; u1.t0 C T / D d; Pu1.t0 C T / D �v: (2.5)

Moreover, the regularity of the curve f.u2.t/; Pu2.t//; t 2 Rg is C 1:5 at the point .u2; Pu2/ D .d; 0/ which
corresponds to the time interval Œt0; t0 C T �.

The loss of regularity at the sticking point can be seen explicitly in Figure 2. It is the least smooth point
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Figure 2: Admissible 1-SPP with a singularity 1:5 at the intersection between red line and wall. (a)
Orbits f.ui .t/; Pui .t//; t 2 Rg, i D 1; 2. (b) Displacements t 7! ui .t/, i D 1; 2. (c) Reaction of the

wall t 7! R.t/

in the curve f.u2.t/; Pu2.t//; t 2 Rg. Locally, the orbit is very similar to the graph of t 7! .d; jt j1:5/.
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Elsewhere, the curve is analytic.
Incidentally, the proof of Theorem 2.1 leads to an explicit classification of all possible contact patterns.

Since there is no accumulation of impacts, the latter are isolated and only three distinct configurations
arise. Assume a contact at t D t0, then u2.t0/ D d and the contact is

1. an impact if Pu�2 .t0/ > 0,
2. a grazing contact if Pu2.t0/ D 0 and R.t/ D 0 for all t � t0, or
3. a sticking contact if Pu2.t0/ D 0 and R.t/ < 0 for some t � t0.

The velocity of mass 2 shall be discontinuous and Pu2̇ .t0/ denotes its left/right limit. Energy conservation
implies PuC2 .t0/ D �Pu�2 .t0/; in particular, when the incoming velocity vanishes, that is Pu�2 .t0/ D
PuC2 .t0/ D Pu2.t0/ D 0, the velocity is continuous.

Sticking contact and grazing contact are the two critical contact events [6]. In general, it is challenging
to know whether a zero pre-velocity impact generates a reaction of the wall without further information.
For the 2-dof system, simple criteria are given on the position and velocity of mass 1 to distinguish grazing
from sticking:

1. An impact yields an instantaneous bounce with PuC2 .t0/ D �Pu�2 .t0/ < 0.
2. A grazing contact means that the trajectory would not change without the wall. As a corollary of

Theorem 2.1, the data at time t0 are either u1.t0/ < d , u2.t0/ D d , and Pu2.t0/ D 0 or u1.t0/ D d ,
Pu1.t0/ � 0, u2.t0/ D d , and Pu2.t0/ D 0. Moreover, there exists " > 0 such that R.t/ D 0 for all
t 2 �t0 � " I t0 C "Œ.

3. A sticking contact phase can be divided into three events:
(a) its beginning: u1.t0/ D d , Pu1.t0/ > 0, u2.t0/ D d , and Pu2.t0/ D 0. There exists " > 0 such

that R.t/ D 0 for all t 2 �t0 � " I t0Œ and R.t/ < 0 for all t 2 �t0 I t0 C "Œ;
(b) its resting phase: u1.t0/ > d , u2.t0/ D d , and Pu2.t0/ D 0. There exists " > 0 such that

R.t/ < 0 for all t 2 �t0 � " I t0 C "Œ;
(c) its ending: u1.t0/ D d , Pu1.t0/ < 0, u2.t0/ D d , and Pu2.t0/ D 0. There exists " > 0 such

that R.t/ < 0 for all t 2 �t0 � " I t0Œ and R.t/ D 0 for all t 2 �t0 I t0 C "Œ.

2.2. Periodic solutions with one sticking phase per period (1-SPP) The main results of this paper are
concerned with the possible existence and computation of 1-SPP.

Definition 2.2 [One sticking phase per period solution] A periodic function u.t/ is called a 1-SPP, a
periodic solution to (1.1) with one sticking phase per period, if there exists 0 < T < T such that (up to a
time translation)

1. u2 D d on Œ0 I T �,
2. u2 < d on �T IT Œ, and
3. u.T / D u.0/ and Pu�.T / D Pu�.0/.

Condition 2 above can be relaxed to u2.t/ � d on �T IT Œ only. This yields admissible periodic solutions
with potentially many grazing contacts and sticking phases.

In order to find and characterize all 1-SPP, the following notations are needed:

P D
�
P11 P12

P21 P22

�
; P�1

D

�
P�1

11 P�1
12

P�1
21 P�1

22

�
; (2.6)

ˆj .s/ D
sin.!j s/

!j .1 � cos.!j s//
D

1

!j
cot
�!j s

2

�
; (2.7)

akj D �PkjP
�1
j1 ; bkj D

akj

!j
; ˛j D b1j � b2j ; ˇj D b1j ; (2.8)

wk.s/ D

2X
jD1

akjˆj .s/ D

2X
jD1

bkj cot
�!j s

2

�
; (2.9)

with j D 1; 2 and k D 1; 2. The interaction coefficients akj in [8] and in this work have opposite sign.
Also, if a 1-SPP exists, then there is only one control parameter, the duration s of the free flight, which
uniquely characterizes the 1-SPP through Theorem 2.2. The initial data and the period T are functions
of s. Conversely, such initial data may correspond to ghost solutions [12] if u2 exceeds d during free
flight.
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Theorem 2.2 [1-SPP characterizations] Assume u.t/ is a 1-SPP of System (1.1), then:
1. The duration of the free flight s > 0 is necessarily a root of

h.s/ D w1.s/ � w2.s/ D

2X
jD1

˛j cot
�!j s

2

�
D 0: (2.10)

2. The solution u corresponds to the initial data

Œu1.0/; u2.0/; Pu1.0/; Pu2.0/� D Œd; d; v; 0� where v D v.s/ D d=w1.s/: (2.11)

3. The period T of u is a function of s: T .s/ D s C T .v.s// where T is defined in (2.4).
4. The orbit is symmetric: u.� C t / D u.� � t /, 8t , where � WD T C s=2.

Remark 2.1. The parameter characterizing a 1-SPP could be the velocity v of the first mass at the
beginning of the sticking phase. Fixing v fixes all the initial data (2.11) at the beginning of the sticking
phase for a 1-SPP and then all 1-SPP. Accordingly, there is a one-to-one correspondence between the
set of 1-SPP and the set of initial velocities v D Pu1.t0/ yielding 1-SPP. However, 1-SPP closed-form
expressions are simpler with s, parameter chosen in the remainder.

Remark 2.2. The set of 1-SPP is at most countable and corresponds to a subset of the roots of the analytic
function h.�/.

The roots of the quasi-periodic function h.�/ are the first ingredients to be investigated in order to seek
1-SPP. In addition, the velocity of the first mass at the beginning of the sticking phase has to be positive,
see Theorem 2.1. It is governed by the sign of w1.s/.

The sticking phase is now exactly computed. Without loss of generality, assume t0 D 0. The end
of the sticking phase is the beginning of the free flight. Denoting

N
u, the solution of the free flight with

T D T .s/ leads to

.
N
u; P
N
u/.T / WD .u; Pu/.T /; (2.12)

M R
N
u.t/CK

N
u.t/ D 0; 8t 2 �T IT Œ: (2.13)

A solution to Equations (2.12)-(2.13) is a physically admissible solution to System (1.1) if it satisfies the
constraint

N
u2.t/ < d; T < t < T: (2.14)

If (2.14) is violated, then the 1-SPP is not admissible: this is a “ghost” solution [12]. Hence, introducing
the following sets:

Z D fs > 0; h.s/ D 0g; (2.15)

Z� D fs 2 Z and w1.s/ < 0g; (2.16)

Z0
D fs 2 Z and w1.s/ D 0g; (2.17)

ZC D fs 2 Z and w1.s/ > 0g; (2.18)

Zad
D fs 2 ZC such that (2.14) is satisfiedg (2.19)

and Z D ZC [Z0 [Z�, the admissible free flight times s belongs to ZC which also corresponds to
the “admissible” initial data. Furthermore, from the admissible initial data, the set of admissible 1-SPP
has a one-to-one correspondence with Zad. Is the set Zad empty or not? This is a challenging question
due to the global constraint (2.14). However, we can quantify the size of ZC which leads to solutions
satisfying (2.14), at least near the sticking phase. The following assumption is needed to avoid that
ZC D ¿, see Section 6.

Assumption 2.1 det
�
˛1 ˛2

ˇ1 ˇ2

�
¤ 0:

Notice that if Assumption 2.1 is violated and .˛1; ˛2/ ¤ 0, .ˇ1; ˇ2/ ¤ 0 then Z D Z0 and ZC D ¿
else Z0 is a small set with at most two elements.
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Theorem 2.3 [Countable infinity of ZC] If !1=!2 … Q then Z is countably infinite. Moreover, if Assump-
tion 2.1 holds, ZC is also countably infinite.

It is easy to show that Z is countably infinite when !1=!2 … Q since h.�/ is quasi-periodic with many
vertical asymptotes. The difficult part in Theorem 2.3 is to prove that ZC is also infinite. Incidentally,
it turns out that Z� is also infinite and more precisely that card.ZC \ Œ0 IA�/ � card.Z� \ Œ0 IA�/ for
large A. In other words, many roots of h do not correspond to 1-SPP. Not only 1-SPP are rare objects but
among the roots of the function h, only a few correspond to admissible 1-SPP.

In the next Section, the procedure to find 1-SPP is detailed.

3. Examples To construct 1-SPP, Theorems 2.1 and 2.2 are interpreted as follows: let s > 0 satisfy
h.s/ D 0 and w1.s/ > 0. Such s is a candidate to construct a 1-SPP u.t/ of Problem (1.1) corresponding
to the initial data Œu1.0/; u2.0/; Pu1.0/; Pu2.0/�

> D Œd; d;Cv; 0�> where v D d=w1.s/, with a sticking
phase on Œ0 I �� and then a free-flight on Œ� I � C s� with � D T .s/; more precisely:
� Sticking phase for t 2 Œ0 I ��: mass 2 sticks to the wall and mass 1 acts as a 1-dof linear oscillator.
� Free flight for t 2 �� I � C sŒ: System (1.1a) is solved with “initial” data at time � D T .s/ given as
Œu1.�/; u2.�/; Pu1.�/; Pu2.�/�

> D Œd; d;�v; 0�>. The condition u2.t/ < d is to be checked on the
interval �� I � C sŒ to obtain a real solution of Problem (1.1). Otherwise, an impact emerges before
� C s and the assumption of a free flight is violated on �� I � C sŒ so that the corresponding u.t/ is
not a 1-SPP.

Accordingly, building a 1-SPP requires two numerical steps:
1. Compute the roots of h.�/: Figure 3 depicts the set of roots as all the intersections of h.�/ and the

horizontal axis.
2. Check the admissibility of the associated solution, that is check if v > 0 and if u2.t/ < d for all
t 2 �T .s/ I T .s/C sŒ. From the symmetry of the solution during the free flight, it is sufficient to
check u2.t/ < d for all t 2 �T I T C s=2Œ.

0 10 20 30 40 50 60

�2
0

2

s

h
.s

/

Figure 3: Set Z D fs j h.s/ D 0g: red point: s 2 Zad; blue points: s 2 ZC but s … Zad; green points:
s 2 Z�. The set of s corresponding to the admissible initial data are points in blue or red but only one

point corresponds to a 1-SPP: the red point.

First numerical examples are provided with m1 D m2 D 1 kg. The two periods of the unconstrained
linear System (1.1a) are T1 � 10:17 s and T2 � 3:88 s.

Figure 2 shows the simplest 1-SPP one can find: only one loop for the orbit of the second dof. This
orbit is very smooth except at one point corresponding to the whole sticking phase. At this sticking point,
a C 1:5-regularity only is achieved as discussed in Section 4.2. Various examples featuring other responses
are introduced in Figures 4 and 5.

Many roots of h belonging to ZC do not correspond to 1-SPP. For instance, for s � 17:97 2 ZC, the
free-flight is not acceptable since the second mass penetrates the rigid obstacle, as pictured in Figure 6.
The condition s 2 ZC only stipulates that the non-penetration constraint (2.14) is satisfied near the
sticking phase. Although ZC is infinite, it is challenging to find the set Zad � ZC yielding 1-SPP. For
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Figure 4: 1-SPP for k1 D k2 D 1 and m1 D 100, m2 D 1: s � 34:412 s and T � 20:804 s. (a) Orbits.
(b) Displacements
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Figure 5: 1-SPP Orbits. (a) k2 D 10k1 and m1 D m2. (b) k2 D 100k1 and m1 D 100m2

large s, the free flight lasts a long period of time and the possibility that u2 gets larger than d seems higher.
Still, 1-SPP with large s are shown in Figures 4 and 5.

4. Sticking contact This Section is devoted to the mathematical proof of Theorem 2.1 concerned with the
necessary and sufficient conditions on the occurrence of a sticking phase (see also [7]). The theory on
such systems with impacts can be found in [1, 3, 4, 6, 13].

To experience a sticking phase, a zero-velocity at the contact is the first necessary condition, see below
or [3, 6]. Then, the sticking phase holds whenever there is a positive force generated from mass 1 acting
on mass 2. This force is explicit through the last equation of (1.1a). Through Lemma 4.1, it is clear that
the energy of the unconstrained linear free flight system is conserved by the sticking system below. The
sticking system becomes simply a 1-dof problem, and the closed form as well as the explicit duration of
sticking phase are obtained.

The loss of regularity induced by the sticking phase is also studied. The solution is very smooth away
from the beginning and the end of the sticking phase, namely analytic [3]. The function u2 belongs to the
Sobolev space W 3;1 which means that «u2 is a Lipschitz function. The smoother function u1 belongs to
C 4\W 5;1: for both functions, the singularity is located on the boundary of the sticking phase. The orbit
f.u2.t/; Pu2.t//; t 2 Rg has only a C 1:5-regularity at the sticking point. This singularity C 1:5 is visible
in Figure 2 and is caused by the zero velocity and zero acceleration of mass 2 exactly when the sticking
phase starts and ends.

Proof. The right and left analyticity of the solution for the perfect elastic bounce is used (Proposition 19
in [3]). Note that the condition of a closed contact, i.e. u2.0/ D d , with zero velocity Pu�2 .0/ D 0 is mandatory.
Otherwise Pu�2 .0/ > 0, PuC2 .0/ D �Pu�2 .0/ > 0 and the mass immediately leaves the wall, that is u2.t/ < d

for t & 0 such that there is no sticking phase. The second equation of System (1.1a) is rewritten with the
aforementioned initial data for mass 2 only:

m2 Ru2.t/ D k2.u1.t/ � u2.t//CR.t/

u2.0/ D d; Pu�2 .0/ D 0; R.t/ � 0:
(4.1)
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Figure 6: Non-admissible 1-SPP: mass 2 penetrates the wall during free flight. (a) Orbits. (b) Displace-
ments

During a sticking phase, u2.t/ � d implies Ru2.t/ � 0 and Equation (4.1) yields the relation

R.t/ D k2.d � u1.t// (4.2)

which is non-positive if and only if u1.t/ � d . As a consequence the zero velocity Pu2.0/ D 0 is not sufficient
to ensure the existence of a sticking phase starting at time t D 0. Various situations depending on the state
.u1.0/; Pu1.0// should now be considered:
u1.0/ < d — The left-hand side of (4.1) is negative. Thus RuC2 .0/ < 0 and there is no sticking phase. More

precisely, u2 is a piecewise analytic function [3] and its Taylor series in the right neighbourhood of 0 is

u2.t/ D d C t
2 Ru
C
2 .0/

2
CO.t3/ < d:

u1.0/ > d — Since u1 is continuous, it is larger than d in a right neighbourhood Œ0 I "2Œ of t D 0. Thus, there
is a positive force F.t/ D k2.u1.t/ � u2.t// acting on mass 2, and by Newton’s third law, there exists
a reaction R.t/ such that R.t/ D �F.t/. Substituting into (4.1) yields Ru2.t/ D 0, 8t 2 Œ0 I "2Œ. Hence
u2.t/ D d , 8t 2 Œ0 I "2Œ, i.e. a sticking phase emerges.

u1.0/ D d — RuC2 .0/ D 0 and there are three possibilities for the velocity of mass 1:
1. If Pu1.0/ > 0, u1.t/ becomes immediately larger than d for t > 0 small enough. This is similar to

the previous case where a sticking phase occurs.
2. If Pu1.0/ < 0 then u1.t/ becomes immediately smaller than d and no sticking phase occurs. More

precisely from Equation (4.1), m2«u
C
2 .0/ D k2. Pu1.0/ � Pu2.0// < 0 and the Taylor series of u2 in

the right neighbourhood of 0 is

u2.t/ D u2.0/C t Pu2.0/C
t2

2
RuC2 .0/C

t3

6
«uC2 .0/CO.t4/ D dC0C0C t3

«uC2 .0/
6
CO.t4/ < d:

3. If Pu1.0/ D 0, then RuC1 .0/ D �k1d=m1 < 0. Thus m2«u
C
2 .0/ D k2. Pu1.0/ � Pu2.0// D 0 and

m2u
.4/C
2 .0/ D k2. Ru

C
1 .0/ � Ru

C
2 .0// < 0. Similarly, a Taylor series of u2 in the right neighbourhood

of 0 shows that u2.t/ < d for t & 0 and there is no sticking phase.
Note that only the last case u1.0/ D d and Pu1.0/ D 0 crucially depends on the sign of d . It is further discussed
in Section 7 when d � 0. Moreover, all piecewise analytic solutions presented above preserve energy. It is clear
for the grazing case since R � 0. When sticking occurs, energy conservation is a consequence of Lemma 4.1.
In conclusion, every introduced case corresponds to the unique solution preserving energy [3]. �

4.1. Sticking system From the previous developments, the sticking System [6] complemented by the initial
data at the beginning of a sticking phase is explicitly derived as

m1 Ru1 C .k1 C k2/u1 � k2u2 D 0; u1.0/ D d; Pu1.0/ D v > 0; (4.3)

m2 Ru2 D 0; u2.0/ D d; Pu2.0/ D 0: (4.4)

This system becomes simply an sticking equation below. The initial data for mass 1 has to be clarified. If
u1.0/ > d then this inequality is also valid locally in the past, and the sticking phase exists before t D 0.
If u1.0/ D d and Pu1.0/ > 0, then u1.t/ < d for t . 0 so there is no sticking phase just before t D 0, in
other words, t D 0 is the beginning of the sticking phase. The grazing contact case Pu1.0/ D 0 and the
case where constraint (2.14) is violated, Pu1.0/ < 0, do not have to be considered.
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Notice that the system is not symmetric. However, the energy of the free flight system is conserved by
the sticking system.

Lemma 4.1 The solution of System (4.3)-(4.4) conserves the energy E expressed in (1.1d).

Proof. Assume that the time t D 0 is the beginning of a sticking phase and t D � , the end. During this sticking
phase on the interval Œ0 I ��, the governing equations are

m1 Ru1 C .k1 C k2/u1 D k2d; (4.5)
u2 D d: (4.6)

The first equation conserves the energy around the new equilibrium u1 D k2d=.k1 C k2/:

E1.t/ D m1 Pu
2
1.t/C k1.u1.t/ � u1/

2
D E1.0/:

Moreover, writing u1.t/ D .u1.t/ � u1/C u1 and since u2.t/ D d , an easy computation yields:

.k1 C k2/u
2
1.t/ D .k1 C k2/.u1.t/ � u1/

2
C 2k2u1.t/u2.t/C C and C D 3.k1 C k2/u

2
1:

The energy of System (1.1) can be computed. Notice that Pu is continuous through a sticking phase so the
exponent˙ is dropped:

E.t/ D Pu>.t/M Pu.t/C u>.t/Ku.t/
D m1 Pu

2
1.t/C .k1 C k2/u

2
1.t/Cm2 Pu

2
2.t/C k2u

2
2.t/ � 2k2u1.t/u2.t/

D m1 Pu
2
1.t/C .k1 C k2/.u1.t/ � u1/

2
C 2k2u1.t/u2.t/C C C 0C k2d

2
� 2k2u1.t/u2.t/

D E1.t/C C C k2d
2
D E1.0/C C C k2d

2
D E.0/: �

The sticking system is now solved and the sticking time is explicitly exhibited: this is an interesting
feature of the 2-dof mechanical system. The 1-dof linear oscillator problem with a constant force (4.5)
has the explicit solution

u1.t/ D A cos.!t C �/C
k2

k1 C k2
d where ! D

s
k1 C k2

m1
:

The expression of the constants A and � stems from the initial condition Œu1.0/; Pu1.0/�
> D Œd; v�> as

follows

A D
k1d

.k1 C k2/ cos.�/
and � D � arctan.�v/ with � D

p
.k1 C k2/m1

k1d

and T is the first positive time satisfying u1.T / D d , that is T D 2 arctan.�v/=!. Due to the symmetry
of the solution to Problem (4.5) with respect to the u1 axis in the plane .u1; Pu1/, u1.T / D d and
Pu1.T / D �v which also means, through Theorem 2.1, that T is the end of the sticking phase.

4.2. 1:5-singularity at the sticking point The following Proposition states precisely the regularity near a
sticking phase, essentially C 2 and almost C 3. The lower C 1:5-regularity of the orbit is obtained at the
end of the Section.

Proposition 4.2 [Regularity of solutions] Assume u.�/ is a solution of System (1.1) on ŒT0 IT1� with
only a sticking phase on Œ0 I T � and a free flight elsewhere with T0 < 0 < T < T1. Then u1 2

C 4.ŒT0 IT1�/ \W
5;1.ŒT0 IT1�/ and u2 2 C

2.ŒT0 IT1�/ \W
3;1.ŒT0 IT1�/.

Proof. Away from the sticking phase beginning and end, the solution is regular: analytic outside Œ0 I T �,
constant inside �0 I T Œ. The regularity at t D 0 and t D T is of higher interest. Only the case t D 0 is considered
since its counterpart at t D T is similar in nature. The initial data at t D 0 are Œu.0/; Pu.0/�> D Œd; d; v; 0�>.
The second Equation of (1.1a) is

m2 Ru2.t/ D k2.u1.t/ � u2.t//CR.t/: (4.7)

During the sticking phase 0 < t < T , u2.t/ D d so Ru2.t/ D 0 and RuC2 .0/ D 0. Before the sticking phase t < 0,
R.t/ D 0 since u2.t/ < d and lim0>t!0 u2.t/ D d D lim0>t!0 u1.t/ and from Equation (4.7), Ru�2 .0/ D 0,
thus Ru2 is continuous at time t D 0 with Ru2.0/ D 0. However, the third derivative of u2 on the left of t D 0
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does not vanish since m2«u
�
2 .0/ D k2. Pu1.0/� Pu2.0// D k2v > 0 which also means that «u2 is bounded. Hence,

u2 2 C
2.Œ0 IT �/ \W 3;1.Œ0 IT �/.

The regularity of u1 is investigated from the first Equation of (1.1a) m1 Ru1 C .k1 C k2/u1 D k2u2

showing that Ru1 and u2 have the same regularity. Accordingly, Ru1 2 C
2.Œ0 IT �/ \ W 3;1.Œ0 IT �/ that is

u1 2 C
4.Œ0 IT �/ \W 5;1.Œ0 IT �/. �

We now prove the C 1:5-regularity of the orbit without using any explicit formula.

Proof. The C 1:5-smoothness of the projection of the orbit on the last component, more precisely the regularity
of the set �2 D f.t/ D .u2.t/; Pu2.t//; 0 � t � T g � R2 is explored. By T -periodicity, this parametrization
is defined for all time. During the sticking phase 0 � t � T , the last mass rests against the foundation, that is
.t/ D .0/ D .d; 0/ and P.t/ D .0; 0/: the parametrization is then singular. Instead, a regular parametrization
of �2 is proposed as

Q.t/ D .t � T /; T � t � T: (4.8)

In other words, Q is  where the sticking phase has been removed and is also defined for all time through
s-periodicity with s D T � T . The set Q�2 D Q.Œ0 I s�/ is exactly �2. The curve is analytic except at the sticking
point .d; 0/. A precise study of Q.t/, jt j < " should now be undertaken for " > 0 sufficiently small. To this end,
the left and right derivatives are computed since the solution is left and right analytic at the sticking point [3]:

dk

dtk
Q�.0/ D

dk

dtk
�.0/;

dk

dtk
QC.0/ D

dk

dtk
C.T /: (4.9)

To compute the successive left and right derivatives, the ODE m2 Ru2.t/ D k2.u1.t/ � u2.t// is used just
before the sticking phase and just after the sticking phase. Recall that u1.0/ D d and Pu1.0/ D v > 0,
u2.0/ D d and Pu2.0/ D 0, u1.T / D d and Pu1.T / D �v < 0, u2.T / D d and Pu2.T / D 0. The ODE gives
m2 Ru

�
2 .0/ D k2.d � d/ D 0, RuC2 .T / D 0, so PQ˙.0/ D .0; 0/. The parametrization is still singular and higher

derivatives of u2 are computed by differentiating the ODE:

m2«u2.t/ D k2. Pu1.t/ � Pu2.t//

RQ�.0/ D .0; ˇ/; RQC.0/ D .0;�ˇ/; ˇ D k2v=m2 > 0

m2¬u2.t/ D k2. Ru1.t/ � Ru2.t//

«Q�.0/ D .ˇ; ı/; RQC.0/ D .�ˇ; ı/; ı D �k2k1d=.m2m1/ < 0

where the second derivative of u1 comes from the equation m1 Ru1.t/ D �k1u1.t/ � k2.u1.t/ � u2.t//:
Ru1.0/ D �k1d=m1 < 0. The local behaviour at t D 0 is then for˙t > 0:

Q.t/ D .d; 0/C
1

2
sign.t/.0; ˇ/t2 C

1

6
.sign.t/ˇ; ı/t3 CO.t4/: (4.10)

There are two singularities for this parametrization: the left and right expansions for ˙t > 0, and the more
important PQ.0/ D .0; 0/. To clearly identify the regularity of the curve at t D 0, a last change of variable is
performed [12]: � D sign.t/t2 and O.�/ D Q.t/ such that:

O.�/ D .d; 0/C
1

2
.0; ˇ/� C

1

6
.ˇ; sign.�/ı/j� j1:5

CO.�2/: (4.11)

The C 1:5-regularity is then identified since PO.0/ ¤ .0; 0/ and this is optimal. �

5. Building 1-SPP This Section addresses the construction of the 1-SPP developed in Section 2.2. An
explicit formula for T is obtained and the set of admissible initial data is derived. The initial velocity of
the first mass depends on the free flight time s and it is proven that s can be found in the infinite set of
roots of h.s/. The symmetry of the solutions is discussed.

5.1. Initial data Without loss of generality, the initial data are defined at the Poincaré section u2 D d . The
problem is to find a periodic function u associated with the initial data Œd; d; v; 0�> such that there is one
sticking phase per period. As explained previously, T and T are parametrized by s. The sticking solution
and the sticking time T > 0 are calculated explicitly in Section 4.1.

By denoting U D Œu; Pu�>, a free flight starts at time T with the initial data

U.T / D Œd; d;�v; 0�>: (5.1)
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It can be written as

U.T / D SU.0/ where S D
�

I 0
0 L

�
; L D

�
�1 0

0 1

�
: (5.2)

After the sticking phase, System (1.1a) becomes

M RuCKu D 0: (5.3)

We shall find the solution u such that

U.T / D U.0/: (5.4)

Through the change of variable u D Pq, Equation (5.3) becomes I Rq C �2q D 0 which features the
following block matrix solution

Q.t/ D
�

q.t/
Pq.t/

�
D R.t � T /

�
q.T /
Pq.T /

�
; 8t 2 �T IT Œ (5.5)

where

R.t/ D
�

cos.t�/ ��1 sin.t�/
�� sin.t�/ cos.t�/

�
: (5.6)

Using Equation (5.4), the period T of the 1-SPP satisfies

Q.T / D Q.0/: (5.7)

Denote s D T � T , Equation (5.7) projected onto modal coordinates reads

R.s/ QSQ.0/ D Q.0/ where QS D
�
P�1

�
S ŒP� and ŒP� D

�
P 0
0 P

�
which can be expressed as .R.s/ QS � I/Q.0/ D 0 with

R.s/ QS � I D
�

cos.s�/ � I ��1 sin.s�/P�1LP
�� sin.s�/ cos.s�/P�1LP � I

�
:

The computations are similar to those introduced in [8]. This similarity will be explained later through the
relationship between 1-SPP and the one-Impact-Per-Period solutions (1-IPP) detailed in [8]2.

Assume that s is not a period of the linear differential system, s … [2
jD1TjZ where Tj D 2�=!j ,

j D 1; 2 are the natural periods of the underlying linear system. Then, the following quantities are well
defined:

ˆ.s/ D .I � cos.s�//�1��1 sin.s�/; (5.8)

w.s/ D Pˆ.s/P�1Le1; e1 D .1; 0/
>; (5.9)

w1.s/ D e>1 w.s/: (5.10)

The set of possible initial data, yielding 1-SPP, or “ghosts” if Constraint (2.14) is not satisfied, is described
explicitly through the following lemma:

Lemma 5.1 If s … [2
jD1TjZ then the system

R.s/ QSQ.0/ D Q.0/ (5.11)

defines a one dimensional vector space parametrized by c 2 R given in variables�
u.0/
Pu.0/

�
D P

�
q.0/
Pq.0/

�
D c

�
w.s/
e1

�
: (5.12)

Proof. Compute ker.R.s/ QS � I/ by blocks (see [8]):�
cos.s�/ � I ��1 sin.s�/P�1LP
�� sin.s�/ cos.s�/P�1LP � I

�
�

�
cos.s�/ � I ��1 sin.s�/P�1LP

0 .LC I/P

�
(5.13)

because the matrix .I � cos.s�//�1P�1 is invertible. Since Pu D P Pq, the right lower blocks in (5.13) simplifies
to .L C I/ Pu D 0, that is Pu D ce1 with c 2 R. Similarly, the upper block provides the expression q D
c.I � cos.s�//�1��1 sin.s�/P�1Le1. �

2 Note that there is a change of sign in w.s/ due to the coefficient akj D �PkjP
�1
j1 instead of PkjP

�1
jN

in [8].
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The parameter c is identified from the third row of (5.12), c D PuC1 .0/ D v. By expressing the initial
condition�

u1.0/

u2.0/

�
D

�
d

d

�
D v

�
w1.s/

w2.s/

�
D c Pˆ.s/P�1Le1 (5.14)

System (5.14) simplifies to w1.s/ D w2.s/ or

h.s/ D w1.s/ � w2.s/ D

2X
jD1

˛j cot
�!j s

2

�
D 0

and the initial velocity of the first mass is found from

v D d=w1.s/; w1.s/ > 0: (5.15)

If !1=!2 … Q, the function h.s/ exhibits a countably infinite set of roots s. Moreover the set of s such
that h.s/ D 0 and v.s/ > 0 is also countably infinite by Theorem 2.3. The particular case !1=!2 2 Q is
discussed in Section 6.

5.2. Symmetry To conclude the validation of Theorem 2.2, the symmetry of 1-SPP is proved.

Proof. Through periodicity, it is sufficient to check the symmetry of the solutions on one period. The
symmetry is satisfied during the sticking phase and the free flight. Since only the first mass oscillates during
the sticking phase, the solution is symmetric. Let us check the symmetry of solutions during the free flight
time t 2 ŒT IT � where u.T / D u.T / and PuC.T / D �Pu�.T /. Denoting � D .T C T /=2, it is sufficient
to show that u.� C t / D u.� � t /, 8t 2 I D Œ�s=2 I s=2�. Let zC be the function defined on I such that
zC.t/ D u.�Ct /. Then zC is a well defined smooth function on I with zC.s=2/ D u.T / and PzC.s=2/ D Pu�.T /.
Similarly, by defining the function z�.t/ WD u.� � t /, for t 2 I , it can be checked that z�.s=2/ D u.T / and
Pz�.s=2/ D �PuC.T /. Furthermore, both zC and z� are solutions to the linear differential system MRzCKz D 0
on I . Notice that zC and z� have the same initial data zC.s=2/ D z�.s=2/ and PzC.s=2/ D Pz�.s=2/. Hence, by
the uniqueness of the initial value problem, it is deduced that zC.t/ � z�.t/ on I . �

5.3. Relationship between 1-SPP and 1-IPP For this two-degree-of-freedom vibro-impact system, a
relationship between one-sticking-phase-per-period and one-impact-per-period solutions [8] is exhibited.
It clarifies the similarities and differences of such periodic solutions.

Consider the two Figures 2(a) and 2(b) showing a single loop in �2. Figures 7(a) and 7(b) are then
obtained by “deleting” the sticking phase on the whole interval �0 I T Œ such that a 1-IPP solution [7, 8] is
identified, where the jump occurs on mass 1 (instead of mass 2) when u1.0/ D d as well as u2.0/ D d . It
is important to note that this 1-IPP is “unique” in the sense that it satisfies u2.0/ D d ; it is denoted 1-IPPp
in the remainder.
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Figure 7: Is a 1-IPP or a 1-SPP without sticking phase drawn? (a) Orbits. (b) Displacements

The correspondence between 1-SPP and this particular 1-IPPp is now detailed. To this end, generalized
1-SPP and 1-IPPp, ie G1-SPP and G1-IPPp respectively, are first defined: they are 1-SPP and 1-IPPp
unconstrained during the free flight and u1 as well as u2 might exceed d 3. By definition, a G1-SPP u

3 The G1-IPP in this paper has a counterpart in [8]: it is a G1-IPP where the jump in velocity affects the second mass instead of
the first mass here. As such, we know that there is a unique G1-IPP for all positive periods. This is the reason why the formulas
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satisfies the following requirements:
1. s 2 Z,
2. T D s C T is the fundamental period with T D T .s/,
3. a sticking phase on �0 I T .s/Œ with u1.0/ D d , Pu1.0/ D v D v.s/, u2.0/ D d , Pu2.0/ D 0,
4. a free flight on �T IT Œ with u1.T / D d , Pu1.T / D �v, u2.T / D d , Pu2.T / D 0, M RuCKu D 0.

The one-to-one correspondence from Figure 2 to Figure 7 is formalized aseu.t/ D u.T C t /; 0 < t < s; (5.16)

whereeu is taken s-periodic so thateu�.0/ D u.0/,euC.0/ D u.T /. As a consequence,eu is such that
1. s is the fundamental period,
2. eu1̇ .0/ D d , Peu�1 .0/ D Pu1.0/ D v, PeuC1 .0/ D Pu1.T / D �v,
3. eu2̇ .0/ D d , Peu2̇ .0/ D 0,
4. a free flight on �0 I sŒ: M ReuCKeu D 0.

We can check that Qu is a G1-IPPp. The only surprising condition is Peu2.0/ D 0 but zero velocity is
automatically achieved by a G1-IPP [3, 8].

Proposition 5.2 [G1-SPP, G1-IPPp] There is a one-to-one correspondence between G1-SPP with a
sticking phase for mass 2 and G1-IPPp.

Proof. This is a brief sketch. G1-SPP) G1-IPPp was explained previously. Conversely, from a given G1-IPPp,
it is possible to build a sticking phase as in the proof of Theorem 2.1 in Section 4 with a free flight duration s to
then define a unique G1-SPP. �

The key parameter s appears to be simply the period of the associated G1-IPPp. This proposition shows
that the setZ corresponds exactly to the set of all G1-IPPp. Let us state briefly the correspondence between
ZC and Zad and the corresponding subset of all G1-IPPp.

Concerning generalized solutions with a positive velocity at the impact (v > 0), it can be said that for
all s 2 ZC, there exists a unique G1-SPP and a corresponding unique G1-IPPp which has a physical initial
data at the impact time (no violation of the constraint near the impact time). Conversely, if a G1-IPPp is
such that, at the impact time, the incoming velocity of mass 1 is positive then the period belongs to ZC
which corresponds to a unique G1-SPP.

Finally, a 1-SPP, i.e. a G1-SPP satisfying the constraint u2.t/ � d for all time, is in a unequivocal
correspondence with a G1-IPPp satisfying the same constraint. Notice that is not the constraint to be a
1-IPP since the constraint for 1-IPP is on mass 1. Figures 2 and 7 show a perfect and rare correspondence
between a 1-SPP and a 1-IPP since the associated G1-IPPp satisfies the two constraints uk.t/ � d for
all time and k D 1; 2. As a consequence, 1-SPP are isolated solutions. The reason lies in the fact that
the space of G1-IPP is a one-dimensional manifold which intersectseu2 D d on a discrete set such that
the G1-IPP become isolated. Another possible consequence, which is not further discussed here, is the
existence of 1-SPP (if we are able to obtain such particular G1-IPP).

6. The countable set Z˙ The set Z˙ plays a key role to find admissible solutions, or more precisely
admissible initial data which can satisfy the constraint u2 � d at least locally near the sticking phase.
Thus, a question of interest emerges: what is the size of this set? In this Section, the sets ZC and Z� are
proven to be countably infinite if some generic assumptions are fulfilled. The proof of Theorem 2.3 is
similar for both sets and only the proof for ZC is presented.

6.1. Z˙ is infinite when no resonance Before stating the main proof with !1=!2 … Q, we start with
Lemma 6.1 below. Denote the orbit O in the torus … D R=2�Z � R=2�Z:

O D f.x; y/ D .Nt; �t/jt > 0g (6.1)

where Nt D t C 2�Z and �, a constant.

Lemma 6.1 [Transversality and density] Let f be a 2��periodic continuously differentiable function
from Œ0 I 2�Œ to Œ0 I 2�Œ. For any irrational number �, if .x0; y0 D f .x0// located on the curve C defined

in Section 5 are slightly different from [8]. The condition on mass 1 in Theorem 2.1 corresponds to an elastic impact for mass 1.
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by the graph of f satisfies the transversal condition between C and O, that is
Pf .x0/ ¤ � (6.2)

then 8" > 0, 9t > 0 such that �t D f .Nt / and jNt � x0j < ".

In other words, every point on the curve C at which the tangent is transverse to the orbit O is an
accumulation point of O \ C, see Figure 8. Precisely, the set O \ C is dense in f.x; f .x//j Pf .x/ ¤ �g.

0 �=2 � 3�=2 2�

0
�
=
2

�
3
�
=
2

2
�

Figure 8: Density of O \H in H

Moreover, for all A > 0, the set OA D f.x; y/ D .Nt; �t/jt > Ag shares the same property.

Proof. Assume � > 0, the cases � D 0 and � < 0 follow immediately.
Since Pf .x0/ ¤ � and Pf is continuous, there exists "0 > 0 small enough such that Pf .x/ ¤ � 8x 2

Œx0 � "0 I x0 C "0�. Without loss of generality, assume that Pf .x/ > �, 8x 2 Œx0 � "0 I x0 C "0�. Since O is
dense in …, 8" > 0, there exists t0 > 0 such that z D .t0; �t0/ belongs to O close enough to .x0; y0/, i.e.
jt0 � x0j < " and j�t0 � y0j < ": if z is on the curve C then t is chosen to be t0, else z is above the curve C, i.e.
�t0 > f .t0/.

We will show that the orbit O intersects the curve C inside the box �x0�"0 I x0C"0Œ� �y0�k"0 Iy0Ck"0Œ

where k is the maximum of j Pf j on Œx0 � "0 I x0 C "0� as shown in Figure 9. For this purpose, we use a line

C

d2

d

y0 � k�0

y0 C k�0

y0

yJ

�t0

yI

x0 � �0 x0 C �0xIxJx0Nt0

Figure 9: Zoom in the box �x0 � "0 I x0 C "0Œ � �y0 � k"0 Iy0 C k"0Œ when Pf .x0/ > �

d2 under the curve on the right of .x0; y0/. From p D minŒx0�"0 Ix0C"0�
Pf , the equation of the line d2 with

slope p passing through .x0; y0/ is y D p.x � x0/C y0. The line d with slope � passing through .t0; �t0/
and associated to the orbit O is defined by y D �.x � t0/C �t0. Let I.xI ; yI / be the intersection of those two
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lines. Since p > �, we have

xI D
px0 � y0 � �t0 C �t0

p � �
:

Choosing " small enough such that " < "0.jp � �j/=.�C k/ implies xI 2 Œx0 � "0 I x0 C "0�.
Consider the two curves d2 and C intersecting at .x0; y0/ and satisfying Pf .x/ > p for all x 2 Œx0 �

"0 I x0 C "0�. Since p > �, d intersects d2 at I . Hence, there exists an intersection of C and d in the interval
�x0 I xI Œ. In other words, there exists t > 0 such that �t D f .Nt / and jNt � x0j < "0. The proof when z is under
the curve C is similar. �

The proof of Theorem 2.3 starts by showing that the set Z D fs > 0; h.s/ D 0g is countably infinite.
It is true for the set f.!1s; !2s/; h.s/ D 0g and will be useful to prove that the set ZC of free flight
times s with admissible initial velocity v.s/ > 0 is also countably infinite.

Proof. Set '.t/ D cot.t=2/, then h.s/ D ˛1'.!1s/ C ˛2'.!2s/ and w1.s/ D ˇ1'.!1s/ C ˇ2'.!2s/

where ˇj D b1j , and ˛j ; bkj are defined in Equation (2.8). For every .x; y/ 2 … D R=2�Z � R=2�Z,
the two functions H.x; y/ D ˛1'.x/ C ˛2'.y/ and W.x; y/ D ˇ1'.x/ C ˇ2'.y/ correspond to h.s/ D
H.!1s; !2s/ and w1.s/ D W.!1s; !2s/. In order to simplify, the sets O D f.!1s; !2s/js > 0g, H D
f.x; y/ 2 …jH.x; y/ D 0g, and W D f.x; y/ 2 …jW.x; y/ D 0g are defined on the torus …; WC, W� are
denoted as the domains of … where W.x; y/ > 0 and < 0, respectively.
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Figure 10: (a) or (b) H\WC is the half of the red curve which lies in the grey domain; (c) O\H\WC
is the set of all intersections between the red curve and the orange lines within the grey domain

The set O is equal to O with � D !2=!1. Consider the map  W RC ! O, s 7! .!1s; !2s/, then  is
bijective for !2=!1 … Q and

.Z/ D O \H (6.3)

.ZC/ D O \H \WC (6.4)

Hence, instead of proving the set Z is countably infinite, the stronger result O \H D H is proven. This implies
O\H is countably infinite. This stronger result shows that ZC is countably infinite by pointing out the density
of O \H \WC in H \WC and the countable infinity of H \WC.

To show that O \H D H, assume ˛2 ¤ 0, rewrite H.x; y/ D 0 to have y D  .x/ where  D '�1.r'/

and r D �˛1=˛2.
1. We show that P ¤ � almost everywhere. Since  is an analytic function on I D �0 I 2�Œ, so is P . After

simplification, the derivative of  becomes

P D
r.1C '2/

1C r2'2
D
1

r

�
1C

r2 � 1

1C r2'2

�
(6.5)

which degenerates to a constant function for r D ˙1. Otherwise, P is not a constant function and the
set fx 2 I j P .x/ D �g is empty or countable. Hence, P ¤ � holds almost everywhere. It is still true if
˛2 D 0 since H.x; y/ becomes a periodic function of x, and H then degenerates to a vertical line in the
torus ….

2. Through Lemma 6.1 where f D  is periodic of period 2� , the set O is O where � is the ratio !2=!1

and O\H is dense in f.x; y/ 2 H j P .x/ ¤ �g follows. In addition, it is proven above that P ¤ � almost
everywhere, thus O \H D H, since H is infinite, thus O \H is countably infinite. In particular, there is
a countably infinite set of s > 0 such that h.s/ D 0.
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To complete the proof, we show that ZC is countably infinite by proving that .ZC/ D O \ H \WC is
countably infinite. In a similar manner, it is sufficient to show that O \H \WC D H \WC and H \WC is
an infinite set. If ˇ2 ¤ 0, denote � D �ˇ1=ˇ2, the curve W then corresponds to the function y D Q .x/ where
Q D '�1.�'/ which has the same properties with  . The result still holds if ˇ2 D 0 since W degenerates

to the vertical line in …. By Assumption 2.1, r ¤ � and it follows that H and W cannot coincide and the
determinant of the coefficient matrix of the homogeneous system

H.x; y/ D 0

W.x; y/ D 0

is nonzero. Therefore, it has a trivial solution '.x/ D '.y/ D 0, i.e. . N�; N�/ is one intersection between H
and W. Assumption 2.1 is optimal to have ZC is infinite. Otherwise, if Assumption 2.1 does not hold, H DW,
thus H \WC D ¿ and ZC is empty.

Assumption 2.1 implies that P . N�/ ¤ PQ . N�/ since P . N�/ D r and PQ . N�/ D �, thus the curves are transverse.
Moreover, since the signs of the derivatives of  and Q depend on the signs of r and �, respectively,  and Q 
are monotonic functions, in which case, H \WC is a half of the curve H which lies in the region WC (see
Figures 10(a) and 10(b)).

As WC is an open set and O \H D H, then O \H \WC D H \WC. It follows that O \H \WC is
infinite (Figure 10c.). Hence, ZC is infinite. �

6.2. Internal resonances The situation is much simpler when the ratio !1=!2 is rational. All the functions
involved are periodic with the same period and the set O \H is finite or empty. Thus, the set of initial
velocity fv.s/; s 2 Zg is finite which also means that the set of generalized 1-SPP is finite. ZC can be an
empty set for instance if Z D ¿: with the parameters ˛1 D 1, ˛2 D �1, and !1=!2 D 2, the graph of
function h.s/ is depicted in Figure 11: 1-SPP do not exist.

0 2� 4� 6� 8� 10� 12� 14� 16� 18� 20�

�2
0

2

s

h
.s
/

Figure 11: Function h.s/ when !1=!2 D 2 2 Q. To be compared to Figure 3.

7. Prestressed structure In this Section, the structure of the 1-SPP when d � 0 is addressed. A general
argument on the occurrence of the sticking phase is stated in Proposition 7.1. Precisely, sticking phases of
unbounded duration arise besides the solutions with finite sticking phases, when the initial velocity of
m1 is zero. 1-SPP for d < 0 and d D 0 are also explored and illustrated through appropriate numerical
examples.

Proposition 7.1 Assume d � 0. Then, Theorem 2.1 holds for the sticking phase of finite duration. There
is also a unique sticking phase of infinite duration if

u2.0/ D d; Pu2.0/ D 0; u1.0/ D d; and Pu1.0/ D 0: (7.1)

7.1. Strictly prestressed structure The system is explored with d < 0.

Sticking phase of finite duration From Proposition 7.1, at the beginning of the sticking phase, the initial
data are Œu.0/; Pu.0/�> D Œd; d; v; 0�> where v > 0. From Equation (5.15) when d < 0, it follows that the
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admissible initial data are found from the set Z� instead of ZC. Z� is also countably infinite as stated in
Theorem 2.3. In a manner similar to the case d > 0, an infinite set of admissible initial data is expected
when d < 0.

A 1-SPP is depicted in Figure 12 where d D �1; the positive initial velocity is v � 2:26. With a
period T � 5:42, the sticking phase occurs until T � 1:58 then followed by a free flight of duration
s � 3:84.
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Figure 12: 1-SPP with finite sticking phase for d < 0 and v > 0. (a) Orbits. (b) Displacements

Sticking phase of infinite duration The corresponding initial data are Œu.0/; Pu.0/�> D Œd; d; 0; 0�>. The
first mass then follows the oscillation around its new equilibrium at which u1.t/ D k2d=.k1 C k2/.
Moreover, 0 is the minimum point of u1, thus u1.t/ � d for all t . By Theorem 2.1, it follows that the
sticking phase never ends. This argument is illustrated in Figure 13.
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Figure 13: Sticking phase of infinite duration for d < 0 and v D 0. (a) Orbits. (b) Displacements

7.2. Statically grazing structure The system is explored with d D 0.

Sticking phase of finite duration From Proposition 7.1, the sticking phase with finite duration happens if
the initial data satisfy u2.0/ D 0, Pu2.0/ D 0, u1.0/ D 0, and Pu1.0/ D v > 0. The set of free flight time
s is found from Equation (5.14) where d D 0, i.e. vw1.s/ D 0 and vw2.s/ D 0. Hence, v is arbitrarily
positive and s satisfies h.s/ D w1.s/ � w2.s/ D 0 and w2.s/ D 0 or�

˛1 ˛2

ˇ1 ˇ2

� �
'.!1s=2/

'.!2s=2/

�
D

�
0

0

�
:

By Assumption 2.1, this linear system has the unique solution '.!1s=2/ D 0 and '.!2s=2/ D 0 where
'.t/ D cot.t=2/. It follows that

!1

!2
D
2k C 1

2`C 1
with k; ` 2 Z (7.2)

condition which loosely speaking represents half of the rationals. It should be satisfied to observe a
sticking phase of finite duration when d D 0 while the initial velocity of massm1 can be chosen arbitrarily
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positive. Such a 1-SPP when !1=!2 D 1=5 is shown in Figure 14.
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Figure 14: 1-SPP with finite sticking phase for d D 0. (a) Orbits. (b) Displacements

Sticking phase with infinite duration The corresponding initial data is Œu.0/; Pu.0/�> D Œ0; 0; 0; 0�>. The
equilibrium u � 0 is a solution in which mass m2 always grazes with the wall since the two masses stay
at their equilibrium points when d D 0 and Pu1.0/ D 0.

It should be thus noted that generically, there is no 1-SPP except the equilibrium.

8. Conclusion The free dynamics of a two-degree-of-freedom oscillator subject to a unilateral constraint
on one of its masses is investigated. A Newton-like impact law generically emerges in this type of
formulation. In this work, periodic orbits with one sticking phase per period (1-SPP) are considered: as
such, it is shown that they are independent of the impact law. Moreover, they might not always exist and
whenever they do, they are isolated as opposed to one-impact-per-period solutions (1-IPP) known to be
organized on manifolds [8]. Also, they cannot be obtained through usual perturbation methods.

The full set of 1-SPP is characterized by only one parameter belonging to a discrete set: the free
flight duration. This parameter belongs to a countable set which can be empty, or even infinite in some
circumstances. A systematic numerical procedure designed to find all possible 1-SPP is expounded. It
involves two numerical steps:

1. finding the roots of an explicit quasi-periodic function, and
2. checking that the corresponding closed-form trajectory satisfies the unilateral condition on the

whole period of motion.
Many examples are presented but the mathematical proof of the existence of 1-SPP remains an open
problem. The situation is worse: conditions for the non-existence of 1-SPP are provided. However, under
generic assumptions on the mass and stiffness matrices of the system, a countable infinite set of initial
data including all the initial data of 1-SPP can be exhibited. The closed forms emanating from this set (of
initial data) satisfy the unilateral constraint at least near the sticking phase. The prestressed structure is
also explored. The picture is similar except that 1-SPP with infinite sticking time are also found.

Extension to n degrees-of-freedom is far from being straightforward, mainly because the symmetry
u.t/ D u.�t /, property heavily used in this work, is potentially broken.
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