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STARK-WANNIER LADDERS AND CUBIC EXPONENTIAL SUMS

On L 2 (R), we consider the Schrödinger operator (1.1) H ǫ = -∂ 2 ∂x 2 + v(x) -ǫx, where v is a real analytic 1-periodic function and ǫ is a positive constant. This operator is a model to study a Bloch electron in a constant electric field ( [START_REF] Avron | The lifetime of Wannier ladder states[END_REF]). The parameter ǫ is proportional to the electric field. The operator (1.1) was studied both by physicists (see, e.g., the review [START_REF] Gluck | Wannier-Stark resonances in optical and semiconductor superlattices[END_REF]) and by mathematicians (see, e.g., [START_REF] Sacchetti | Existence of the Stark-Wannier quantum resonances[END_REF]). Its spectrum is absolutely continuous and fills the real axis. One of main features of H ǫ is the existence of Stark-Wannier ladders. These are ǫ-periodic sequences of resonances, which are poles of the analytic continuation of the resolvent kernel in the lower half plane through the spectrum (see, e.g., [START_REF] Buslaev | A Bloch electron in an external field[END_REF]). Most of the mathematical work studied the case of small ǫ (see, e.g., [START_REF] Sacchetti | Existence of the Stark-Wannier quantum resonances[END_REF][START_REF] Buslaev | Imaginary parts of Stark-Wannier resonances[END_REF] and references therein). When ǫ is small, there are ladders exponentially close to the real axis. Actually, only the case of finite gap potentials v was relatively well understood. For these potentials, there is only a finite number of ladders exponentially close to the real axis. It was further noticed that the ladders non-trivially "interact" as ǫ changes, and conjectured that the behavior of the resonances strongly depends on number theoretical properties of ǫ (see, e.g., [START_REF] Avron | The lifetime of Wannier ladder states[END_REF]).

In the present note, we only consider the periodic potential v(x) = 2 cos(2πx) and study the reflection coefficient r(E) of the Stark-Wannier operator (1.1) in the lower half of the complex plane of the spectral parameter E. The resonances are the poles of the reflection coefficient. We show that, as Im E → -∞, the function E → 1 r(E) can be asymptotically described in terms of a regularized cubic exponential sum that is a close relative of the cubic exponential sums often encountered in analytic number theory. This explains the dependence of the reflection coefficient on the arithmetic
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Let us recall the definition of the reflection coefficient for (1.1) following [START_REF] Buslaev | A Bloch electron in an external field[END_REF]. Consider the equation

(1.2) -ψ ′′ (x) + (v(x) -ǫx)ψ(x) = Eψ(x), x ∈ C,
For the sake of simplicity, assume that the potential v is entire. Assume also

1 0 v(x) dx = 0.
For any E ∈ C, there are unique solutions ψ ± to (1.2) that admit the asymptotic representations

(1.3) ψ -(x, E) = 1 4 √ -ǫx-E e --E/ǫ x √ -ǫt-E dt+o(1) , x → -∞, ψ + (x, E) = 1 4 √ ǫx+E e i x -E/ǫ √ ǫt+Edt+o(1) , x → +∞,
where the determinations of √ • and 4 √ • are analytic in C \ R -and positive along R + .

Consider also the solution ψ * + (x, E) = ψ + (x, Ē). The solutions ψ + and ψ * + being linearly independent, one has This estimate is locally uniform in ǫ > 0.

(1.4) ψ -(x, E) = w(E)ψ * + (x, E) + w * (E)ψ + (x, E), x ∈ R,
Clearly, the asymptotic behavior of 1/r(E) as Im E → -∞ is determined by the Fourier series terms with large positive m, and so, roughly,

(1.6) 1 r(E) ≈ a(ǫ) P(E/ǫ), P(s) = m≥1 √ m e -2πiωm 3 -2m log (2πm/e)+2πims .
It is worth to compare the function P with the cubic exponential sums Such sums were extensively studied in analytic number theory, see, e.g., [START_REF] Davenport | Analytic methods for Diophantine equations and Diophantine inequalities[END_REF]. They were proved to depend strongly on the arithmetic nature of ω. This appears to be true in our case too. We have Theorem 2. Let v(x) = 2 cos(2πx). Assume that ω ∈ Q and represent it in the form ω = p q , where 0 ≤ p < q are co-prime integers. If p = 0, we take q = 1. For ξ ∈ R, we set I q (ξ) :

= {m ∈ Z : |ξ -m q | ≤ 1/2}. As Im E → -∞, one has (1.7) r -1 (E) = b(ǫ) ρ q m∈Iq(ξ)
S q (p, m)e ρe iπ(ξ-m/q) +iπ(ξ-m/q)+O(log 2 ρ/ρ) + e O( ρ ln ρ ) , where b(ǫ) = π 3 2 e iπ/4 / √ 2ǫ, ξ = Re E/ǫ, ρ = e -π Im E/ǫ , and

S q (p, m) = q-1 l=0 e -2πi pl 3 -ml q .
The error estimates are locally uniform in ǫ > 0.

Let us discuss this result. First, assume that ω = 0. By Theorem 2, The first statement immediately follows from Theorem 2; to prove the second one has to use Jensen formula and Levin lower bounds for the absolute values of entire functions, see, e.g., [START_REF] Levin | of Translations of Mathematical Monographs[END_REF].

(1.8) (b(ǫ)r(E)) -1 = √ z e √ z+O( ln 2 z √ z ) + e O( √ z ln z ) , z = e 2iπE/ǫ , where the determination of √ • is analytic in C \ R -and positive along R + . Recall that 1/r is ǫ-periodic. Let B ǫ = {E ∈ C : Im E ≤ 0, 0 ≤ Re E ≤ ǫ}. Representa- tion (1.8) implies
When ω = 0, it is difficult to obtain the asymptotics of the resonances as, in a neighborhood of the line Re E/ǫ = 1/2 mod 1, they are determined by the first Fourier coefficients of 1/r, i.e., by p(m) with m = 1, 2, 3 . . . . Hence, the problem is not asymptotic in nature.

If ω = 0, then the description of the resonances is determined by the values of S q (p, m) for m = 1, 2, . . . q -1 (the map m → S q (p, m) is q-periodic). The S q (p, m) are cubic complete rational exponential sums, see, e.g., [START_REF] Korobov | Exponential sums and their applications[END_REF]. One easily checks Lemma 1. For any q ∈ N,

q-1 m=0 |S q (p, m)| 2 = q 2 .
This implies that, for q ≥ 1, there is at least one integer 0 ≤ m 0 < q -1 such that S q (p, m 0 ) = 0.

If S q (p, m) is non zero for only one 0 ≤ m 0 < q (this happens, for example, for q = 2, 3, 6), then one can characterize the resonances as when ω = 0. Now, they live near the lines {Re E/ǫ = m 0 /q + 1/2 + n}, n ∈ Z.

For large q, there are actually many non-zero values S q (p, m):

Lemma 2. There exists a constant C > 0 such that, for any co-prime q > p > 0, one has #{0 ≤ m < q : S q (p, m) = 0} ≥ Cq 2 3 . This statement follows from Lemma 1 and the well-known upper bound for general complete rational exponential sums of Hua ( [START_REF] Korobov | Exponential sums and their applications[END_REF]).

In general, the behavior of m → S q (p, m) is nontrivial; it is known to depend strongly on the prime factorization of q. Computer calculations lead to the following conjecture: if q is prime, 0 < p < q, and 0 < m < q, then S q (p, m) = 0.

If S q (p, m) is non zero for at least two values of m such that 0 ≤ m < q, then, using (1.5), one can describe asymptotically all the resonances with sufficiently negative imaginary part. One has Corollary 2. Assume that, for some integers m 1 < m 2 such that m 2 -m 1 < q, one has S q (p, m 1 ) = 0, S q (p, m 2 ) = 0, and S q (p, m) = 0 for all m 1 < m < m 2 . Then, for sufficiently large y > 0, in the vertical half-strip

E ∈ C : -Im E ≥ ǫy, m 1 q ≤ Re E ǫ ≤ m 2 q ,
there are resonances, and they are described by the asymptotic formulas:

(1.9)

E ǫ = -i ln(πk) π -ln sin π(m 2 -m 1 ) q + m 2 + m 1 q + o(1), k ∈ N,
where o(1) → k→+∞ 0.

This statement easily follows from Theorem 2. Finally, let us describe very briefly the ideas leading to Theorems 1 and 2. Buslaev's solutions ψ ± used to define the reflection coefficient (see (1.3)) are entire functions of x and E; they satisfy the relations ψ ± (x + 1, E) = ψ ± (x, E + ǫ). It appears that the analytic properties of such solutions can naturally be described in terms of a system of two first order difference equations on the complex plane (see, for example, [START_REF] Fedotov | Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case[END_REF]). To get the asymptotics of the Fourier coefficients of the reflection coefficient, we study the solutions of this system far from the origin. The idea leading from Theorem 1 to Theorem 2 is analogous to one used to study the behavior of the exponential sums N n=1 e -2πiωn 3 with ω ∈ Q for large N, see [START_REF] Davenport | Analytic methods for Diophantine equations and Diophantine inequalities[END_REF]. However, to use it successfully, one has to carry out a non trivial analysis of properties of the error term in (1.5).

  where the coefficient w(E) is independent of x and the function E → w(E) is entire. The ratio r(E) = w * (E)/w(E) is the reflection coefficient. It is an ǫ-periodic meromorphic function of E. The reflection coefficient is analytic in C + , and, for E ∈ R, one has |r(E)| = 1. The poles of r are the resonances of H ǫ . Let us now state the first of our results. Represent 1/r by its Fourier series 1/r(E) = m∈Z e 2πniE/ǫ p(m) for Im E ≤ 0. Let a(ǫ) = 2 ǫ πe iπ/4 . One has Theorem 1. Let v(x) = 2 cos(2πx). Then, as m → ∞, (1.5) p(m) = a(ǫ) √ m e -2πiωm 3 -2m log (2πm/e)+δ(m) , ω = π 2 3ǫ , where, for x real, {x} denotes the fractional part of x, and δ(m) = O(log 2 m/m).

e

  -2πiωn 3 .

Corollary 1 .

 1 Assume ω = 0. The resonances located in B ǫ have the following properties : • for sufficiently large y > 0, the resonances with Im E < -ǫy are located in the domain | Re E -ǫ/2| ≤ Cǫ 2 /| Im E|, where C > 0 is a constant; • let n(y) be the number of resonances in the rectangle [0, ε] -i [0, εy]; then, one has n(y) = 1 π e πy+o(1) as y → ∞.