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INTERSECTION NORMS ON SURFACES
AND BIRKHOFF SECTIONS FOR GEODESIC FLOWS

MARCOS COSSARINI AND PIERRE DEHORNOY

Abstract. Every filling multicurve on a smooth surface determines a norm on the first homology
group of the surface. The unit ball of the dual norm is the convex hull of finitely many integer points.
We give an interpretation of these points in terms of certain coorientations of the multicurve. Our
main result is a classification statement: when the surface is hyperbolic and the filling multicurve
is geodesic, integer points in the interior of the unit ball of the dual norm classify isotopy classes of
Birkhoff sections for the geodesic flow (on the unit tangent bundle to the surface) whose boundary
is the symmetric lift of the multicurve. All results remain true when one replaces the hyperbolic
surface by a 2-dimensional orientable hyperbolic orbifold.

Introduction

This paper deals with the topological study of non-singular flows on 3-manifolds. With this
goal, we study a family of norms on the first homology group of surfaces that may be of indepen-
dent interest.

Given a smooth 3-manifold M and a smooth, non-vanishing vector field X on M, we denote
by (φt

X)t∈R the flow induced by X on M. An embedded Birkhoff section for (M, (φt
X)t∈R) is a

compact, oriented surface S with boundary, embedded in M, whose interior is positively transverse
to X, whose boundary ∂S is tangent to X, and such that every orbit of (φt

X)t∈R intersects S in
a uniformly bounded time. On the topological side, an embedded Birkhoff section induces an
open book decomposition of the underlying 3-manifold, where the binding is the boundary ∂S ,
and the fibration of the complement over S1 is given by an appropriate renormalisation of the
flow. On the dynamical side, when a flow admits an embedded Birkhoff section, its dynamics is
encoded by the first-return map on the section—a much simpler data. Such a section can be very
helpful for understanding some properties of the flow, like the existence or abundance of periodic
orbits [Bir13; Fra88].

There are several existence results on Birkhoff sections for different classes of flows, for ex-
ample geodesic flows [Bir17; DS19], Anosov flows [Fri83], or Reeb flows [Hry20; HS11; CM22;
Col+22], among others. On the other hand, as far as we know, there are very few situations
in which all Birkhoff sections are classified. An exception is given by the Hopf flow on S3

where the Birkhoff sections can be explicitely constructed [DR20], and the geodesic flow on a
flat torus [Deh15b]. Our main goal is to provide such a classification, for the geodesic flow on the
unit tangent bundle of a hyperbolic surface.

Theorem A. For Σ a hyperbolic surface and γ a finite collection of closed geodesics that fills Σ,
denote by

↔
γ the symmetric lift of γ in T1Σ. Then there is a one-to-one correspondence between

- isotopy classes of embedded Birkhoff sections for the geodesic flow on the unit tangent
bundle T1Σ bounded by the symmetric lift ↔γ of γ, with negative orientation,

- points satisfying a certain mod 2 condition in the open dual unit ball B∗xγ ⊂ H1(Σ,Z) of
the intersection norm xγ associated to γ.

Date: first version: April 2016; this version: November 2024.
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Let us mention that such a statement is not really a surprise: the fact that Birkhoff sections with
a given boundary up to isotopy correspond to integral points inside certain polyhedrons follows
from theorems of Schwartzman, Thurston and Fried, as we explain later in this introduction. The
main contribution of the paper lies in the explicit and combinatorial aspects of all constructions
involved.

In the rest of the introduction, we first explain Theorem A by presenting intersection norms,
their dual unit balls and the connection with Eulerian coorientations. The one-to-one correspon-
dence in Theorem A is made explicit using a construction we call Birkhoff–Brunella surfaces and
which is encapsulated in Proposition D. Then we put Theorem A in perspective, by connecting it
with Thurston–Fried’s theory of fibered faces of the Thurston norm ball and with Schwartzman–
Fuller–Fried–Sullivan’s theory of global sections for flows.

Intersection norms. Let Σ be a smooth surface without boundary. A multicurve1on Σ is a proper,
smoothly immersed 1-submanifold in Σ, without boundary, and in general
position (meaning that all multiple points are double points where the
intersection is transverse). On a compact surface, a multicurve consists of
finitely many closed curves.

Let γ be a fixed multicurve on a compact surface Σ. We think of γ as the discrete analogue of
a Riemannian (or Finsler) metric; see [Cos18] for a precise connection. The length of a generic
path α with respect to γ, denoted Lenγ(α), is defined as the number of crossings between α and γ,
and the length of a homology class a ∈ H1(Σ;Z), denoted xγ(a), is the minimal length of a generic
integral 1-chain representing the class a; see Section 1.

Our first result was proven by Schrijver on the torus [Sch93] and stated by Turaev without
proof [Tur02, Remark 1.9].

Proposition B. Let Σ be an oriented compact smooth surface and γ a multicurve on Σ. Then the
function xγ : H1(Σ;Z)→ N is a symmetric seminorm, that is, it is

• positively homogeneous: xγ(n · a) = n xγ(a) for all a ∈ H1(Σ;Z) and n ∈ N,
• subadditive: xγ(a + b) ≤ xγ(a) + xγ(b) for all a, b ∈ H1(Σ;Z).
• symmetric: xγ(−a) = xγ(a) for all a ∈ H1(Σ;Z),

Furthermore, if the multicurve γ is filling (i.e. it meets every noncontractible closed curve in Σ),
then xγ is positive definite: xγ(a) > 0 if a , 0.

The function xγ is called the intersection seminorm (or intersection norm if it is positive
definite) associated to γ.

Remark 0.1. This seminorm satisfies xγ(a) ≡ [γ]2(a) mod 2 for each a ∈ H1(Σ;Z), where [γ]2
is the Z2-cohomology class of the cochain that maps each generic smooth 1-chain α to its modulo
2 number of intersections with γ.

By a theorem of Thurston [Thu86], any integer-valued seminorm N on a lattice L (i.e. an
abelian group isomorphic to Zd for some d ∈ N) can be written in the form N(v) = max

φ∈F
φ(v)

where F is a finite family of group morphisms L → Z. In fact, one can take as F the dual unit
ball of N, that is, the set B∗N of homomorphisms φ : L → Z that satisfy φ(v) ≤ N(v) for all v ∈ L.
Furthermore, if N coincides modulo m (for a certain integer m ≥ 1) with a given homomorphism

1These are called divides by Norbert A’Campo [ACa98] who, along with Sabir M. Gusein-Zade, studied divides
on the disc in the context of singularities [ACa75; Gus74; Hus77]. They were later generalized to arbitrary surfaces
by Masaharu Ishikawa [Ish04]. This terminology is maybe not so common in the worlds of surface topologists or
dynamists, so we use the more common term multicurve.
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µ : L→ Zm, then one can restrict F to those functionals in B∗N that coincide with µ modulo m (see
Theorem 6.11). A natural question is whether these homomorphisms have a nice interpretation in
the case that N is an intersection norm (with m = 2 and µ = [γ]2). The answer is positive, as we
now explain.

Consider a fixed multicurve γ on a surface Σ. A coorientation of γ is a continuous transverse
orientation defined on γ except at the double points, where the coorientation is allowed to flip. A
coorientation η induces a cochain cη which maps each generic piecewise-smooth path α in Σ to
the signed number of crossings of α with γ, where the sign of each crossing is determined by η.
The coorientation η is Eulerian if cη is a closed cochain, that is, if cη(α) = 0 whenever α is a
contractible closed curve. (Equivalently, η is Eulerian if around each double point p of γ, among
the four fragments of γ that meet at p there are exactly two that are positively cooriented and
two that are negatively cooriented. See an example on Figure 1 left.) It follows that an Eulerian
coorientation η induces an integral cohomology class [η] := [cη] ∈ H1(Σ;Z). Note that different
Eulerian coorientations may yield the same cohomology class.

The next result was proven when Σ is a torus by Schrijver, using different methods [Sch92, Thm
9]. It is illustrated on Figure 1.

Theorem C. Let γ be a multicurve on an orientable closed compact surface Σ. Then the coho-
mology classes in the closed dual unit ball B∗xγ that coincide modulo 2 with [γ]2 are precisely the
cohomology classes of the Eulerian coorientations of γ. Therefore, for every a in H1(Σ;Z) we have

xγ(a) = max
η Eulerian

coorientation of γ

[η](a).

This result also gives an effective way for computing the norm xγ, since it reduces the minimi-
sation over an infinite number of curves to a maximisation over a finite number of coorientations.

Going back to the case where the multicurve γ is a geodesic in a hyperbolic surface, Theo-
rem A states that there is a correspondence between (certain) integral points in the interior of B∗xγ
and Birkhoff sections for the geodesic flow, and Theorem C states that (certain) integral points
in B∗xγ can be represented by Eulerian coorientations. The correspondence of Theorem A is made
explicit by associating to every Eulerian coorientation a certain surface in T1Σ, as in the following
statement. The superscript BB stands for Birkhoff–Brunella.

Proposition D. Let Σ be a compact oriented surface with a Riemannian metric and γ a finite col-
lection of closed geodesics on Σ. There is a canonical a map SBB that associates to every Eulerian
coorientation η of γ an oriented surface SBB(η) in T1Σ whose interior is positively transverse
to the geodesic flow and whose oriented boundary is −↔γ . The Euler characteristic of SBB(η) is
independent of η and equals minus twice the number of double points of γ.

If two Eulerian coorientations η1, η2 of γ are cohomologous and their common class lies in the
interior of B∗xγ , their interiors are isotopic along the flow.

Thurston norm balls, their fibered faces, and suspension flows. We now present Thurston’s
theory of norms and fibered faces for 3-manifolds. This puts in perspective and explains Theo-
rem A at an abstract level.

Given a compact 3-manifold M with toric boundary, its Thurston norm xM is a function on
the space H2(M, ∂M;R) that encodes the minimal negative part of the Euler characteristic of em-
bedded surfaces in M with boundary in ∂M in the considered homology class [Thu86]. It is a
seminorm, and as such it is determined by its unit ball BxM . The latter turns out to be a polyhe-
dron, which is compact when M is atoroidal. It is a topological invariant that is in general hard to
compute [FV15; AD20].
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Intersection norms can be seen as 2-dimensional siblings of the Thurston norms since they are
defined by minimizing a certain complexity measure over homology classes. Their unit balls are
also polyhedrons, but, unlike unit balls of Thurston norms, these can be easily computed using
Theorem C.

The top-dimensional faces of Thurston norm balls are of two types, namely fibered and non-
fibered. A fibered face is such that every integral point in the cone generated by the fibered face is
the class of the fibers of a fibration of M over the circle.

Fried showed [Fri09] that every pseudo-Anosov flow (φt)t∈R (see Section 3.d for a definition)
on M that is tangent to ∂M and that admits a global cross section canonically determines a fibered
face of BxM as follows: denote by Dφ the convex cone generated by the homology classes of the
periodic orbits of (φt)t∈R in H1(M;R). This cone actually coincides with the cone over the set of
Schwartzman asymptotic cycles [Sch57]. The dual cone Cφ in H2(M, ∂M;R) is defined as those
classes that pair positively with all of Dφ. It turns out that the integral classes in Cφ correspond
exactly to the classes of the global sections to (φt)t∈R. Therefore Cφ is exactly the cone over the
interior of a fibered face of the Thurston norm ball. The cones Dφ and Cφ are polyhedric, and
Fried also gives an algorithm [Fri82] for computing Dφ and Cφ starting from a Markov partition
for (φt)t∈R.

The connection with Birkhoff sections can be made as follows: assume that β is a collection
of periodic orbits of a flow φ in M, one can blow up the link β and obtain a 3-manifold M \ β
with toric boundary ∂M \ β. If (φt)t∈R is of class C1, then it extends to a non-singular flow (φt

β)t∈R

on M \ β. If (φt)t∈R was of Anosov or pseudo-Anosov type, then (φt
β)t∈R is pseudo-Anosov. In this

context a Birkhoff section for (φt)t∈R with boundary in β extends to a global section for the flow
(φt

β)t∈R. The discussion of the previous paragraph then implies that, if β bounds a Birkhoff section,
isotopy classes of Birkhoff sections whose boundary is in β are classified by integral points in a
certain polyhedral cone Cφ,β in H2(M \ β, ∂M \ β;R) ≃ H2(M, β;R).

In the context of Theorem A, M is the unit tangent bundle T1Σ to a hyperbolic surface Σ, (φt)t∈R
is the geodesic flow on T1Σ, and β is the symmetric lift ↔γ of a filling collection γ of geodesics on Σ,
see Section 3.a for the definitions. The set of Birkhoff sections for the geodesic flow bounded by ↔

γ
is then the cone over a fibered face of the Thurston norm ball in H2(T1Σ,

↔
γ;Z) that we denote

by Cgeod,↔γ.
In Theorem A, the assumption that the oriented boundary is exactly −↔γ (that is, every boundary

component has multiplicity −1) can be seen as a restriction on the homology class of the section: it
has to lie in a certain affine subspace denoted by ∂−1

↔
γ

(−1, . . . ,−1) of H2(T1Σ,
↔
γ;R). This means that

the Birkhoff sections we are interested in are enumerated by the intersection of the cone Cgeod,↔γ

with the affine subspace ∂−1
↔
γ

(−1, . . . ,−1). It turns out that a suitable choice of an origin identifies
the latter with H1(Σ;R), see Section 3.e. Under this identification, Theorem A can be summarized
by the equality

Cgeod,↔γ ∩ ∂
−1
↔
γ

(−1, . . . ,−1) =
1
2

B∗xγ .

Our paper adds to this description the elementary and explicit characters of all the involved con-
structions. Indeed, as far as we know, there is no other Anosov or pseudo-Anosov flow for which
the set of global or Birkhoff cross sections admits such an explicit and combinatorial description.

Remark 0.2. One may wonder how general Theorem A is, namely whether one can hope for an
analog statement for any (transitive) Anosov flow. As explained above, the set of Birkhoff sections
up to isotopy fixing the boundary is described by the integral points inside a certain polyhedron.
However we do not know how to describe this polyhedron in general. It seems to be related to
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Figure 1. Illustration of Theorems A and C in the case of Σ a torus (with an
abuse since Theorem A deals with higher-genus surfaces, whose homology has
dimension ≥ 4). On the left, a multicurve γ on Σ consisting of four geodesics,
and an Eulerian coorientation (blue arrows). Seen as a graph, γ has 5 vertices and
10 edges. On the right, the dual unit ball B∗xγ of the associated intersection norm.
The empty circle denotes the origin. The big dots denote those classes in H1(Σ;Z)
congruent to [γ]2 mod 2. Among these classes, 10 (in blue, green and red) are
in the dual unit ball B∗xγ and correspond to all cohomology classes of Eulerian
coorientations of γ (Theorem C). For example, the class corresponding to the blue
coorientation is the blue point. The blue and green points lie in the interior of B∗xγ ,
hence describe two isotopy classes of Birkhoff cross sections for the geodesic
flow bounded by −

↔
γ . If the genus of Σ was at least 2, there would be no other

isotopy class of Birkhoff cross section for the geodesic flow (Theorem A). The
8 red points are on the boundary of B∗xγ and correspond to classes of surfaces
transverse to the geodesic flow, but not intersecting every orbit, and bounded
by −

↔
γ .

linking numbers of periodic orbits of the flow [Deh15b; Deh17]. However linking numbers are
only defined for null-homologous links. Ghys proved that Gauss linking forms describe all linking
numbers between periodic orbits for a vector field in a homology sphere [Ghy09]. Moreover he
showed how to use these Gauss forms to decide whether all finite collections of periodic orbits
bound a Birkhoff sections (which he calls left- or right-handed flows). Probably one should first
extend the concept of Gauss linking forms to manifolds that are not rational homology spheres,
and see how this helps defining linking of periodic orbits and more generally of invariant measures.
Then one could hope that these generalized linking describe exactly the homological information
needed to apply Schwartzman’s criterion, as we will do in Section 3.

Remark 0.3. It may look strange to deal with Birkhoff cross sections with negative boundary and
not with positive ones, i.e., with surfaces such that the orientation of the boundary inherited from
the orientation of the surface (itself inherited from the coorientation of the interior surface by the
flow) is opposed to the direction of the flow. The reason is that there is actually no positive Birkhoff
cross section for the geodesic flow, as explained in Théo Marty’s thesis [Mar, Chap 3]. One could
then look at mixed sections, namely transverse surfaces some of whose boundary components are
positively tangent to the geodesic flow and some others are negatively tangent. There are more
mixed sections than negative. Alas, we have no analog of Proposition D in this more general case,
meaning that we do not have an elementary way to construct all mixed sections.
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Remark 0.4. The case of the torus with a flat metric is not covered by Theorem A. In this case, the
fact that the unit tangent bundle T1T2 is trivial allows to cut-and-glue horizontal tori to Birkhoff
cross sections, so that there are infinitely many isotopy classes with a given boundary. However,
modulo this additional operation, there are still only finitely many classes. These have been clas-
sified in a previous work by the second author [Deh15b, Thm 3.12]. The statement is similar,
namely equivalence classes of Birkhoff sections are classified by points in the interior of a certain
polygon with integral vertices. The statement is even more general since, in this restricted case of
the torus, there is no assumption that the boundary of the section is symmetric. One could recover
this earlier result in the symmetric case by a proof very similar to that of Theorem A.

Extension to 2-dimensional orbifolds. The results of this paper can be generalized in the fol-
lowing sense. Instead of considering orientable surfaces only, one can consider orientable 2-
dimensional orbifolds, as introduced by Thurston [Thu80]. Such a 2-orbifold O is described by
an orientable topological surface ΣO and charts that are local homeomorphisms R2/(Z/kZ)→ ΣO,
where Z/kZ acts by rotation on R2.

There are several possible definitions for the homology of an orbifold that yield different spaces.
The one that is useful here is the most elementary: we define Hi(O;R) to be the space Hi(ΣO;R).
In this context the definition of intersection norms extends trivially. Proposition B and Theorem C
still hold. Now the unit tangent bundle T1O is 3-manifold that is a Seifert fibered space over ΣO.
The geodesic flow is well defined on T1O, and when O is hyperbolic it is still of Anosov type.
Proposition D extends directly in this context. Concerning Theorem A, it has to be modified
for taking into account orbifolds that are homology spheres —a case that does not occur with
hyperbolic surfaces.

Theorem E. Let O be a hyperbolic orientable 2-dimensional orbifold. Let γ be a finite collection
of closed geodesics on O.

• If ΣO is a sphere, then T1O is a rational homology sphere. In this situation, the link −↔γ
bounds a Birkhoff section for the geodesic flow in T1O if and only if γ is filling in ΣO. In
that case, the Birkhoff section is unique up to isotopy fixing the boundary.
• If ΣO is not a sphere and if γ is filling, then the map [η] 7→ {SBB(η)} is a one-to-one cor-

respondence between integer points in the open unit ball int(B∗xγ) congruent to [γ]2 mod 2
and isotopy classes of Birkhoff cross sections for the geodesic flow in T1Σ with bound-
ary −↔γ.
• If ΣO is not a sphere and γ is not filling, then there is no surface bounded by −↔γ and

transverse to the geodesic flow.

A particular case is when O is a hyperbolic triangular orbifold, that is, a sphere with three
conic points. In this case every collection γ of closed geodesics is filling, hence its lift ↔γ bounds a
Birkhoff section. This is a particular case of the main result of [Deh17] which proves that in this
case every finite collection of periodic orbits (even non-symmetric) bounds a Birkhoff section for
the geodesic flow.

Acknowledgments. Pierre D thanks Étienne Ghys and Adrien Boulanger for related discussions,
and Elena Kudryavtseva who initiated this article by asking several questions about Birkhoff sec-
tions. The authors thank the anonymous referees for useful suggestions, in particular the extension
to orbifolds.
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1. Intersection norms and proof of Proposition B

In the whole section we fix an oriented compact smooth surface Σ with empty boundary and a
multicurve γ on Σ. (Recall that a multicurve in Σ is a compact, closed 1-manifold that is smoothly
immersed in Σ, self-transverse, and has no points of multiplicity > 2).

Definition 1.1. A path in Σ is a continuous function α : I → Σ (where I ⊆ R is a compact
interval), considered up to a uniform shift in the parametrization, so that the concatenation αβ of
two consecutive paths α, β is well defined. The reverse of a path α is the path α†(t) = α(−t). The
trivial path at a point p ∈ Σ is denoted 1p.

Definition 1.2. A smooth path in Σ is generic (with respect to γ) if it has no endpoint on γ, it is
transverse to γ, and it avoids the double points of γ. We denote by Pγ the set of generic piecewise-
smooth paths, obtained by concatenating finitely many generic smooth paths. The length with
respect to γ of a path α ∈ Pγ is the number of times that it meets γ,

Lenγ(α) = |α−1(γ)|.

Definition 1.3. A generic integral 1-chain is a linear combination α =
∑

i ciαi of paths αi ∈ Pγ
with integer coefficients ci ∈ Z. Its length is defined as

Lenγ(α) =
∑

i

|ci| Lenγ(αi).
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α1

α2

Figure 2. A genus 3 surface with a multicurve γ made of four closed curves (black). On
the left the curve α1 (orange and bold) is transverse to γ and intersects it three times. On
the right α2 (red) is homologous to α1 since their difference bounds a subsurface, namely
the right hemisurface. The curve α2 intersects γ only once. This number cannot be
reduced to 0 in the same homology class, hence α2 is xγ-realizing and we have xγ([α1]) =
xγ([α2]) = |{α−1

2 (γ)}| = 1.

Note that every homology class a in H1(Σ;Z) may be represented by a generic integral 1-chain.
The length of the homology class a is defined as

xγ(a) = min
α closed generic integral
1-chain such that [α]=a

Lenγ(α).

A closed generic 1-chain that minimizes length in its homology class is called an xγ-realizing
1-chain. The function xγ : H1(Σ;Z) → N is called the intersection seminorm (or intersection
norm, if it is positive definite) associated to γ.

The function xγ has three properties that make it a seminorm, namely it is positively homo-
geneous, subadditive and symmetric. To prove the first point we need two facts about curves on
surfaces. Note first that every homology class a ∈ H1(Σ;Z) can be represented by an oriented
multicurve. A multicurve α is simple if it has no double points, and is generic (with respect to γ)
if it is transverse to γ and the union α ∪ γ is a multicurve. (The last condition holds if and only if
each of the two multicurves α, γ avoids the double points of the other one.)

Lemma 1.4 (Simplification). Every homology class a in H1(Σ;Z) can be represented by a simple
oriented multicurve that is generic with respect to γ and xγ-realizing.

Proof. Let α be an oriented multicurve that represents the class a and is generic with respect to γ
and xγ-realizing. To make α simple, we eliminate each self-crossing of α by performing a local
modification of the form . □

Lemma 1.5 (Partitioning). Every simple oriented multicurve in Σ of homology class n ·a (for some
a ∈ H1(Σ;Z) and n ∈ N,0) is a union of n disjoint simple oriented multicurves, each of class a.

Proof. Let β be a simple oriented multicurve of homology class n · a. Since β is of class n · a, its
algebraic number of crossings with any generic oriented loop is a multiple of n. Therefore we can
label the regions (i.e. connected components) of Σ \ β with integers modulo n in such a way that
the label increases by 1 when one crosses β positively (i.e. from right to left). For every i ∈ Z/nZ,
denote by αi the union of those components of β that have regions labelled i on their right, and
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regions labelled i + 1 on their left. Every αi is a simple multicurve, and by conctruction β is the
union of all of them. Any two curves αi, α j are homologous since αi − α j bounds a subsurface
of Σ (namely, the part with labels in [i, j)). This implies that [β] = n · [αi] for every i, and since
H1(Σ;Z) has no torsion, we conclude that [αi] = a. □

Now let us show that xγ is a seminorm. The symmetry property xγ(−a) = xγ(a) is evident since
the number of intersections does not change by reversing the orientation of a curve. We have to
prove positive homogeneity and subadditivity.

Lemma 1.6 (Positive homogenity). For every a in H1(Σ;Z) and for all n ∈ N one has

xγ(n · a) = n xγ(a).

Proof. Given a ∈ H1(Σ;Z) and n ∈ N, consider a realizing multicurve α in a. Since n parallel
copies of α intersect γ at n xγ(a) points, we have xγ(n · a) ≤ n xγ(a). For the reverse inequality,
consider an xγ-realizing multicurve β of homology class n · a. By simplification (Lemma 1.4) we
can suppose β simple, and then it follows by partitioning (Lemma 1.5) that β is the union of n
multicurves αi of class a. Each multicurve αi has at least xγ(a) intersections with γ, which implies
that β has at least n xγ(a) intersections with γ, proving the inequality xγ(n · a) ≥ n xγ(a). □

Lemma 1.7 (Subadditivity). For every a, b in H1(Σ;Z) one has

xγ(a + b) ≤ xγ(a) + xγ(b).

Proof. The union of two multicurves that realize xγ(a) and xγ(b) crosses γ in xγ(a)+ xγ(b) points,
giving xγ(a + b) ≤ xγ(a) + xγ(b). □

This finishes the proof of Proposition B which states that the function xγ is a seminorm on
H1(Σ;Z).

Remark 1.8. One can easily extend the notion of intersection norm to a surface with boundary
Σ, by allowing the multicurves γ to contain arcs with endpoints on ∂Σ (as did A’Campo [ACa98;
ACa75]). One then obtains two norms on H1(Σ;Z) and H1(Σ, ∂Σ;Z), depending on whether one
considers absolute or relative homology classes. Proposition B also holds in the second context.

Remark 1.9. One can wonder how the intersection norms compare with other known norms
on the first homology of a surface. For example, the stable norm xg induced by a metric g, is
defined by xg(a) = lim inf

n→∞
min
α(n)∈na

g(α(n))/n. On a surface the stabilisation is not necessary, so that

one has xg(a) = min
α∈a

g(α). One can check that if (γk)k∈N is a sequence of filling geodesics that

approximates g, meaning that the sequence of invariant measures on T1Σ that are concentrated
on the lift γ⃗k tends in the weak-* sense to the Liouville measure defined by g on T1Σ, then the
rescaled norms 1

g(γk) xγn tend to the stable norm of g. Equivalently, the rescaled unit balls g(γk)Bxγk

tend to the unit ball of the stable norm.

2. Unit balls and coorientations

The context remains the same as in the previous section: we fix an oriented closed compact
smooth surface Σ of genus at least 1 and a multicurve γ on it. We have shown that the intersection
norm xγ is an integer-valued seminorm on the lattice H1(Σ;Z) ≃ Z2g. By Remark 0.1 it coincides
modulo 2 with [γ]2. Therefore we may apply the following result of Thurston (as extended in
Section 6). Recall that a lattice L is a finitely generated free abelian group. Its dual lattice L∗ is
the group of homomorphisms L→ Z. Note that L ≃ L∗ ≃ Zd for some d ∈ N.



10 MARCOS COSSARINI AND PIERRE DEHORNOY

Figure 3. A torus with a collection γ (black) made of four curves, two vertical and two
horizontal. The curve α (red and bold) intersects γ in 10 points. It is the smallest number
for a curve whose homology class is (4, 1), so that xγ(4, 1) = 10. The norm xγ is actually
given by xγ((p, q)) = 2|p| + 2|q| in the canonical coordinates.

Theorem 2.1 (Thm. 2 of [Thu86] and Theorem 6.11). Every integral seminorm N on a lattice L
is of the form

N(v) = max
φ∈B∗N

φ(v),

where B∗N ⊆ L∗ is the dual unit ball of N, that is the (finite) set of group homomorphisms φ : L→ Z
that satisfy φ(v) ≤ N(v) for all v ∈ L. Furthermore, if N coincides modulo a certain integer m > 1
with a given homomorphism µ : L→ Zm, then we have

N(v) = max
φ∈B∗N

φmod m=µ

φ(v).

Our goal in this section is to prove Theorem C, that is, to characterize the points of B∗xγ that co-
incide modulo 2 with [γ]2. Specifically, we will show that these cohomology classes are precisely
those that can be represented by Eulerian coorientations. We will do so as follows.

Recall, from the introduction, that a coorientation of γ is a continuous transverse orientation
defined on γ except at the double points, where the coorientation is allowed to flip. A coorientation
determines a 1-cochain cη which maps each generic piecewise-smooth path α in Σ to the signed
number of crossings of α with γ, where the sign of each crossing is determined by η. This cochain
clearly satisfies

cη(α) ≤ Lenγ(α) and cη(α)
mod 2
≡ Lenγ(α) for each generic path α.

If we think of the multicurve γ as a discrete metric, then we can see a coorientation η as a discrete
field of unit-norm covectors, and the number cη(α) as the value of the integral of η along the path
α.

A coorientation η is Eulerian if cη is a closed cochain, that is, if cη(α) = 0 whenever α is a
contractible closed curve. In this case, the coorientation η defines a cohomology class [η] := [cη] ∈
H1(Σ;Z). This cohomology class h = [η] satisfies the properties

h(a) ≤ xγ(a) and h(a)
mod 2
≡ xγ(a) for all a ∈ H1(Σ;Z),

and we say then that h is γ-special.
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α

Figure 4. A piece of a multicurve γ (black). A coorientation η of γ is indicated with
blue arrows. A path α transverse to γ is shown (purple and dotted). The pairing ⟨η, α⟩
equals −1 + 2 = +1 on this example.

To go backwards, from a γ-special cohomology class h to a coorientation η such that h = [η],
we will rely on an auxiliary object called an eikonal function. An eikonal function on a surface-
with-a-multicurve (Σ, γ) is a function f : Σ \ γ that satisfies

| f (y) − f (x)| ≤ dγ(x, y) and f (y) − f (x)
mod 2
≡ d(x, y) for all x, y ∈ Σ \ γ. (1)

If we think of the multicurve γ as a discrete metric, and we see (Eulerian) coorientations as (closed)
unitary 1-forms, then we should see eikonal functions as scalar-valued functions that are nonex-
pansive (or 1-Lipschitz). We can differentiate an eikonal function to obtain an Eulerian coorienta-
tion, and reciprocally, on a simply connected surface, we can integrate an Eulerian coorientation
to obtain an eikonal function.

We will use eikonal functions as follows. Let
(
Σ̃, π
)

be the universal cover of Σ, and let x0 ∈ Σ

be a fixed, arbitrary point. The surface Σ̃ has a multicurve γ̃ = π∗γ (the pullback of γ by the
covering map π). An Eulerian coorientation η determines an eikonal function fη on Σ̃ \ γ̃, called
the primitive of η, by the formula

fη(x) = cη(π ◦ αx0,x),

where αx0,x is a generic path in Σ̃ from x0 to x. We note that fη is equivariant with respect to the
cohomology class h = [η], which means that

f (Tβ(x)) − f (x) = h[β],

for any points x ∈ Σ̃, and any loop homotopy class {β} ∈ Π1(Σ, π(x0)), where Tβ is the automor-
phism of Σ̃ induced by the curve β.

Moreover, this process can be reversed: any h-equivariant eikonal function f can be differ-
entiated to obtain a coorientation η of cohomology class h, such that fη = f . Therefore, to go
backwards, from a γ-special cohomology class h to a coorientation η such that [η] = h, we do
as follows. We define first an h-equivariant function f : π−1(p0) → Z, where p0 = π(x0) ∈ Σ.
We show that f̃ is pre-eikonal (i.e. it satisfies (1), even thought it is not defined at all points)
since h is γ-special. Finally, we show that any pre-eikonal funcion can be naturally extended,
using a standard formula, to an eikonal function f defined on the whole space. Moreover, this
extended function f is h-equivariant if f is so. Differentiating the eikonal funcion f we obtain the
coorientation η such that fη = f , and therefore [η] = h.

2.a. Coorientations of multicurves. Recall that γ is a multicurve in Σ. A cross-vector on γ is
a vector tangent to Σ that is located at a simple point of γ, and is transverse to γ. The set of such
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vectors, considered as a topological subspace of the tangent bundle of Σ, is denoted Cγ. Note that
this space has finitely many connected components.

Definition 2.2. An integral cross-functional on γ is a function η : Cγ → Z that is locally constant
and satisfies the equation η(−v) = −η(v) for all v ∈ Cγ. A coorientation of γ is a cross-functional
with values ±1. Note that there are finitely many coorientations of γ.

As mentioned in the introduction, each coorientation η induces a cochain cη whose cohomology
class [cη] ∈ H1(Σ;Z) is in the dual unit ball B∗xγ , as we will see below. To reverse this process
and show that each cohomology class h ∈ B∗xγ (equivalent to xγ mod 2) can be represented by
a coorientation, we must understand precisely which cochains are induced by coorientations or,
more generally, by cross-functionals of γ. These cochains are called cross-cochains, and are
characterized as follows.

Recall from Definition 1.2 that Pγ is the space of piecewise-smooth paths on Σ that are generic
with respect to γ.

Definition 2.3. An integral cross-cochain (with respect to the multicurve γ) is a function c : Pγ →
Z with the following properties:

• additive with respect to concatenation of paths, that is, such that c(δε) = c(δ) + c(ε)
if δ, ε ∈ Pγ are consecutive paths;
• alternating with respect to path reversion, that is, such that c(α†) = −c(α) for all paths
α ∈ Pγ;
• supported on γ, that is, such that c(α) = 0 if α does not meet γ;
• locally constant, that is, constant on any continuous family (εt)t∈[0,1] of smooth paths
εt ∈ Pγ. (Such a family of paths is not called a homotopy of paths because the endpoints
may move. However, the endpoints never cross γ, since at the instant of crossing the path
would not be in Pγ.)

Definition 2.4. The integral of a cross-functional η along a path α ∈ Pγ is the number

cη(α) :=
∑

t∈α−1(γ)

η(α′(t)).

Lemma 2.5. The map η 7→ cη is a bijection from the set of integral cross-functionals to the set of
integral cross-cochains on γ.

The proof is straightforward.

Proof. For a cross-functional η, it is clear that cη is a cross-cochain. Let F be the map from the
set of integral cross-functionals to the set of integral cross-cochains given by F(η) = cη.

To show that F is bijective, we use the following notation. For a cross-vector v ∈ Cγ, let Cγ(v)
be the connected component of Cγ contaning v, and let Pγ(v) be the set of smooth paths in Pγ
that cross γ exactly once, and with velocity v′ in Cγ(v). Note that any two arcs ε0, ε1 ∈ Pγ(v) are
connected by a continuous family of arcs (εt)t∈[0,1] in Pγ(v). This implies that any cross-cochain
is constant on Pγ(v).

The map F is injective since given two cross-functionals η , η′, we see that cη(v) , cη′ by
evaluating these two cochains at a path γ ∈ Pγ(v), where v ∈ Cγ is a cross-vector such that
η(v) , η′(v).

Now let us show that F is surjective. Given a cross-cochain c, we shall produce a cross-
functional η such that cη = c. We define η as follows: for each cross-vector v ∈ Cγ, we set
η(v) := c(α), for any α ∈ Pγ(v). This value is well defined since c is constant on Pγ(v), as noted
above. In addition, it is clear that η(−v) = η(v). This shows that η is a cross-functional.
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To finish, let us show that cη = c. Given a path α ∈ Pγ, we decompose it as a concatenation of
smooth paths αi ∈ Pγ, where each αi meets γ once with certain velocity vi, or not at all, in which
case we say that i is trivial. Then we have

c(α) =
∑

i

c(αi) =
∑

i nontrivial

c(αi) =
∑

i nontrivial

η(vi) = cη(α). □

Remark 2.6. A cross-functional η is a coorientation if and only if the cross-cochain cη is unitary,
that is, it satisfies for each path α ∈ Pγ the condition

cη(α) = ±1 if Lenγ(α) = 1,

or, equivalently, the conditions

cη(α) ≤ Lenγ(α) and cη(α) ≡ Lenγ(α) mod 2.

2.b. Eulerian coorientations.

Definition 2.7. A coorientation η of γ is Eulerian if the cochain cη is closed, i.e. if cη(α) = 0
whenever α is a contractible closed curve, or, equivalently, if cη(α) depends only on the homotopy
class {α}. (The homotopies we consider here are with fixed endpoints and disregarding γ, meaning
that the intermediate paths may not be in Pγ.) The set of all Eulerian coorientations of γ is denoted
by Eul(γ).

Equivalently, η is Eulerian if around each double point p of γ,
among the four pieces of η that meet at p there are exactly two
with positive coorientation and two with negative coorientation.
Hence the local picture of η at p is one of the following two:
either when travelling straight along γ and encountering p the
coorientation changes —in this case the coorientation is said
to be alternating at p—, or the coorientation does not change
when following γ —in which case it is non-alternating at p.

alternating

non-alternating

Example 2.8. If [γ]2 ∈ H1(Σ;Z/2Z) is zero, then the regions of Σ \ γ can
be colored in black and white in such a way that adjacent regions have
different colors. In this case we can coorient all edges toward the white
regions. The obtained coorientation is Eulerian, all double points being
alternating.

Example 2.9. There always exist global Eulerian coorientations, even
when [γ]2 ∈ H1(Σ;Z/2Z) is not zero. Indeed one can choose a coorien-
tation for every component of γ. This yields an Eulerian coorientation
having only non-alternating vertices. If γ consists of c immersed curves,
there are 2c such coorientations.

Remark 2.10. If η is an Eulerian coorientation of γ, then for every generic closed 1-chain α, the
number cη(α) depends only of the homology class [α] ∈ H1(Σ;Z). In consequence, η induces a
cohomology class [η] := [cη] in H1(Σ;Z).

We denote [Eul(γ)] the subset of H1(Σ;Z) consisting of the cohomology classes of the Eulerian
coorientations on γ. Theorem C states that

[Eul(γ)] =
{
h ∈ B∗xγ | hmod 2 = [γ]2

}
.
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Let us prove the easy inclusion ⊆, that is, that the cohomology class induced by any Eulerian
coorientation is in the dual unit ball B∗xγ (i.e. it is ≤ xγ) and also coincides with [γ]2 modulo 2.

Lemma 2.11. For every Eulerian coorientation η of γ and every homology class a in H1(Σ;Z), we
have [η](a) ≤ xγ(a) and also [η](a) ≡ [γ]2(a) mod 2.

Proof. Let α be an xγ-realizing curve of class a. Then ⟨η, α⟩ counts every intersection point of α
and γ with a coefficient ±1, while xγ(a) counts these same intersection points with a coefficient +1
each. Hence we have

cη(α) ≤ xγ(α) and also cη(α) ≡ xγ(α) mod 2. □

To prove the reverse inclusion we will use eikonal functions.

2.c. Eikonal functions on the universal cover. As before, Σ is a compact closed surface with a
multicurve γ on it.

Our task now is to define the eikonal functions on the universal cover
(
Σ̃, π
)
. The space Σ̃ has a

multicurve γ̃ := π∗(γ) (that is, the pullback of γ by the map π), which induces a length functional
Lenγ̃ and therefore, a distance function dγ̃, which we need to define the notion of eikonal functions.
However, we will instead define the distance function directly in terms of the multicurve γ, by
taking advantage of the standard explicit construction of the universal cover.

We construct the universal cover
(
Σ̃, π
)

of the surface Σ as follows. The space Σ̃ is the set of
homotopy classes of paths in Σ starting at p0, where p0 ∈ Σ\γ is a fixed, arbitrary point. Thus each
point x ∈ Σ̃ is of the form x = {α}where α is a path in Σ starting at p0, and {α} denotes its homotopy
class (with fixed endpoints). In particular, the space Σ̃ has a natural base point x0 = {1p0}, where
1p0 is the trivial path at p0. The covering map π : Σ̃→ Σ is the function that sends each homotopy
class {α} to the endpoint of the path α.

The fundamental group Π1(Σ, p0), hereafter denoted Π1, acts (on the left) on Σ̃ as follows: each
loop homotopy class {β} ∈ Π1 induces on Σ̃ a transformation Tβ : {α} 7→ {βα}, where βα is the
concatenation of the path β followed by the path α. This action commutes with the covering map
π (that is, it satisfies π ◦ Tβ = π for all {β} ∈ Π1) and is transitive on each fiber of π.

The length with respect to γ of a homotopy class {α} is defined as the minimum length of a
generic path α′ in the class,

Lenγ{α} = min
α′∈{α}∩Pγ

Lenγ(α′).

The distance between two points x = {α}, y = {β} ∈ Σ̃ not located on the multicurve γ̃ := π∗(γ) is

dγ̃(x, y) = Lenγ{α†β}

where α† is the reverse of the path α. Note that dγ̃ satisfies the triangle inequality, therefore it
is an integer-valued (but non positive-definite) distance function on Σ̃ \ γ̃. Moreover, an easy
computation shows that the transformations Tβ preserve this distance function.

Definition 2.12. An integer-valued function f defined on a subset D of Σ̃ \ γ̃ is said pre-eikonal
if it satisfies

| f (y) − f (x)| ≤ dγ̃(y, x) and f (y) − f (x)
mod 2
≡ dγ̃(y, x) for all x, y ∈ D, (2)

An eikonal function is a pre-eikonal function defined on the whole set Σ̃ \ γ̃.

Remark 2.13. A function f : Σ̃ \ γ̃ → Z is eikonal if and only if it satisfies the local condition

f (y) − f (x) =

0 when dγ̃(x, y) = 0
±1 when dγ̃(x, y) = 1.
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The term “eikonal function” comes from geometric optics, where it describes a (possible sin-
gular) real-valued function f that solves the eikonal equation ∥∇ f ∥ ≡ 1. The eikonal functions
defined above are discrete analogues of these real-valued functions.

Definition 2.14. An integer-valued function f defined on a subset D of Σ̃ \ γ̃ is said equivariant
with respect to a cohomology class h ∈ H1(Σ;Z), or h-equivariant, if it satisfies

f (y) − f (x) = h[β]

for all pairs of points x, y ∈ D and all loop homotopy classes {β} ∈ Π1 such that Tβ(x) = y.

Every Eulerian coorientation η of γ determines a function fη : Σ̃ \ γ̃ → Z, called the primitive
of η, by the formula

fη : {α} 7→ cη(α).
The number cη(α) does not depend on how the path α is chosen within its homotopy class since η
is Eulerian.

Lemma 2.15. For each cohomology class h ∈ H1(Σ;Z), the map η 7→ fη bijects the set of Eulerian
coorientations of γ of cohomology class h to the set of h-equivariant eikonal functions on Σ̃ \ γ̃
that vanish at the base point x0 = {1p0}.

Proof. Let us first see that for each Eulerian coorientation η, the function fη is eikonal, [η]-
equivariant, and vanishes at the base point. The last claim is clear: since the trivial path 1p0

does not meet γ, we have
fη(x0) = cη(1p0) = 0.

To see that f is eikonal, take two points {α}, {β} ∈ Σ̃ \ γ̃ at distance dγ̃ ({α}, {β}) = 1. This means
that there exists a path ε ∈ Pγ homotopic to α†β with Lenγ(ε) = 1. Hence we can verify that

fη{β} − fη{α} = cη(β) − cη(α) = cη(α†β)
= cη(ε) since η is Eulerian
= ±1.

Similarly, one can see that fη{β} = fη{α} if dγ̃
(
{α}, {β}

)
= 0. Finally, to see that fη is [η]-equivariant,

we take a loop homotopy class {β} ∈ Π1 and a point {α} ∈ Σ̃ \ γ̃ and we verify that

fη{βα} = cη(βα) = cη(β) + cη(α)
= [η][β] + fη{α}.

Now let us fix a cohomology class h ∈ H1(Σ;Z). As we have just shown, the map η 7→ fη
restricts to a map Rh from the set of Eulerian coorientations of class h to the set of h-equivariant
eikonal functions on Σ̃ \ γ̃ that vanish at the base point x0 = {1p0}. Let us show that Rh is bijective.

To prove that Rh is injective, fix an Eulerian coorientation η and a cross-vector v ∈ Cγ. We shall
express η(v) in terms of the function fη. Take a path ε ∈ Pγ which crosses γ just once with velocity
v, and let α ∈ Pγ be an auxiliary path from p0 to the startpoint of ε. Then we have

fη{αε} − f {α} = cη(αε) − cη(α) = cη(ε) = η(v),

which shows that η can be recovered from the function fη, and thus Rh is injective.
Finally, let us show that Rh is surjective. Let f : Σ̃ \ γ̃ → Z be an equivariant eikonal function

that vanishes at the base point x0 = {1p0}. We have to construct an Eulerian coorientation η such
that fη = f . To do so, we define first a cross-cochain c as follows. For any generic smooth path
ε ∈ Pγ, we let

c(ε) := f {αε} − f {α}
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where α ∈ Pγ is an auxiliary path from p0 to the startpoint of ε. Let us show first that the value
c(ε) is well defined. Let α′ be any other path from p0 to the startpoint of ε. Then we can write
{α′} = {βα} where β := α†α′, and thus from the fact that f is h-equivariant for some h : Π1 → Z
we get

f {α′ε} − f {α′} = f {βαε} − f {βα}
= h[β] + f {αε} − h[β] − f {α} since f is h-equivariant
= f {αε} − f {α}.

We claim that c is a cross-cochain according to Definition 2.3, and in fact, a unitary and closed
cross-cochain.

We note first that c(ε) only depends on the homotopy class {ε}. (This will imply that c is closed
as a cross-cochain.)

Let us prove that c is additive with respect to concatenation of paths. Let δ, ε ∈ Pγ be consec-
utive paths. To show that c(δε) = c(δ) + c(ε), we take an auxiliary path α ∈ Pγ from p0 to the
startpoint of δ. Then we have

c(δε) = f {αδε} − f {α}
= f {αδε} − f {αδ} + f {αδ} − f {α}
= c(ε) + c(δ).

Similary, let us show that c is alternating with respect to path reversion. Consider a path ε ∈ Pγ
and its reverse ε†, and let α ∈ Pγ be an auxiliary path from p0 to the startpoint of ε. Note that the
path αε goes from p0 to the startpoint of ε†, therefore we have

c(ε†) = f {αεε†} − f {αε}
= f {α} − f {αε}
= −c(ε).

Next, let us show that c is supported on γ, i.e. that c(ε) = 0 for any path ε ∈ Pγ that avoids γ.
Let ε ∈ Pγ be such a path, and let α ∈ Pγ be an auxiliary path from p0 to the startpoint of ε. Then
we have

c(ε) = f {αε} − f {α}

≤ dγ̃
(
{α}, {αε}

)
since f is an eikonal function

= Lenγ{α†αε} = Lenγ{ε} = 0.

Similarly, let us show that c is unitary. For a path ε ∈ Pγ of length Lenγ(ε) = 1, we have to
show that c(ε) = ±1. The fact that Lenγ(ε) = 1 implies that Lenγ{ε} = 1, since the possibility
Lenγ{ε} = 0 is excluded because homotopic paths have the same length modulo 2. To compute
c(ε) we take an auxiliary path α ∈ Pγ from p0 to the startpoint of ε and we note that

c(ε) = f {αε} − f {α} = ±1

since f is an eikonal function and

dγ̃
(
{α}, {αε}

)
= Lenγ{α†αε} = Lenγ{ε} = 1.

Finally, let us show that c is constant on any continuous family (εt)t∈[0,1] of smooth paths εt ∈

Pγ. It suffices to verify that c(ε0) = c(ε1). Denote rt and st the startpoint and endpoint of εt for
each t ∈ [0, 1]. Note that the curves r : t 7→ rt and s : t 7→ st avoid the multicurve γ. These
curves r, s may not be in Pγ, but they surely can be approximated by respective curves ρ, σ ∈ Pγ
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x

y1

f (y1) = 0

Ix,y1 = [−1, 1]

y2

f (y2) = 2 Ix,y2 = [−1, 5]

y3
f (y3) = −1

Ix,y3 = [−3, 1]

Figure 5. A part of the multicurve γ̃ (black and thin). Assume that the set D consists of
three points y1, y2, y3 (red, green and blue dots) with prescribed values f (y1) = 0, f (y2) =
2 and f (y3) = −1. Considering a fourth point x (purple), we see that we have Ix,y1 =

[−1, 5], Ix,y2 = [−1, 1] and Ix,y3 = [−3, 1]. In particular these three intervals intersect, and
one can set f (x) = 1.

that are homotopic to r and s respectively (with fixed endpoints) and also avoid γ. Then we have
{ε0} = {ρε1σ

†}, which implies that

c(ε0) = c(ρ) + c(ε1) − c(σ) = c(ε1)

since c(ρ) = c(σ) = 0 because ρ and σ avoid γ.
This finishes the proof that c is a closed, unitary cross-cochain. Therefore, by Proposition 2.5

(together with Remark 2.6), there exists an Eulerian coorientation η of γ such that c = cη. We see
that fη = f because for any homotopy class {α} ∈ Σ̃ \ γ̃ (represented by a generic smooth path
α ∈ Pγ starting at p0 ) we have

fη{α} = cη(α) = c(α) = f {1p0α} − f {1p0} = f {α}

since f {1p0} = 0. This shows that fη = f , concluding the proof that Rh is surjective. □

The next result is the key to proving Theorem C.

Lemma 2.16 (Extension). Every pre-eikonal function f defined on a subset D of Σ̃ \ γ̃ can be
extended to an eikonal function f : Σ̃ \ γ̃ → Z given by

f (x) = min
y∈D

f (y) + dγ̃(x, y).

Proof. For a point x ∈ Σ̃ \ γ̃, we want to define f (x). We first observe that, for every y ∈ D, the
value f (x) must lie in the interval Ix,y :=

[
f (y) − dγ̃(x, y), f (y) + dγ̃(x, y)

]
. See Figure 5.

We claim that for every y, y′ in D, the intervals Ix,y, Ix,y′ intersect. Otherwise there would exist
two points y, y′ such that f (y)+ dγ̃(x, y) < f (y′)− dγ̃(x, y′), which implies f (y′)− f (y) > dγ̃(x, y)+
dγ̃(x, z) ≥ dγ̃(y, y′), contradicting pre-eikonality of f . Now, any set of intervals in R that pairwise
intersect has a global common point. Therefore the intersection ∩y∈DIx,y is non-empty. So we
define f (x) as the highest common point f (x) := miny∈D f (y) + dγ̃(x, y) of these intervals.

We claim that the extension f is pre-eikonal (and therefore eikonal, since it is defined at all
points of Σ̃ \ γ̃). Indeed, to prove that | f (x′) − f (x)| ≤ dγ̃(x, x′), it is enough to check that∣∣∣∣( f (y) + dγ̃(x′, y)

)
−
(

f (y) + dγ̃(x, y)
)∣∣∣∣ ≤ dγ̃(x, x′)
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for each y, which follows from the triangle inequality in the form∣∣∣dγ̃(x′, y) − dγ̃(x, y)
∣∣∣ ≤ dγ̃(x, x′).

To prove that f (x′) − f (x) ≡ dγ̃(x, x′) modulo 2, we write

f (x′) − f (x) =

=
(

f (y′) + dγ̃(x′, y′)
)
−
(

f (y) + dγ̃(x, y)
)

for certain y, y′ ∈ D

≡ dγ̃(y, y′) + dγ̃(x′, y′) − dγ̃(x, y) modulo 2 since f is pre-eikonal

≡ dγ̃(y, y′) + dγ̃(x′, y′) + dγ̃(x, y) since plus and minus coincide mod 2

≡ dγ̃(x, x′) since homotopic paths have equal length mod 2. □

Note that a pre-eikonal function f generally admits several eikonal extensions. The one we
denoted f is the highest one. It has the advantage of being determined by f by an explicit formula.

2.d. Proof of Theorem C. As explained after Lemma 2.11, it remains to be shown that every
cohomology class h ∈ B∗xγ that coincides modulo 2 with [γ]2 is the cohomology class of some
Eulerian coorientation η. We fix such a cohomology class h.

Recall that we have chosen a point p0 in Σ\γ to construct the universal cover Σ̃ and the covering
map π : Σ̃→ Σ. Denote D = π−1(p0). We define a function f : D→ Z by the formula f {α} = h[α].
This function is well defined because homotopic paths are homologous.

Claim 2.17. The function f : D→ Z is an h-equivariant pre-eikonal function.

Proof. Let us show that f is h-equivariant. Take a loop β in Σ based at the point p0. Then for
points y = {α}, y′ = Tβ(y) = {βα} ∈ D we have

f (y′) − f (y) = h[βα] − h[α] = h[β],

as claimed. To show that f is pre-eikonal we continue as follows. Any two points y, y′ ∈ D can be
written as y = {α}, y′ = Tβ(y) = {β · α}. Therefore we have

f (y′) − f (y) = h[β] ≤ xγ[β]

since h ∈ B∗xγ . On the other hand, the distance between y and y′ is

dγ̃(y, y′) = Lenγ{α†βα}

= Lenγ(β′) for some path β′ ∈ {α†βα},

≥ xγ[β′] by definition of xγ,

= xγ[β] since [β′] = [α†βα] = [β],

which shows that f (y′) − f (y) ≤ dγ̃(y, y′). To see that f (y′) − f (y) ≡ dγ̃(y, y′) modulo 2 we note
that

f (y′) − f (y) = h[β]
≡ [γ]2[β] since h ≡ [γ]2 modulo 2

= [γ]2[β′] since [β′] = [β], with β′ as above

≡ Lenγ(β′) modulo 2 by definition of [γ]2

= dγ̃(y, y′).

This finishes the proof that f is a pre-eikonal function. □
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By the Extension Lemma 2.16, we can extend f to an eikonal function f : Σ̃ \ γ̃ → Z defined
by the formula f (x) = miny∈D f (y) + dγ̃(y, x).

Claim 2.18. The function f is h-equivariant.

Proof. This follows from the fact that f is h-equivariant. Indeed, take a loop homotopy class {β}
in Π1 and a point x ∈ Σ̃ \ γ̃. Then the value of f at the translate point x′ = Tβ(x) is

f (x′) = min
y′∈D

f (y′) + dγ̃(y′, x′)

= min
y∈D

f (Tβ(y)) + dγ̃(Tβ(y),Tβ(x)) since D = Tβ(D)

= min
y∈D

f (y) + h[β] + dγ̃(y, x) since f is h-equivariant and Tβ preserves dγ̃

= f (x) + h[β]. □

Since f is an h-equivariant eikonal function, by Lemma 2.15 there exists a unique Eulerian
coorientation η with cohomology class [η] = h such that fη = f .

Let us put everything together. We have shown in Theorem B that xγ is an integral seminorm
on H1(Σ;Z), and this seminorm coincides modulo 2 with the cohomology class [γ]2. Therefore
we can apply Theorem 2.1 (the extension of Thurston’s theorem). We conclude that for each
homology class a ∈ H1(Σ;Z), we have

xγ(a) = max
φ∈B∗xγ

hmod 2=[γ]2

h(a) = max
η∈Eul(γ)

[η](a).

This concludes the proof of Theorem C.

3. Birkhoff sections with symmetric boundary for the geodesic flow

We now turn to geodesic flows on unit tangent bundles to hyperbolic surfaces and their Birkhoff
sections. Unlike the two previous sections, the surfaces we consider are now equipped with a
hyperbolic metric, and all considered multicurves are geodesic. We first recall in 3.a what are the
geodesic flow and the symmetric lift of a geodesic. Then in 3.b we associate to every Eulerian
coorientation a surface in the unit tangent bundle needed for proving the first part of Proposition D.
We recall in 3.c the basic definitions on Birkhoff sections and the elements of Schwartzman–
Fried–Sullivan Theory we need for our classification. Then in 3.d we recall basic notions on
pseudo-Anosov flows and Fried’s result on their homology directions. In 3.e we make a bit of
elementary algebraic topology for describing homology classes of surfaces with boundary. This
allows to prove in 3.f the second part of Proposition D, as well as Theorem A.

3.a. Geodesic flow and symmetric collections of orbits. Given a hyperbolic surface Σ, its unit
tangent bundle is the circle bundle T1Σ made of length 1 tangent vectors, that is T1Σ = {(p, v) ∈
TΣ
∣∣∣ ∥v∥ = 1}. The geodesic flow (φt

geod)t∈R on T1Σ is the flow whose orbits are lifts of geodesics.
Namely for α a geodesic on Σ parametrized with speed one, the orbit of (φt

geod)t∈R going through
the point (α(0), α̇(0)) ∈ T1Σ is described by φt

geod((α(0), α̇(0)) = (α(t), α̇(t)). For every oriented
periodic geodesic α on Σ, there is one periodic orbit of (φt

geod)t∈R corresponding to the oriented lift
of α and denoted by α⃗. If α now denotes an unoriented geodesic on Σ, there are two associated
periodic orbits of (φt

geod)t∈R, one for each orientation. We denote by
↔
α the union of these two
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Figure 6. Bottom: an edge e of γ and a coorientation η on it. Top: the corresponding
rectangle Re,η in T1Σ. The dotted lines represent the fibers of some points of Σ, that
is, each point on these lines represent a unit tangent vector to Σ. Since the fibers are
actually circles, the top and bottom extremities of the dotted lines should be glued. The
rectangle Re,η is transverse to the orbits of (φt

geod)t∈R and the induced orientation is shown
in red. The induced orientation of the horizontal boundary of Re,η (red) is opposed to the
orientation of the flow (black). Thus the surfaces we construct are transverse surfaces
whose boundary components have multiplicity −1.

periodic orbits, it is an oriented link in T1Σ that is invariant under the involution (p, v) 7→ (p,−v).
A link of the form

↔
α1 ∪ · · · ∪

↔
αk is called a symmetric link.2.

3.b. Birkhoff–Brunella surfaces and the first part of Proposition D. Starting from a hyper-
bolic surface Σ and a finite collection γ of periodic geodesics3 on Σ, we now explain how to
associate to every Eulerian coorientation of γ a surface in T1Σ bounded by −↔γ and transverse
to (φt

geod)t∈R, thus proving the first part of Proposition D.
Fix a coorientation η (not yet Eulerian) of γ. For every edge e of γ (i.e. segment between two

double points), we consider the set Re,η of those tangent vectors based on e and pairing positively
with η. It is a subset of in T1Σ of the form e× [0, π] (see Figure 6), hence we call it an elementary
rectangle. With the notation of Section 2, it is the closure of a connected component of Cγ. Is
is bounded by the two lifts of e in T1Σ (called the horizontal part of ∂Re,η) and two halves of
the fibers of the extremities of e (called the vertical part of ∂Re,η). Note that the interior of Re,η

is transverse to the geodesic flow (φt
geod)t∈R while the horizontal part of ∂Re,η is tangent to it. We

then orient Re,η so that orbits of (φt
geod)t∈R intersect it positively. One checks that the induced

orientation on ∂Re,η is opposite to the one given by (φt
geod)t∈R, as explained in Figure 6. This is the

reason why we want to consider negative orientations in Theorem A and Proposition D.

2The term “antithetic link” was suggested by Bruce Bartlett, but we remarked that symmetric is already used in the
literature.

3In the sequel we always assume γ to be in general position, meaning in particular that no point belong to three
different arcs. This is a restriction as there exists collection of geodesics on surfaces that exhibit triple points for all
constantly curved metrics. One way to deal with this situation is to perturb the metric, allowing the curvature to slighty
change so that the position of the collection becomes general. Indeed the arguments we use do not require constant
curvature, only negative.
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Consider now the 2-dimensional CW-complex S ×(η) that is the union of the rectangles Re,η over
all edges e of γ, see the left parts of Figures 7 and 8.

Lemma 3.1. The 2-complex S ×(η) described above has boundary −↔γ if and only if the coorienta-
tion η is Eulerian.

Proof. Since S ×(η) is the union of one rectangle per edge of γ, the horizontal boundary of S ×(η) is
always in ↔

γ. Since the orientation is opposite to the geodesic flow (see Figure 6), it is actually −↔γ.
What we have to check is that the vertical boundary is empty if and only if η is Eulerian. At

every double point v of γ there are four incident rectangles, corresponding to the four adjacent
edges. Now the vertical boundary of a rectangle Re,η is oriented upwards at the right extremity
of e (when cooriented by η) and downwards at the left extremity. Then the vertical boundary in
a vertex of γ is empty if only if all vertical contributions cancel. This is the case exactly when
two edges are cooriented in a direction, and two others in the opposite direction: this means
that η is Eulerian around v. Conversely, if η is Eulerian, then up to rotation there are two local
configurations around v (that we called alternating and non-alternating), and one checks that in
both cases, the vertical boundary is empty (see the left parts of Figures 7 and 8). □

Figure 7. On the left, the complex S ×(η) around the fiber of an alternating double point
of γ. Every point of the fiber of v is adjacent to exactly two rectangles. On the right
the surface SBB(η) is obtained by smoothing S ×(η) in a neighborhood of the fiber of the
double point. Its interior is transverse to the vector field generating the geodesic
flow (green).

When η is Eulerian, the complex S ×(η) is not a topological surface if η has some non-alternating
points: as depicted on Figure 8, there are edges in the vertical boundary of four adjacent rectangles,
instead of two for obtaining a topological surface. But it is the only obstruction and we can
desingularize such segments as shown on the right of Figure 8. More precisely, label by 1, 2, 3, 4
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1 2

34

Figure 8. On the left, the complex S ×(η) around the fiber of a non-alternating double
point of γ. Every point of the fiber of v is adjacent to an even number of rectangles. On
the right the surface SBB(η) is obtained by desingularizing S ×(η) on the portion of the
fiber where four rectangles meet. Note that the topology of the complex changes in this
process. However its interior is still transverse to the vector field generating the geodesic
flow (green).

the quadrants around the considered non-alternating point so that two edges point toward 1 under
the coorientation η. Then the set s of those tangent vectors based on the double point and pointing
toward quadrant number 1 is the singular segment to which four rectangles are adjacent. We thus
split s into two segments s1 and s3, so that the extremities of both segments (in T1Σ) coincide
with the extremities of s, but s1 is pushed a bit into quadrant number 1, and s3 is pushed a bit into
quadrant number 3. Then we distort a bit the two rectangles adjacent to quadrant 1 so that their
vertical boundary is s1, and we distort a bit the two rectangles adjacent to quadrant 3 so that their
vertical boundary is s3. These gluings are made in a smooth way.

The main tool connecting Eulerian coorientations to Birkhoff sections is the following.

Definition 3.2. For η an Eulerian coorientation, the associated BB-surface is the surface SBB(η)
obtained from S ×(η) by desingularizing and smoothing the fibers of the double points of γ, as on
the right parts of Figures 7 and 8.

The term BB stands for Birkhoff–Brunella, as this construction generalises previous construc-
tions by these two authors. Indeed, the BB-surface associated to a Birkhoff coorientation (Ex-
ample 2.8) is isotopic to the construction suggested by Birkhoff and popularized by Fried [Bir17;
Fri83]. Also the BB-surface associated to a Brunella coorientation (Example 2.9) was introduced
by Brunella [Bru94, Description 2]. This construction already yields the first part of Proposition D:

Proposition 3.3. For Σ a hyperbolic surface, γ a geodesic multicurve, and η an Eulerian coorien-
tation of γ, the associated surface SBB(η) is embedded in T1Σ, it is bounded by −

↔
γ , and its interior

is transverse to the orbits of the geodesic flow (φt
geod)t∈R.

Proof. The surface SBB(η) is obtained by desingularizing S ×(η), so it is embedded. Its boundary
coincide with the boundary of S ×(η), so it is (with orientation) −

↔
γ . Finally, the desingularization
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preserves the transversality to (φt
geod)t∈R. Since S ×(η) is positively transverse to (φt

geod)t∈R away
from its boundary, so is SBB(η). □

3.c. Birkhoff sections and Schwartzman–Fried–Sullivan Theory. Our goal here is to present
a criterion for the existence of a Birkhoff section in a given homology class. Such a criterion exists
when the Birkhoff section has no boundary (in this case we call it a global cross section), and it
goes back to Schwartzman. It can be adapted to Birkhoff sections using a blow-up construction.

Definition 3.4. Let M be a compact 3-manifold and let (φt
X)t∈R be a flow on M generated by a

smooth non-vanishing vector field X. (Note that X must be tangent to the boundary ∂M, which
must therefore be toric.) A global cross section for (M, (φt

X)t∈R) is a compact orientable surface
with boundary S such that

• S is embedded in M with S ∩ ∂M = ∂S ,
• S is positively transverse to X,
• every orbit of X intersects S . Note that the time to reach S is a continuous (and hence,

bounded) function on M.

When such a global cross section exists, there is a well defined, bijective first-return map f
on S and the first-return time τ is bounded from above and below by compactness. In this case M
fibers over the circle with fiber S , so that M equipped with the vector field X is homeomorphic
to S × [0, 1]/(p,1)∼( f (p),0) equipped with τ(p) ∂∂z , where ∂

∂z denotes the vector field tangent to the last
coordinate and f (p) = φτ(p)(p) is the first-return map. The dynamics of the flow (φt

X)t∈R is then,
up to the time-reparametrisation function τ, the dynamics of the map f .

The following remark is folklore, see for example the discussion at the beginning of [Thu86,
Section 3]. It suggests that questions of existence of global cross sections are of algebraic nature.

Proposition 3.5. For (M, (φt)t∈R) a flow and S 1, S 2 two global cross sections, there is an isotopy
along orbits of (φt)t∈R that sends S 1 on S 2 if and only if S 1 and S 2 represent the same class
in H2(M, ∂M;Z).

Proof. The direct implication =⇒ is obvious. For the converse, let M̂ be the infinite cyclic cover
of M associated to the class [S 1] = [S 2] ∈ H2(M, ∂M;Z) (= H1(M;Z) by Lefshetz duality). By
construction, the surface S 1 lifts to Z distinct parallel copies (S (n)

1 )n∈Z. The flow (φt)t∈R lifts to a
flow (φ̂t)t∈R in M̂. Since S 1 intersects all orbits of (φt)t∈R, every orbit of (φ̂t)t∈R intersects each of
the surfaces (S (n)

1 )n∈Z one after the other.
Now, S 2 also lifts to Z parallel copies in M̂ with the same property. In particular every orbit

of (φ̂t)t∈R intersects exactly once each of the surfaces S (0)
1 and S (0)

2 . Hence for p ∈ S (0)
1 , we can

define tp to be the unique time so that φ̂tp(p) ∈ S (0)
2 . The isotopy ( fs : p 7→ φ̂stp(p))s∈[0,1] hence

connects S (0)
1 to S (0)

2 along orbits of (φ̂t)t∈R. Projecting back to M yields the result. □

Note that if we are given a global cross section S , it intersects all orbits positively. So, taking
homology classes, we see that the class [S ] ∈ H2(M, ∂M;Z) intersects positively all homology
classes of periodic orbits of the flow. One may wonder whether the above remark can be turned
into a sufficient condition: when does a given homology class σ in H2(M, ∂M;Z) contain a global
section?

The answer has been given by Sol Schwartzman [Sch57] and Francis Fuller [Ful65], and
rephrased by Dennis Sullivan [Sul76]. The quicker way to express it requires to consider invariant
measures as currents and to consider their homology classes: given an X-invariant probability mea-
sure µ, the associated 1-current cµ is the linear functional on the space Ω1(M) of 1-forms defined
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by cµ(λ) =
∫

M λ(X(p))dµ(p). Since µ is invariant, cµ is closed as a current, hence it induces a ho-
mology class [cµ] in H1(M;R). The latter is called the Schwartzman asymptotic cycle associated
to µ. The set of all asymptotic cycles is denoted bySchwX . It is a convex subset of H1(M;R) which
contains the classes of the periodic orbits (consider the Dirac linear invariant measures carried by
periodic orbits). The following criterion is due to Schwartzman in the case M has no boundary,
and to Fried when ∂M is non-empty [Sch57; Fri82]. Here ⟨·, ·⟩(M,∂M) denotes the intersection pair-
ing H2(M, ∂M;R)×H1(M;R)→ R. Note that H2(M, ∂M;Z) ⊆ H2(M, ∂M;Z)⊗R = H2(M, ∂M;R)
by the universal coefficient theorem for homology.

Theorem 3.6 (Schwartzman–Fuller–Fried). Let M be a 3-manifold with toric boundary equipped
with a non-vanishing vector field X tangent to ∂M. A class σ in H2(M, ∂M;Z) contains a global
section for (M, X) if and only if for every asymptotic cycle cµ ∈ SchwX one has ⟨σ, cµ⟩(M,∂M) > 0.

Now we turn to Birkhoff sections. Recall from the introduction:

Definition 3.7. For M a compact, orientable 3-manifold with no boundary, X a non-vanishing vec-
tor field on M whose flow is denoted by (φt

X)t∈R, an embedded Birkhoff section for (M, (φt
X)t∈R)

is a compact orientable surface S
embedded in M such that

• the interior of S is positively transverse to X,
• its boundary ∂S is tangent to X,
• we have φ[0,T ]

X (S ) = M for some T > 0.

The second condition implies that the boundary of S is the union of finitely many periodic orbits
of X. Note that one sometimes allows the boundary of S to be immersed instead of embedded, as
in [Col+22]. In such case we say that S is an immersed Birkhoff section.

The first and second conditions in the definition of a Birkhoff section may look hard to realize
at the same time, but actually it is not the case: in a flow box oriented so that the vector field is
vertical, the general picture of an embedded Birkhoff section near its boundary is that of one he-
licoidal staircase. Since the interior of a Birkhoff section S is transverse to X, it is cooriented by X.
Since M is oriented, this induces an orientation on S , and
in turn an orientation of ∂S . On the other hand, ∂S is a
collection of periodic orbits of X, so it is oriented by X.
For every component β of ∂S , we can then define the mul-
tiplicity of β as the algebraic number of times one sees βi
in ∂S . Since we restrict our attention to embedded Birkhoff
sections, this multiplicity is always ±1. We call a Birkhoff
section positive (resp. negative) if every boundary com-
ponent has multiplicity +1 (resp. −1). negative positive

The connection with global cross sections comes from the following remark : starting from a
non-singular flow X on a compact 3-manifold M with no boundary, and given a finite collection β
of periodic orbits of X, one can consider the normal blow-up of M along β, denoted by Mβ. It is
obtained from M by removing the 1-submanifold β and replacing it by its unit normal bundle ν1

X(β).
In this construction, each component of β is replaced by a torus. If X is of class C1, it extends
to ν1

X(β) via its differential, so that Mβ is equipped with a continuous vector field Xβ.
Now if S is a global cross section for (Mβ, (φt

Xβ
)t∈R), one can change it by an isotopy in an

arbitrarily small neighborhood of ∂Mβ, so that every boundary component of ∂S is
• either a meridian circle of a boundary torus, that is, the normal bundle to a point p ∈ β,
• or a longitude of a boundary torus, that is, its projection in M is an immersion.
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After such an isotopy, by blowing down the components of ∂S into orbits of X, we obtain an im-
mersed Birkhoff section for (M, (φt

X)t∈R) whose boundary is in β. Therefore global cross sections
for (Mβ, (φt

Xβ
)t∈R) up to isotopy induce Birkhoff sections whose boundary is in β up to isotopy

fixing the boundary.
Conversely, starting from a Birkhoff section S , one can blow up its boundary and obtain a global

cross section on the blown-up 3-manifold.
Therefore, provided one can understand the Schwartzman asymptotic cycles after blowing up

a periodic orbit, one can adapt the Schwartzman–Fried Criterion to the existence of Birkhoff sec-
tions. This was done by Fried and even precised by Hryniewicz [Fri82, Thm N], [Hry20], as we
now explain. In our context of a vector field X on a 3-manifold M with a specified finite set β
of periodic orbits, every X-invariant measure can be split into two parts: one that is supported
on M \ β and then descends to a Xβ-invariant measure on Mβ, and one part that corresponds to a
combination of Dirac linear X-invariant measures on the components of β. This second part has to
be replaced on Mβ by an Xβ-invariant measure on ν1

X(β). Since a flow on a 2-torus is in general not
uniquely ergodic, the unit normal bundle ν1

X(β) admits several Xβ-invariant measures. However, a
given class σ in H2(M, β;Z) induces a class, also denoted by σ, in H2(Mβ, ∂Mβ;Z). All asymptotic
cycles associated to all Xβ-invariant measures concentrated on ν1

X(β) have the same pairing with σ,
which corresponds to the rotation number of Xβ|ν1

X(β) with respect to the slope induced by ∂σ. We
call this pairing the self-linking of β along X associated to the framing given by σ, and denote it
by ⟨∂σ, βX⟩ν1(β).

Theorem 3.8 (Schwartzman–Fuller–Fried–Hryniewicz). Given are a compact 3-manifold M with
no boundary, a non-vanishing vector field X on M, and a finite collection β of periodic orbits of X.
Then a class σ in H2(M, β;Z) contains an embedded Birkhoff section for (M, (φt

X)t∈R) if and only
if

• for every X-invariant measure µ whose support does not intersect β, the corresponding
asymptotic cycle cµ ∈ SchwX satisfies ⟨σ, cµ⟩(M,β) > 0,
• for every component βi of β, the boundary of ∂σ travels plus or minus once along βi, and

one has ⟨∂σ, βX
i ⟩ν1(βi) > 0.

3.d. Anosov flows. Geodesic flows on unit tangent bundles to hyperbolic surfaces are archetypes
of transitive Anosov flows [Jac98; Ano69]. As such, their asymptotic cycles are easier to under-
stand than those of general flows, as we now explain.

Recall that a flow (φt
X)t∈R generated by a vector field X on

a 3-manifold is of Anosov type if there are two transverse φX-
invariant 2-foliationsF s,F u on M that intersect alongR.X, where
X is the generator of the flow, such that F s is transversally expo-
nentially contracted by φt

X when t → +∞ and F u is transversally
exponentially contracted by φt

X when t → −∞.4

The leaves of F s and F u are called stable and unstable manifolds respectively.
Recall that two flows are orbitally equivalent if there is a homeomorphism sending the oriented

orbits of the first flow onto the oriented orbits of the second one. The geodesic flow on a hyperbolic
surface is of Anosov type [Ano69]. In particular it is structurally stable, meaning that a small
enough perturbation of the generating vector field yields an orbitally equivalent flow. Together

4Actually this definition corresponds to topologically Anosov flows, which is enough for us, as the results we use
hold for topologically Anosov flows. Note that it was proven by Shannon that transitive topological Anosov flows are
topologically equivalent to smooth Anosov flows [Sha20], so that the topological results on transitive smooth Anosov
flows can be used for topologically Anosov flows.
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with the connectedness of the space of hyperbolic metrics, this implies that the geodesic flows
associated to two different hyperbolic metrics are orbitally equivalent [Gro76]. This means that,
as long as only the topological properties of orbits are involved, the geodesic flows of all possible
hyperbolic metrics on a given surface are equivalent.

Blowing-up some periodic orbits of an Anosov flow does not yield an Anosov flow. However
it preserves the pseudo-Anosov character, so we rather work in this context.

Consider the unit disc D2 in C. For any integer k ≥ 3 consider the singular 1-foliation F 1
k on D2

given by d(ℜ(zk/2)) = 0, and denote by F 2
k the singular 2-foliation F 1

k × (0, 1) on D2 × (0, 1).
The leaf {0} × (0, 1) is singular. Also consider the half-unit disc U2 = D2 ∩ {ℑ(z) > 0}. Consider
the singular 1-foliation F 1

∂
on U2 given by d(ℜ(s) · ℑ(z)) = 0, and denote by F 2

∂
the singular

2-foliation F 2
∂
× (0, 1) on U2 × (0, 1). The leaf {0} × (0, 1) is also singular.

Given a compact 3-manifold M with toric boundary, a foliation with circle-prongs of M is a
2-foliation with singularities F of M locally modelled on a standard 2-foliation or on some F 2

k in
the interior of M, and on a standard 2-foliation tangent to ∂M or on F 2

∂
along ∂M, see Figure 9.

(a) (b) (c) (d)

Figure 9. The local picture of a standard 2-foliation in the interior of a 3-manifold (a)
and on the boundary (b). The local picture of the foliation with circle-prong F 2

4 (c) and
the local picture of F 2

∂
(d).

A flow (φt)t∈R on M is of pseudo-Anosov type if there are two (φt)t∈R-invariant foliations with
circle-prongs F s,F u on M that are transverse to each other and intersect along R.X (except along
the singular curves which are common, and parallel to X), where X is the generator of the flow,
such that F s is transversally exponentially contracted by φt when t → +∞ and F u is transversally
exponentially contracted by φt when t → −∞.5 Note that the pseudo-Anosov flows we consider in
the sequel are obtained by blowing up periodic orbits of Anosov flows. Hence the circle-prongs of
the blown-up foliations are only of type F 2

∂
; the types F 2

k with k ≥ 3 do not appear in our context.
Recall that a flow is transitive if it has a dense orbit. Geodesic flows on hyperbolic surfaces

are transitive. Brunella showed that transitive pseudo-Anosov flows admit finite Markov parti-
tions [Bru92, Thm 2.1]. Earlier Fried showed that the cone generated by the asymptotic cycles of
a flow admitting a finite Markov partition is easy to describe [Fri82, Thm H] :

Theorem 3.9 (Fried). Given a compact 3-manifold M with toric boundary and a non-vanishing
vector field X on M tangent to ∂M that generates a flow (φt

X)t∈R admitting a finite Markov partition,
then there is a finite collection {β1, . . . , βn} of periodic orbits of (φt

X)t∈R such that R+.SchwX =

Conv({R+[βi]}i=1,...,n).

Combining the above statement with the existence criterion of Theorem 3.8, in the case of
geodesic flows we obtain the following result.

5Pseudo-Anosov flows correspond to the expansive flows of Brunella [Bru92]. Thanks to results of Inaba–
Matsumoto and Paternain, both notions coincide, as explained in Brunella’s thesis.
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Corollary 3.10. Given a hyperbolic surface Σ and β⃗ a signed collection of periodic orbits of (φt
geod)t∈R

on T1Σ, a class σ in H2(T1Σ, β⃗;Z) such that ∂σ = β⃗ contains a Birkhoff section for (φt
geod)t∈R if,

and only if,
• for every periodic orbit α⃗ of (φt

geod)t∈R not in β⃗, one has ⟨σ, [α⃗]⟩(T1Σ,β⃗) > 0,

• for every component β⃗i of β⃗, one has ⟨∂σ, β⃗Xgeod
i ⟩ν1(β⃗i)

> 0.

Actually, Theorem 3.9 states that the infinite set of all periodic orbits in the first item could be
replaced by a finite one, but determining this finite set for every signed collection β⃗ does not look
trivial to us.

3.e. Classes of surfaces with given boundary. We come back to the setting of Theorem A: Σ
is a negatively curved surface, γ is a finite collection of periodic geodesics and ↔

γ denotes the
symmetric lift of γ. In order to apply Schwartzman–Fuller–Fried–Hryniewiez’s criterion in the
form of Corollary 3.10 for finding Birkhoff cross sections bounded by −↔γ, we need to work in the
complement T1Σ \

↔
γ and in particular to determine the space H2(T1Σ,

↔
γ;Z). In this section we

explain that the homology classes of 2-chains bounded by −↔γ form an affine space and we give a
canonical origin to this space.

Lemma 3.11. The homology classes of those 2-chains whose boundary is −↔γ form an affine space
directed by H1(Σ;Z).

Proof. First we consider the sequence 0 → H2(T1Σ;Z)
i
−→ H2(T1Σ,

↔
γ;Z)

∂
−→ H1(↔γ;Z), where the

first map is the inclusion map and the second is the boundary map. We claim that it is exact6.
Indeed this is a part of the long exact sequence associated to the pair (T1Σ,

↔
γ), see [Hat02, Thm

2.16], plus the fact that H2(↔γ;Z) is zero.
Now the homology classes of those 2-chains whose boundary is −↔γ correspond to the preimages

under ∂ of the point (−1,−1, . . . ,−1) ∈ H1(↔γ;Z) ≃ Z2|γ|. Indeed, given two 2-chains with the same
boundary, their difference induces a class in H2(T1Σ;Z). Using the fact that T1Σ is a circle bundle
with non-zero Euler class, we get H2(T1Σ;Z) ≃ H1(Σ;Z): a non-trivial class in H2(T1Σ;Z) can be
represented by the set of the fibers over a cycle in H1(Σ;Z). □

From Lemma 3.11 we deduce that if we are given an explicit 2-chain S0 bounded by −↔γ, the
classes of the other 2-chains bounded by −↔γ differ from [S0] by a class in H1(Σ;Z). In our con-
text, there is a natural choice of such an origin S 0, for which the computation of the intersection
numbers with asymptotic cycles of the geodesic flow will be easy.

We denote by S ×± the rational chain in C2(T1Σ,
↔
γ;Q) that is half the sum of all elementary

rectangles Re,η (see Figure 10) and by σ± its homology class in H2(T1Σ,
↔
γ;Q),

S ×± :=
1
2

∑
e∈γ,ηe=±

Re,ηe , σ± := [S ×±].

In other words, we consider the set of all tangent vectors based at points of γ. Remember that
every elementary rectangle is cooriented by the geodesic flow, hence oriented. Therefore, S ×± is
also oriented. Its boundary is then exactly −↔γ (thanks to the 1

2 factor). The 2-chain S ×± is not a
surface since the fibers of the double points of γ are singular. As it is rational the class σ± might
not be realized by a surface, but 2σ± is always an integral class7.

6An erroneous version of this statement is in [Fri82, Lemma 6], where it is claimed that the boundary map is
surjective and admits a section. It is not true in general, unless T1Σ is a homology sphere.

7Actually, σ± is realized by a surface if and only if [γ]2, the class of γ in H1(Σ;Z/2Z), is 0. In this case, the
homology class of Birkhoff’s coorientation ηB (Example 2.8) is 0, and S BB(ηB) lies in the class σ±. Also the class σ± is
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Figure 10. The 2-chain S ×± is half of the sum of all rectangles Re,ηe . It is cooriented by
the geodesic flow, hence oriented (in red). Its boundary, taking orientations into account,
is −

↔
γ .

The class [S ×±] yields a canonical origin to the affine space of those 2-chains bounded by −
↔
γ ,

in the sense that it connects the intersection numbers in T1Σ↔γ to intersection numbers of the base
surface Σ.

Lemma 3.12. For α a collection of oriented periodic geodesics on Σ, none of which is a com-
ponent of γ, denote by α⃗ its lift in T1Σ. Then the algebraic intersection ⟨σ±, α⃗⟩(T1Σ,

↔
γ) is equal

to + 1
2 Lenγ(α).

This lemma appears in a different form in [DIT17] where it is used to prove that the linking
number of two symmetric collections

↔
γ1,

↔
γ2 in T1Σ is equal to −Lenγ1(γ2).

Proof. Since S ×± is positively transverse to the geodesic flow, all intersection points of α⃗ with S ×±
contribute positively to the algebraic intersection. Since every rectangle has coefficient 1

2 in S ×±,
the contribution of every intersection point is + 1

2 . Finally α⃗ intersects S ×± exactly in the fiber of
the intersection points of α and γ. □

The connection with intersection norms is now straightforward:

Corollary 3.13. For α a collection of oriented periodic geodesics on Σ, none of which is a com-
ponent of γ, the intersection ⟨σ±, α⃗⟩(T1Σ,

↔
γ) is at least equal to 1

2 xγ([α]), with equality if and only if
α is an xγ-realizing collection of geodesics.

equal to 1
2 [SBB(η) + SBB(−η)] for every Eulerian η. Hence it is always realized as the mean of two surfaces without any

assumption on [γ]2.
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3.f. Proofs of Proposition D and Theorem A. Let us recall the context: Σ is a hyperbolic surface
and γ a finite collection of periodic orbits on Σ. We denote by ↔

γ the symmetric lift of γ in T1Σ and
by T1Σ↔γ the 3-manifold obtained from T1Σ by blowing up the link ↔

γ. It has toric boundary, and
it is equipped with the extension, also denoted by (φt

geod)t∈R, of the geodesic flow. The latter is of
pseudo-Anosov type (see Section 3.d).

Denote by π∗ the canonical projection from H2(T1Σ;R) to H1(Σ;R). The next statement is the
key property connecting Birkhoff sections and intersection norms.

Lemma 3.14. If γ is a filling geodesic multicurve on Σ, a class σ ∈ H2(T1Σ,
↔
γ;Z) intersects

positively (resp. non-negatively) every class [α⃗] ∈ H1(T1Σ↔γ;Z) for α an oriented periodic geodesic
on Σ if and only if the class π∗(σ − σ±) ∈ H1(Σ;Z) lies in the interior (resp. the closure) of 1

2 B∗xγ .

Proof. For every oriented geodesic α on Σ, by Lemma 3.12, we have〈
σ, α⃗
〉

(T1Σ,
↔
γ) =

〈
σ − σ±, α⃗

〉
(T1Σ,

↔
γ) +
〈
σ±, α⃗

〉
(T1Σ,

↔
γ)

=
〈
σ − σ±, α⃗

〉
(T1Σ,

↔
γ) +

1
2

Lenγ(α)

= ⟨π∗(σ − σ±), α⟩Σ +
1
2

Lenγ(α).

Hence
〈
σ, α⃗
〉

(T1Σ,
↔
γ) is positive if and only if − ⟨π∗(σ − σ±), α⟩Σ is smaller than 1

2 Lenγ(α).
Now the term − ⟨π(σ − σ±), α⟩Σ depends only on the class [α] ∈ H1(Σ;Z), while the other

term + 1
2 Lenγ(α) is larger that 1

2 xγ([α]), with equality if α is xγ-realizing (Corollary 3.13).
We then treat separately the cases [α] , 0 and [α] = 0 in H1(Σ;Z).
Since there is an xγ-realizing geodesic in every non-zero homology class, the inequality

− ⟨π∗(σ − σ±), α⟩Σ < + 1
2 Lenγ(α) is true for all non null-homologous geodesics α if and only

if the inequality − ⟨π∗(σ − σ±), a⟩Σ <
1
2 xγ(a) is true for every non-zero homology class. In the

same way, the inequality − ⟨π∗(σ − σ±), α⟩Σ ≤ +
1
2 Lenγ(α) is true for all non null-homologous

geodesics α if and only if the inequality − ⟨π∗(σ − σ±), a⟩Σ ≤
1
2 xγ(a) is true for every non-zero

homology class.
If α is null-homologous, we have 1

2 Lenγ(α) > 0 since the multicurve γ is filling, so that
− ⟨π∗(σ − σ±), α⟩Σ = 0.

Summarizing the two previous paragraphs, we find that the class σ intersects positively (resp.
non-negatively) the class of every periodic orbit of the geodesic flow (in the complement of

↔
γ)

if and only if for every class a ∈ H1(Σ;Z) we have the inequality − ⟨π∗(σ − σ±), a⟩Σ <
1
2 xγ(a)

(resp. − ⟨π∗(σ − σ±), a⟩Σ ≤
1
2 xγ(a)), which means exactly that the point −π∗(σ − σ±) belongs to

the interior (resp. the closure) of 1
2 B∗xγ . Since the latter is symmetric about the origin, this amounts

to π∗(σ − σ±) belonging to the interior (resp. the closure) of 1
2 B∗xγ . □

We can now assemble all blocks and prove our main results.

Proof of Theorem D. For η an Eulerian coorientation, we consider the Birkoff–Brunella surface
SBB(η) given by Definition 3.2. By Proposition 3.3 its interior is transverse to the orbits of the
geodesic flow in T1Σ while its boundary consists (with orientation) of −

↔
γ . One checks that every

elementary rectangle Re,η contributes to −1 to the Euler characteristics, hence χ(SBB(η)) is −|E(γ)|.
Since γ is seen as a graph of degree 4, one has |E(γ)| = 2|V(γ)|, so that χ(SBB(η)) = −2|V(γ)|.

Now if two Eulerian coorientantions η1 and η2 are cohomologous, then the class [SBB(η1) −
SBB(η2)] ∈ H2(T1Σ;Z) projects by π onto [η1 − η2] = 0. Since π∗ is actually an isomorphism we
have [SBB(η1) − SBB(η2)] = 0, which in turn implies [SBB(η1)] = [SBB(η2)] in H2(T1Σ,

↔
γ;Z).
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Finally, if SBB(η1) and SBB(η2) are both Birkhoff sections of (φt
geod)t∈R and are homologous, one

can blow-up their boundary components (which are the same orbits), and Proposition 3.5 claims
that the flow actually realizes an isotopy between the blown-up surfaces. By blowing down, we
obtain the desired isotopy away from the boundary. □

Proof of Theorem A. Given a hyperbolic surface Σ and a geodesic multicurve γ that fills Σ, Def-
inition 3.2 yields a map that associates to every Eulerian coorientation η of γ a surface SBB(η)
bounded by −↔γ and whose interior is transverse to (φt

geod)t∈R. Moreover, Proposition D states
that if two Eulerian coorientations η1, η2 are cohomologous and the surfaces SBB(η1), SBB(η2) are
Birkhoff sections for (φt

geod)t∈R, then they are actually isotopic along the flow. Therefore the
map S BB projects to an injective map [S BB] that takes a cohomology class of Eulerian coorienta-
tions to an isotopy class of surfaces transverse to (φt

geod)t∈R.
Lemma 3.11 claims that the homology classes of (rational) 2-chains bounded by −↔γ form an

affine space directed by H1(Σ;Q). The class σ± defined in 3.e gives a canonical origin to this
space. It is a half-integral class, and its double 2σ± is congruent to [γ]2 mod 2. Therefore the
set 2H1(Σ;Z) of the doubles of all integral classes corresponds to the sublattice of H1(Σ;Z) of
those points congruent to [γ]2 mod 2.

Theorem C states that all classes [η] for η Eulerian belong to the closure of B∗xγ , and every
integral point in B∗xγ that is congruent to [γ]2 mod 2 is realized by the class of an Eulerian coorien-
tation. This means that the domain of [S BB] is exactly the integral classes in B∗xγ that are congruent
to [γ]2 mod 2.

What remains to prove is that the restriction of [S BB] to the interior of B∗xγ has its image in the
realm of isotopy classes of Birkhoff sections, and that it is surjective.

By Schwartzman–Fuller–Fried-Hryniewicz’s criterion in the form of Corollary 3.10, a class σ ∈
H2(T1Σ,

↔
γ;Z) whose boundary is [−γ⃗] contains a Birkhoff cross section if and only if it pairs neg-

atively with all classes α⃗ of periodic orbits of (φt
geod)t∈R, plus it links negatively with all boundary

components (the > 0 in Corollary 3.10 are all replaced by < 0 because of the signs of all boundary
components).

By Lemma 3.14 the first condition is equivalent to the difference π∗(σ −σ±) lying inside 1
2 B∗xγ ,

or equivalently to 2π∗(σ − σ±) lying inside B∗xγ .
Concerning the second condition in 3.10, one has to check that, if η is an Eulerian coorientation

such that [η] lies inside B∗xγ , for every component γ⃗i of
↔
γ , one has ⟨∂[S BB(η)], γ⃗Xgeod

i ⟩ν1(γ⃗i) > 0.

As explained just before Theorem 3.8, γ⃗Xgeod
i denotes any Xgeod-invariant measure in the boundary

component of the blow-up of γ⃗i. One such invariant measure is carried by the trace of the stable
manifold of γ⃗i, so that one only has to prove that ∂SBB(η) ∩ ν1(γ⃗i) intersects the trace of the stable
manifold of γ⃗i.

Let us work by contrapositive and assume that ∂SBB(η) ∩ ν1(γ⃗i) does not intersect the stable
manifold of γ⃗i. Consider all double points that are met when travelling along the oriented curve γi
on Σ. If at least one of them is alternating for η then one sees on Figure 7 that SBB(η) rotates from
top to bottom (or bottom to top), so that it intersects the stable manifold of γ⃗i in a neighbourhood
of the considered double point. Therefore γi has only vertices that are non-alternating for η.
Moreover, looking at Figure 8, one sees that at every vertex, the coorientation of the transverse
component must be opposite to that of γi. Therefore the pairing η(γi) is 0, yielding [η]([γi]) = 0,
and so [η] does not lie in the interior of B∗xγ .
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The two previous paragraphs imply that the restriction of [S BB] to the interior of B∗xγ has its
image in the realm of isotopy classes of Birkhoff sections, and that it is surjective, thus concluding
the proof. □

One may wonder what happens in Theorem A when γ is not filling.8 In this case, there exists at
least one geodesic α not intersecting γ. The two oriented lifts of α yield two periodic orbits α⃗ and

←
α

of (φt
geod)t∈R. These two lifts are anti-isotopic in the complement of

↔
γ : the isotopy obtained by

rotating the tangent vectors by an angle from 0 to π transports α⃗ to −
←
α. This implies that a surface

cannot be positively transverse to α⃗ and
←
α simultaneously. Therefore −

↔
γ bounds no Birkhoff

section. However, the dual unit ball B∗xγ may or may not contain integral points in its interior,
depending on γ. So there is no simple extension of Theorem A when γ is not filling, except by
saying that −

↔
γ cannot bound a Birkhoff section.

4. Extension to orientable 2-orbifolds

We explain here how the results extend to 2-dimensional orbifolds. Actually Proposition B,
Theorem C and Proposition D extend directly. The only point that is not straightforward is Theo-
rem A which requires an additional argument.

Definition 4.1 (chap.13 of [Thu80]). A Riemannian orientable 2-dimensional orbifold O is
given by an orientable topological surface ΣO together with an atlas (Uα, φα)α∈A of charts of the
form φα : Uα → Dα/(Z/kαZ), with Dα a 2-dimensional Riemannian disc on which Z/kαZ acts by
rotations, and such that the chart transition maps φα ◦ φ−1

β are isometries.

Actually the orbifolds to which our theorems extend are the hyperbolic ones. Such a 2-orbifold
is always good in the sense of Thurston, namely it is a quotient of a hyperbolic surface by a finite
automorphism group.

For our purpose we define the first homology group H1(O;R) to be simply H1(ΣO;R). Then
the definition of intersection norms extends directly and Proposition B and Theorem C hold.

We now turn to Proposition D and Theorem A. First we have to define unit tangent bundles to
orbifolds and geodesic flows. If D is a Riemannian disc on which Z/kZ acts by rotation (with a
fixed point), then Z/kZ also acts on the unit tanget bundle T1D. The action on T1D is free, since
the vectors tangent to the fixed point are rotated. Hence the quotient T1D/(Z/kZ) is a 3-manifold
(actually it is a solid torus).

Definition 4.2. Given a Riemannian orientable 2-orbifold O = (ΣO, (Uα, φα)α∈A), its unit tangent
bundle is the 3-manifold T1O defined by the atlas (Ûα, φ̂α)α∈A, where Ûα = T1Uα and φ̂α(x, v) =
(φα(x), d(φα)x(v)). It is equipped with a canonical projection π : T1O → O. If O is of the form
Σ/Γ for some hyperbolic surface Σ, then T1O is simply the quotient (T1Σ)/Γ. The geodesic flow
on T1O is defined as in the non-singular case by φt

geod(γ(0), γ̇(0)) = (γ(t), γ̇(t)), where γ is any
geodesic with speed 1.

With these definitions, the constructions of Section 3.b (the BB-surface SBB(η) associated to an
Eulerian coorientation) can be transposed and Lemmas 3.1, 3.11, and 3.12 remain true.

Now, for O a hyperbolic 2-orbifold, the unit tangent bundle T1O is a 3-manifold, and we have
H2(T1O;R) ≃ H1(O;R). Indeed closed curves in ΣO lift by π−1 to closed surfaces in T1O. The fact
that the unit tangent to a conic disc D/(Z/kZ) is a torus whose core is the singular fiber implies that
cohomologous curves lift to cohomologous surfaces, so that π−1 induces a well defined map π−1

∗ :

8In a previous version of this article, it was claimed that Theorem A also holds in this case. This is false, as was
noted by T. Marty.
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H1(O;R) → H2(T1O;R). The orbifold Euler characteristics of O is negative by hyperbolicity, so
that the Euler number of T1O (as a Seifert fibered space) is also negative, hence the map π−1

∗ is an
isomorphism.

Now Corollary 3.13 holds, but Lemma 3.14 needs to be adapted. Firstly remark that if ΣO is a
homology sphere, xγ is the zero-function, so there is no possible interesting version of Lemma 3.14
in this case. Secondly, if ΣO is not a homology sphere, Lemma 3.14 holds, but one argument needs
to be developed, namely:

Lemma 4.3. For O a Riemannian orientable 2-orbifold and γ a geodesic on O, for every non-zero
homology class a in H2(O;R), there is an xγ-realizing geodesic in a.

Proof. Let β be an xγ-realizing curve such that [β] = a. As in the case of a standard surface
we want to strenghten β to make it geodesic without changing the geometric intersection with γ.
Far from the conic points, one can perform isotopies that shorten β with respect to the hyperbolic
metric . Since γ is geodesic, these isotopies cannot increase the number of intersection (that is, no
Reidemeister-II move is involved).

Around a conic point, one can work in a local conic chart. This amounts to work on a standard
disc where everything in invariant under a rotation. Then one can also perform length-decreasing
isotopies in an equivariant way, and this does not increase the number of intersection points with γ.

□

Proposition D holds with no modification in the proof, and Theorem A has to be changed into
Theorem E in order to treat the case of an orbifold whose underlying surface is a sphere.

Proof of Theorem E. Suppose that ΣO is a sphere. Then T1ΣO is a rational homology sphere (in
this case, H1(T1ΣO;Z) is finite, but not reduced to the trivial group, unless ΣO is a sphere with
three conic points of respective orders 2, 3, and 7). If γ is filling, then the class σ± intersects
every asymptotic cycle, so it contains a Birkhoff section. Since H2(T1ΣO;Z) is trivial, all Birkhoff
sections are homologous, hence isotopic relatively to their boundary.

If γ is not filling, then there exists a geodesic α not intersecting γ on ΣO. Both its oriented lifts do
not intersect S ×±, hence there is an asymptotic cycle whose algebraic intersection with σ± is zero.
Hence the class σ± contains no Birkhoff section. Since it is the unique class with boundary −↔γ,
there is no Birkhoff section bounded by −↔γ at all.

Finally if ΣO is not a sphere and γ is filling, the norm xγ is non-degenerate, and the proof of
Theorem A translates directly. □

5. Questions

On intersection norms. If Σ is a flat torus, then the minimal intersection is always realized by
geodesics, which are unique in their homology class. Hence if the collection γ is the union of k
geodesics γ1, . . . , γk, then iγ(α) =

∑k
i=1 iγi(α). This implies that the dual ball B∗γ coincides with

the Minkowski sum B∗γ1
+ · · · + B∗γk

. Since the segment [−1, 1] × {0} ⊂ R2 is the dual unit ball B∗xγ
for γ the vertical circle on the torus, every segment containing 0 in the middle is the dual unit
ball of some closed circle on the torus. Therefore every convex polygon in R2 whose vertices
are integral and congruent mod 2 is of the form B∗xγ for some γ. This was already remarked by
Thurston [Thu86] and by Schrijver [Sch93]. In higher dimension the situation is probably more
intricate.

Question 5.1. Which polyhedra of R2g with integer vertices can be realized as the dual unit
ball B∗xγ for some γ in Σg?
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A partial answer is given by Abdoul Karim Sane [San20] who proves that some polyhedra in R4

cannot be dual unit ball of any intersection norm on a genus 2-surface.
Also, if Σ is a torus and γ is a union of geodesics, then the above remarks imply that the number

of self-intersection points of γ is exactly 1/4 of the area of B∗xγ (check on Figure 1). Is there an
analog statement in higher genus?

Question 5.2. Which information concerning γ can be read on B∗xγ? Is the number of self-
intersection points of γ a certain function defined on B∗xγ?

This information is interesting since this number is exactly the opposite of the Euler character-
istic of every Birkhoff cross section bounded by ↔γ. Note that the number of self-intersection points
is homogenous of degree 2, so we should look for degree 2 functions on polyhedra in R2g: does it
correspond to some symplectic capacity?

Motivated by our application we only defined the intersection norm for a collection of immersed
curves, but one can directly extend it for an arbitrary embedded graph. One can wonder which
properties extend to this case and which information on the embedded graphs are encoded in this
norm. For example when the graph is Eulerian (i.e., all vertices have even degree) the connection
with Eulerian coorientations remains.

On Birkhoff cross sections. Our constructions and our classification result deal only with Birkhoff
cross sections bounded by a symmetric collection of periodic orbits of the geodesic flow, that is,
invariant under the involution (p, v) 7→ (p,−v). However the only restriction a priori for being the
boundary of a Birkhoff cross section is to be a boundary, that is, to be null-homologous. Our re-
sults here say nothing about the classification, or even the existence, of Birkhoff cross sections with
arbitrary null-homologous boundary. In this case, the theory of Schwartzman–Fuller–Thurston–
Fried and the remarks of Sections 3.c and 3.e still apply, so that these sections still correspond to
the point inside a certain polytope in H1(Σ;R). However we have no analog for the coorientations
and the explicit constructions derived from them.

Question 5.3. Is there a natural generalization of the polytope B∗xγ to non-symmetric finite col-
lections γ⃗ of closed orbits of the geodesic flow (φt

geod)t∈R, so that integer points in this polytope
classify surfaces bounded by γ⃗ and transverse to (φt

geod)t∈R?

In the case of the flat torus, this question is answered in [Deh15b, Thm 3.12] where a polygon Pγ⃗
classifying transverse surfaces bounded by γ⃗ is defined for every null-homologous collection γ⃗.

What would probably unlock the situation in the higher genus case would be to have, for every
null-homologous collection γ⃗, one explicit surface bounded by γ⃗ (not necessarily transverse),
that is, an analog of σ± when γ⃗ is not symmetric. Such an explicit point allows to compute its
intersection with every other periodic orbit α⃗ of (φt

geod)t∈R. These intersection numbers are all we
need in order to describe explicitly the asymptotic directions of (φt

geod)t∈R in T1Σ \ γ⃗. Generalising
the constructions of [Deh15a] is a possibility here.

More generally, one can wonder whether there exists a generalization to all flows of the inter-
section norm xγ in the following sense:

Question 5.4. For every 3-dimensional flow X, is there an object that describes all isotopy classes
of Birkhoff cross sections?

A starting point would be to try with an Anosov flow that is not the geodesic flow, and see
whether Gauss linking forms could play this role [Ghy09].
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6. Appendix: Thurston’s theorem on integral seminorms

Our goal in this section is to state and prove Thurston’s theorem [Thu86, Thm. 2] affirming that
every integral seminorm F defined on a lattice L ≃ Zn is the pointwise maximum of a finite set Φ
of linear functionals (i.e. homomorphisms L → Z). In addition, we strengthen the conclusion of
the theorem in the case that F is equivalent modulo an integer m ≥ 1 to a given homomorphism
µ : L → Zm, affirming that in this case we can let Φ contain only homomorphisms that are
equivalent to µ modulo m as well.

Note that other proofs of Thurston’s theorem have been given [Fri09, Thm. 5], [Sal16]. Here,
we state the theorem in a way that involves only integer numbers (rather than reals, although
the version for real numbers follows as a corollary). The proof we give is similar to Thurston’s
original argument, but is written in greater detail and, like the statement of the theorem, relies only
on the lattice and its dual, rather than extending the seminorm to a real vector space. In fact, the
proof yields an effective method for obtaining, for each integral seminorm F and each vector v, a
functional φ ≤ F that coincides with F at v.

To facilitate the exposition we introduce the concept of a narrow set with respect to an integral
seminorm F, which is any finite subset X ⊆ V such that F is linear on the semigroup spanned
by X.

6.a. Definitions and statement of Thurston’s theorem. Recall that a lattice L is a finitely gen-
erated free abelian group. Its dual lattice L∗ is the group of homomorphisms L → Z. Note that
L ≃ L∗ ≃ Zn for some n ∈ N, called the rank of L. The elements of L and L∗ will be called vectors
and functionals, respectively. A basis of a lattice L is an n-tuple X = (xi)i<n ⊆ L such that every
element of L can be expressed by a unique integral combination of the elements xi.

An integral seminorm on a lattice L is a function F : L→ Zwith the following two properties:
• positive homogeneity: F(λ v) = λ F(v) for all v ∈ L and all scalars λ ∈ N,
• subadditivity: F(v + w) ≤ F(v) + F(w) for all v, w ∈ L.

(Note that we allow F(−v) , F(v), and even F(v) < 0.)
Note first that every finite nonempty set of functionals Φ ⊆ L∗ determines a integral seminorm

MΦ on L given by
MΦ(v) = max

φ∈Φ
φ(v). (3)

Thurston’s theorem asserts that in fact every integral seminorm is of this form.

Theorem 6.1 (Thurston’s theorem on integral seminorms). Every integral seminorm F on a lattice
L is of the form

F(v) = max
φ∈B∗F

φ(v) (4)

where B∗F ⊆ L∗ is the dual unit ball of F, that is, the set of all functionals φ ∈ L∗ satisfying
φ(v) ≤ F(v) for all v ∈ L.

Remark 6.2. The dual unit ball of any integral seminorm F is finite, since the coefficients of a
functional φ ∈ B∗F with respect to basis E = (ei)0≤i<n are bounded by φi = φ(ei) ≤ F(ei) and
−φi = φ(−ei) ≤ F(−ei).

Remark 6.3. For any finite set Φ of functionals on a lattice L we have

MΦ = Mext(Φ), (5)

where ext(Φ) denotes the set of extremal points of the set Φ, that is, those points φ ∈ Φ that
cannot be obtained as a (rational) convex combination of the elements of Φ \ {ϕ}. Equation (5)
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holds since every point of Φ is a convex combination of the extremal points of Φ. In particular,
equation (4) in Thurston’s theorem is equivalent to

F(v) = max
φ∈ext(B∗F )

φ(v). (6)

Remark 6.4. The more commonly formulated version of Thurston’s theorem, involving real num-
bers, is as follows. A seminorm on a real vector space V is a subadditive, positively homogeneous
function F : V → R, where positive homogeneity means that F(λ v) = λ F(v) for all vectors v ∈ Rn

and scalars λ ∈ R≥0. Its dual unit ball B∗F is the set of (real-valued) functionals φ ∈ V∗ that satisfy
φ ≤ F pointwise. In this setting, Thurston’s theorem asserts that any real seminorm F on a vector
space V ≃ Rn taking integer values on some rank-n lattice L ⊆ V is of the form

F(v) = max
φ∈Φ

φ(v)

where Φ is the set of linear functionals φ ∈ B∗F that take integer values on L. This version of
Thurston’s theorem follows readily from Theorem 6.1.

6.b. Proof of Thurston’s theorem. The proof is based on a method for verifying that a functional
φ on a lattice L is in the dual unit ball of an integral seminorm F after evaluating both functions at
finitely many vectors. To describe this method, we introduce the concept of narrow sets.

To define this concept, we first recall some additional standard terminology. Let L be a rank-n
lattice. A sublattice of L is a subgroup of L (and is itself a lattice of rank ≤ n by the Smith normal
form theorem), and a semigroup in L is any subset S ⊆ L that is closed with respect to finite sums
(including the empty sum). Any set X ⊆ L spans a sublattice LX and a semigroup S X consisting,
respectively, of all integral or positive (i.e. non-negative) integral combinations of elements of X.

Now we can define narrow sets. Note that, in essence, what we are trying to show in Thurston’s
theorem is that every integral seminorm is a piecewise-linear function.

Definition 6.5. A subset X of a lattice L is narrow with respect to a seminorm F defined on L, or
F-narrow, if on the semigroup S X spanned by X the function F is linear, that is, it coincides with
some functional φ ∈ L∗X .

Note that there is at most one functional φ ∈ L∗X that coincides with F on X, and in fact, exactly
one if X is linearly independent. To determine whether F coincides with φ on the whole semigroup
S X we have the following criterion.

Proposition 6.6 (Interior ray test). Consider a seminorm F on a lattice L, a vector tuple X =
(xi)i∈k ⊆ L, and a functional φ ∈ L∗X that is greater than or equal to F at the vectors xi (and thus,
at all vectors of the semigroup S X). Take an integer combination c+ =

∑
i αixi with strictly positive

coefficients αi > 0, so that

F(c+) = F

∑
i

αixi

 ≤∑
i

αiF(xi) = φ(c+). (7)

Then the following are equivalent:
(a) F(c+) ≥ φ(c+),
(b) F ≥ φ on the lattice LX ,
(c) F = φ on the semigroup S X (and hence X is F-narrow).

The name of this result stems from the fact that the ray spanned by c+ lies in the interior
of the cone of positive combinations of the vectors xi (in the rational vector space LX ⊗Z Q).
Proposition 6.6 ensures that the function F coincides with the linear function φ on the whole cone
if it coincides along this single ray.
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Proof. We need just show that (a) implies (b), since the other forward implications are evident.
Suppose, then, that (a) holds, and take any vector v ∈ LX . We have to show that F(v) ≥ φ(v), and
we do so as follows.

Recall the picture of the interior ray described above. Since the ray spanned by c+ is in the
interior of the cone spanned by X, it follows that there exists a vector c ∈ S X such that the ray
spanned by c+ lies between those spanned by c and by v. More precisely, the sum v+c is a positive
multiple of c+.

Claim 6.7. There exists a vector c ∈ S X and a number λ ∈ N such that v + c = λc+.

Proof of claim. Recall that c+ =
∑

i αixi for some strictly positive integers αi > 0, and since
v ∈ LX , we can also write v =

∑
i βixi using integers βi. Take a number λ ∈ N such that λαi ≥ βi

for all i. Then we have λc+ = v + c where c =
∑

i(λαi − βi)xi is a vector of S X since λαi − βi ≥ 0
for all i. □

Since F is subadditive and φ is additive, from the equation λc+ = c + v we infer that if the
inequality F ≤ φ holds at c (which it does since c ∈ S X) and also holds strictly at v (let us
assume this, for a contradiction), then it also holds strictly at the vector λc+. However, we know
that F(λc+) ≥ φ(λc+) by the hypothesis (a). Therefore the inequality F ≤ φ cannot hold strictly
at v, which means that F(v) ≥ φ(v), as we had to show. □

Now we are ready to prove Thurston’s theorem. Let F be an integral seminorm on a lattice
L, and take a vector v ∈ L. We have to show that there exists a functional φ ∈ B∗F such that
φ(v) = F(v). And for this, we may assume that v is a primitive element of L (that is, that it cannot
be written as a multiple v = λw of an element w ∈ L by an integer λ > 1), since every element of a
lattice is a positive multiple of some primitive element (again, by the Smith normal form theorem).

To prove that F(v) = φ(v) for some φ ∈ B∗F , it suffices to show that the vector v is contained in
the semigroup S X generated by some narrow basis X of L, because this means that F coincides with
some functional φ ∈ L∗ on S X , and this functional is in the dual unit ball B∗F by Proposition 6.6.
Therefore, to finish the proof of Thurston’s theorem, it is enough to establish the following result.

Proposition 6.8. If F is an integral seminorm on a lattice L then every primitive vector v ∈ L is
the first element of some F-narrow basis.

The proof is constructive: if the integral seminorm F is given as an oracle (or “black box”) that
outputs the value F(v) for any given input vector v ∈ L, we will show how to obtain, after invoking
this oracle finitely many times, an F-narrow basis X containing v and the corresponding functional
φ ∈ L∗ that coincides with F on S x, and therefore satisfies φ(v) = F(v), and is in the dual unit ball
B∗F .

Proof of Theorem 6.1. Let X = (xi)0≤i<n be a basis of the lattice L such that x0 = v. (Every
primitive integral vector is part of a basis, which can be obtained by putting in Smith normal form
the one-column matrix of coordinates of v with respect to an initial arbitrary basis of L.)

In general the basis X is not narrow, but we can modify it to make it narrow as follows. We
proceed by induction on the dimension. Suppose that for some k < n, the k-tuple Xk = (xi)0≤i<k
is known to be narrow. We may test whether Xk+1 is narrow by evaluating F on the vector x′k :=
xk + w, where w =

∑
0≤i<k xi. Note that

F(x′k) ≤ F(xk) + F(w). (8)

Claim 6.9 (increment test). Xk+1 is narrow if and only if equality holds in (8).
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Proof of claim. Let φ be the unique functional on the lattice LXk+1 that coincides with F on Xk+1.
The vector x′k is the sum of all the vectors of Xk+1, thus, by Proposition 6.6, Xk+1 is narrow if and
only if the inequality F(x′k) ≤ φ(x′k) is an equality. However, this inequality is equivalent to (8)
since φ(x′k) = φ(xk)+φ(w) = F(xk)+F(w). (Here we used the equation φ(w) = F(w), which holds
because w is a combination of the tuple Xk, that is assumed narrow.) □

If the increment test is not passed, we replace the vector xk in X by the vector x′k, obtaining a
new basis X′, and we redo the test. (Note that this replacement is an elementary operation on X,
therefore X′ is another basis of L.) Since we may need to repeat this replacement many times, we
denote x(t)

k = xk + tw, for t ∈ N and we denote X(t) the basis obtained from X by replacing xk by
x(t)

k .

Claim 6.10. For a large enough t ∈ N, the tuple X(t)
k+1 is narrow.

Proof of claim. By the increment test described in Claim 6.9 above, it suffices to show that the
inequality

F(x(t+1)
k ) ≤ F(x(t)

k ) + F(w)

is an equality for large enough t. To prove this we consider the function

f (t) = F(x(t)
k ) = F(xk + t w).

Its discrete derivative f ′(t) := f (t + 1) − f (t) is integer-valued, increasing (since f is convex), and
bounded above by F(w). Therefore f ′ eventually stabilizes at a constant value. In fact, it stabilizes
at the value F(w). We see this by comparing f with the known function g(t) = F(tw) = tF(w),
whose difference with f is bounded by the inequality

g(t) = F(xk + t w − xk) ≤ F(xk + t w) + F(−xk) = f (t) + F(−xk). □

By this process we find a narrow basis X containing v as its first element. By Proposition 6.6,
it follows that the unique functional φ ∈ L∗ that coincides with F on X is in the dual unit ball B∗F
and satisfies φ(v) = F(v), as we had to show. □

6.c. Thurston’s theorem for seminorms of a given class modulo m. For an integer m ≥ 1,
denote Zm the group of integers modulo m, and let πm : Z→ Zm be the quotient map. An integer-
valued function F on a lattice L is congruent to a group homomorphism µ : L → Zm if the
function Fmod m := πm ◦ F is equal to µ.

Our goal now is to prove the following extension of Thurston’s theorem.

Theorem 6.11. Every integral seminorm F on a lattice L that is congruent modulo a certain
integer m ≥ 1 to a given homorphism µ : L→ Zm is of the form

F(v) = max
φ∈B∗F

φmod m=µ

φ(v).

To prove this result we use the following lemma.

Lemma 6.12. Let F be an integral seminorm on a lattice L, and let φ be an extremal functional
of the dual unit ball B∗F . Then there exists a basis X of L such that F coincides with φ on the
semigroup S X .

Proof. Let (ψi)i be the functionals of the dual unit ball B∗F excluding φ.
We claim first that there exists some primitive vector v ∈ L such that ψi(v) < φ(v) for all

i. Indeed, extremality of the functional φ implies that it cannot be written as a rational convex
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combination of the functionals ψi. By the Farkas lemma, it follows that there is a vector v ∈ L
(which can be taken primitive) such that φ(v) > ψi(v) for all i.

Fixed the vector v ∈ L, we apply Proposition 6.8, which ensures that the lattice L admits an
F-narrow basis X containing the vector v. Since X is F-narrow, the function F coincides with
some functional φ̃ ∈ L∗ on the semigroup S X (and in particular, at the vector v). Moreover, this
functional φ̃ is in the dual unit ball B∗F by Proposition 6.6. We conclude that φ̃ = φ because φ is
strictly greater than all the other functionals ψi ∈ B∗F at the vector v. □

To finish, let us prove Theorem 6.11.

Proof of Theorem 6.11. By Remark 6.3, it suffices to show that every extremal point of the dual
unit ball B∗F is congruent to µ modulo m. Let φ be an extremal functional of B∗F . By Lemma 6.12,
there exists a basis X of L such that F = φ on S X . Suppose, for a contradiction, that φmod m , µ.
This means that there is a vector v ∈ L such that φmod m(v) , µ(v). Thus for each vector v′ of the
set v + mL we have

φ(v′) ≡ φ(v) . µ(v) ≡ µ(v′) mod m
since both µ and φmod m vanish on the lattice mL. Take a vector v′ ∈ (v + mL) whose coordinates
with respect to the basis X are positive, so that v′ ∈ S X , and hence we have

F(v′) = φ(v′) . µ(v′) mod m,

contradicting the hypothesis Fmod m = µ. □
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