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INTERSECTION NORMS ON SURFACES
AND BIRKHOFF SECTIONS FOR GEODESIC FLOWS

PIERRE DEHORNOY

Abstract. For every finite collection of curves on a surface, we define an associated (semi-)norm
on the first homology group of the surface. The unit ball of the dual norm is the convex hull of
finitely many integer points. We give an interpretation of these points in terms of certain coorien-
tations of the original collection of curves. Our main result is a classification statement: when the
surface has constant curvature and the curves are geodesics, integer points in the interior of the unit
ball of the dual norm classify isotopy classes of Birkhoff sections for the geodesic flow (on the unit
tangent bundle to the surface) whose boundary is the symmetric lift of the collection of geodesics.
These Birkhoff sections also yield numerous open-book decompositions of the unit tangent bundle.

This article has two goals. We first introduce an elementary family of norms, called intersection
norms, on the first homology group of a real surface. These norms can be seen as (parametrized)
2-dimensional analogs of the Thurston norm on the second homology group of a 3-manifold.
Secondly we use these intersection norms to classify up to isotopy certain 2-dimensional objects
in some 3-manifolds, namely Birkhoff sections with prescribed boundary for the geodesic flow in
the unit tangent bundle to a negatively curved surface (or to the torus with a flat metric).

Intersection norms. Let Σ be a real compact surface with or without boundary. A closed multi-
curve (or multi-curve for short) on Σ is a finite collection of immersed closed curves in general
position, meaning that the immersion is smooth and has only double points. (If Σ has some bound-
ary, we also allow the curves to be arcs connecting two boundary components.) The geometric
intersection number of two multi-curves is usually defined as the minimum of the number of inter-
section points of two representants of the free homotopy classes of the two multi-curves that have
disjoint double points. We propose here a variation of this notion where we fix one multi-curve,
but minimize over the homology class of the second.

So let γ denote a fixed multi-curve on Σ. For α another multi-curve on Σ, the geometric inter-
section iγ(α) is the minimal number of intersection points of a multi-curve homotopic to α and
in general position with respect to γ with γ. Beware that this definition is not symmetric since
the curve γ is fixed and not allowed to change in its homotopy class. Given a homology class a
in H1(Σ, ∂Σ;Z), we then minimise the intersection number over all closed multi-curves in a. This
defines a function xγ : H1(Σ, ∂Σ;Z)→ N by

xγ(a) := min
[α]=a

iγ(α) = min
[α]=a
αtγ

|{α ∩ γ}|.

Theorem A. Let Σ be a compact oriented surface and γ a multi-curve on Σ. The function xγ
extends canonically into a continuous function xγ : H1(Σ, ∂Σ;R) → R+ which is convex and
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linear on rays through the origin. If, furthermore, the multi-curve γ fills Σ in the sense that the
complement Σ \ γ is the union of topological discs, then xγ is a norm.

Theorem A is an exact transposition of W. Thurston’s result defining a norm on the second
homology of a 3-manifold [Thu86, Thm 1]. In particular the (semi-)norm xγ has the property of
taking integer values on integer classes. Thurston showed [Thu86, Thm2] that this implies that the
unit ball, denoted here by Bxγ , is very peculiar: it is a polyhedron with finitely many sides, which
are all given by linear equations with integer coefficients. Equivalently, this means that the closed
unit ball of the dual norm on H1(Σ;R), denoted here by B∗xγ , is the convex hull of finitely many
integer points.1

In the case of the Thurston norm, some of these extremal points of the dual ball could be
interpreted using Euler classes of fibrations on the circle [Thu86, Thm 3]. An interpretation of all
extremal points was then given in terms of Euler class of taut foliations by D. Gabai (unpublished,
see [Yaz16, Thm 3.3]), and in terms of flows by D. Calegari [Cal06].

The analog statement for intersection norms is simpler. Considering the multi-curve γ as a graph
whose vertices are the double-points and whose edges are the simple arcs of γ, a coorientation of γ
is the a choice of a coorientation for every edge of γ. A given multi-curve has only finitely many
coorientations. A coorientation is Eulerian if around every double point, there are two positively
and two negatively cooriented edges. A coorientation ν can be paired with an oriented curve α
using signed intersection. If ν is Eulerian, it turns out that the pairing ν(α) depends only on the
homology class of α, so that a Eulerian coorientation ν induces an integral cohomology class [ν] ∈
H1(Σ;Z). One can wonder which classes are represented by such Eulerian coorientations. A first
remark is that, representing a class a by a curve α which minimises the geometric intersection
with γ, one sees that |ν(a)| is not larger than xγ(a). A second remark is that the parity of ν(a) is
fixed by γ: indeed, since all intersection points are counted with a coefficient ±1, the parity of
ν(α) is determined by the parity of iγ(α) and does not depend on ν; since γ is a graph of even
degree, the parity of iγ(α) does not change if we replace α by a homologous curve. Our second
result states that these restrictions are the only ones: the classes of the Eulerian coorientations are
exactly the integer points in B∗xγ that are congruent to [γ]2 mod 2. More interestingly, the extremal
points of B∗xγ correspond to some Eulerian coorientations.

Theorem B. Let Σ be a compact oriented surface and γ a multi-curve on Σ. The dual unit ball B∗xγ
in H1(Σ;R) is the convex hull of the points in H1(Σ;Z) given by all Eulerian coorientations of γ.
Equivalently, for every a in H1(Σ, ∂Σ;Z), we have

xγ(a) = min
[α]=a

iγ(α) = max
ν Eulerian
coor. of γ

ν(a).

Moreover every point in B∗xγ∩H1(Σ;Z) that is congruent to [γ]2 mod 2 is the class of some Eulerian
coorientation (see Figure 1).

Not only does this result provide an interpretation of the integer points inside the unit ball of the
dual norm, it also gives an effective way of computing the norm xγ, since it reduces the minimisa-
tion over an infinite number of curves into a maximisation over a finite number of coorientations.

1Thurston’s proof of this fact is not as natural as one might expect. M. De La Salle recently gave a more direct
proof [Sal16].
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Figure 1. Illustration of Theorems B and D. On the left a collection γ of four
geodesics on the torus T2, and a Eulerian coorientation (blue arrows). On the right
the dual unit ball B∗xγ ⊂ H1(T2,R) of the associated intersection norm. The empty
circle denotes the origin. The big dots denote those classes in H1(T2,Z) congruent
to [γ]2 mod 2. Among these classes, 10 (in blue, green an red) are in the dual unit
ball B∗xγ and correspond to all cohomology classes of Eulerian coorientations of γ
(Theorem B). For example the class corresponding the blue coorientation is the
blue point. The blue and green points lie in the interior of B∗xγ , hence describe

the two isotopy classes of Birkhoff sections for ϕgeod bounded by −
↔
γ , while the

8 red points are on the boundary of B∗xγ and describe isotopy classes of surfaces

transverse to ϕgeod, but not intersecting every orbit, and bounded by −
↔
γ (Theo-

rem D).

Classification of Birkhoff sections for geodesic flows. Let M be a real compact, orientable n-
manifold without boundary, and X be a non-singular vector field on M. In order to understand
the dynamics of X it is desirable to find a global section for (M, X), namely a compact, orientable
hypersurface S without boundary such that

• S is embedded in M,
• S is transverse to X,
• every orbit of X intersects S after a bounded time.

When such a section exists, there is a well-defined first-return map on S and the first-return time
is bounded from above by definition and from below by compactness. In this case the manifold M
fibers over the circle with fiber S . The pair (M, X) is homeomorphic to (S×[0, 1]/(p,1)∼( f (p),0), τp

d
dz ),

where τp is the first-return time on S and d
dz denotes the vector field tangent to the [0, 1]−coordinate.

The dynamics of X is then, up to the time-reparametrisation function τ, the dynamics of the first-
return map f on S .

A standard argument shows that two global sections are isotopic if and only if they are ho-
mologous. Indeed the flow then realizes the isotopy between such homologous sections (see for
example the discussion at the beginning of [Thu86, Section 3]). Therefore questions of existence
and classification of global sections are of algebraic nature. Indeed, a necessary and sufficient
condition for a given homology class σ in H2(M;Z) to contain a global section has been described
by S. Schwartzmann and F. Fuller: the set of Scharzmann asymptotic cycles [Sch57] in H1(M;R)
has to lie in the half-space {〈σ, ·〉 > 0}, where 〈·, ·〉 denotes the algebraic intersection pairing
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H2(M;R) × H1(M; R) → R. This implies for example that vector fields on S3 never admit global
sections. Further results of W. Thurston [Thu86] and D. Fried [Fri82] imply that in the case of a
pseudo-Anosov flow, the set of homology classes of global sections is an open cone with finitely
many extremal rays.

For Σ a Riemannian surface, the unit tangent bundle T1Σ is the subset of TΣ of norm 1-vectors.
It is a 3-manifold whose points are of the form (p, v) for p a point of Σ and v a tangent vector at p
of norm 1. The geodesic flow ϕgeod on T1Σ is the vector field whose orbits are lifts of geodesics:
for g an arbitrary geodesic of Σ travelled at speed 1, the orbit of ϕgeod going through (g(0), ġ(0))
is given by ϕt

geod(g(0), ġ(0)) = (g(t), ġ(t)). The geodesic flow on a negatively curved surface has
been studied since Hadamard who remarked its sensibility to initial condition [Had1898]. It even
became the paradigm of 3-dimensional chaotic systems when Anosov showed its hyperbolic char-
acter [Ano67]. In general the geodesic flow depends heavily on the metric given on the surface.
However Gromov remarked [Gro76] that the geodesic flows corresponding to any two negatively
curved metrics on a surface are actually topologically conjugated, meaning that there is a home-
omorphism of the tangent bundle sending the orbits the first on the orbit of the second. This is a
consequence of the structural stability of Anosov flows. Therefore, as long as we are only inter-
ested in the topological properties of the orbits, one can speak of the geodesic flow on a negatively
curved surface.

Since the antipodal map (p, v) 7→ (p,−v) preserves the geodesic flow, its set of asymptotic
cycles is symmetric with respect to the origin in H1(T1Σ;R), so that geodesic flows on Riemannian
surfaces do not admit global sections.

In order to make it useful, a relaxation of the notion of global section is desirable. For M a
real compact, oriented 3-manifold and X a non-singular vector field on M, a Birkhoff section for
(M, X) is compact orientable surface S with boundary such that

• S is embedded in M,
• the interior int(S ) is transverse to X,
• the boundary ∂S is tangent to X,
• every orbit of X intersects S after a bounded time.

The third condition implies that the boundary of S is the union of finitely many periodic orbits
of X. The second and third condition may look hard to realize at the same time, but actually it
is not the case: in a flow box oriented so that the vector field is vertical, the general picture of a
Birkhoff section near its boundary is that of a helicoidal staircase (see Figure 2). Since the interior
of a Birkhoff section S if transverse to X, it is cooriented by X. Since M is oriented, this induces
an orientation on S , and in turn an orientation of ∂S . On the other hand, ∂S is a collection of
periodic orbits of X, so it is oriented by X. For every component of ∂S , these two orientations
may coincide or be opposed (also on Figure 2). We say that S is a positive Birkhoff section if
they coincide for every boundary component, negative if they are opposed (on the left), and mixed
if they sometime agree and sometime disagree. If the fourth condition is not satisfied, namely of
some orbits do not intersect the surface, we simply speak of a transverse surface.

It turns out that Birkhoff sections exist much more often than global sections. In particular
H. Poincaré noticed that the geodesic flow on a sphere often admits an annulus as Birkhoff sec-
tion. This remark was generalized by G. Birkhoff who gave a family of Birkhoff sections for the
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Figure 2. Two pieces of Birkhoff sections for the vertical flow around boundary
components. The section on the left is negative while the section on the right is
positive. It turns out that the geodesic flow admits no positive Birkhoff section.

geodesic flow [Bir17] (popularized in [Fri83]). Birkhoff’s example was then given another pre-
sentation by M. Brunella [Bru94, Description 2]. Our first result is a generalization of Birkhoff’s
and Brunella’s examples.

For γ an unoriented collection of geodesics on a surface Σ, we denote by
↔
γ the amphithetic lift

of γ in T1Σ, that is, the set of unit tangent vectors based on γ and tangent to γ. The set
↔
γ forms

a link that is invariant by the involution (p, v) 7→ (p,−v). It is the union of 2|γ| periodic orbits
of ϕgeod, each component being oriented by the flow.

Theorem C. Let Σ be a compact oriented Riemannian surface and γ a finite collection of geodesics
on Σ. There is canonical a map SBB (for Birkhoff-Brunella) that associates to every Eulerian coori-
entation ν of γ an oriented surface SBB(ν) in T1Σ which is positively transverse to the geodesic
flow and whose oriented boundary is −

↔
γ . For every ν, the Euler characteristic of SBB(n) is minus

twice the number of double points of γ.
If two Eulerian coorientations ν1, ν2 of γ are cohomologous, then the associated surfaces SBB(ν1)

and SBB(ν2) are isotopic (fixing their common boundary).

The main interest of this new construction is that it actually gives a description of all isotopy
classes of negative Birkhoff sections with boundary

↔
γ , instead of one with the previously known

constructions:

Theorem D. Let Σ be a torus with a flat metric or a higher genus-surface with a negatively curved
metric. Let γ be a finite collection of geodesics on Σ. Then the map [ν] 7→ {SBB(ν)} is a one-to-one
correspondance between integer points in the closed unit ball B∗xγ congruent to [γ]2 mod 2 and

isotopy classes of surfaces in T1Σ transverse to ϕgeod with oriented boundary −
↔
γ .

The restriction of this map to the integer points in the open unit ball int(B∗xγ) induces a one-to-
one correspondance with isotopy classes of negative Birkhoff sections.
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Theorem D implies that the collection
↔
γ bounds a negative Birkhoff section if and only if the

polyhedron B∗xγ contains an integer point congruent to [γ]2 mod 2 in its interior. This is the case
for most choices of γ, but not for all. For example, if there is a closed curve that intersects γ once
or zero time, then

↔
γ does not bound a Birkhoff section for ϕgeod.

Remark 1. It may look strange to deal with negative Birkhoff sections and not with positive ones,
i.e., with surfaces such that the orientation of the boundary inherited from the orientation of the
surface (itself inherited from the coorientation of the interior surface by the flow) is opposed to
the direction of the flow. The reason is that there is actually no positive Birkhoff section for the
geodesic flow. One could then look at mixed sections, namely transverse surfaces some of whose
boundary components are positively tangent to ϕgeod and some others are negatively transverse. It
is likely that there are more mixed sections than negative. We do not have analogs of Theorems C
and D in this more general case, namely we do not have any elementary way to construct them all.

Remark 2. A Birkhoff surface for the geodesic flow in T1Σ bounded by
↔
γ is a global section

for the restriction of the flow to T1Σ \
↔
γ . The assumption that the boundary is −

↔
γ can be seen

as a restriction on the homology class of the section: it has to lie in a certain affine subspace
of H2(T1Σ \

↔
γ,
↔
γ ;Z) (see Section 3.c). On the other hand, as explained before, the geodesic flow

on T1Σ for Σ a hyperbolic surface is of Anosov-type. Is restriction to T1Σ \
↔
γ is then of pseudo-

Anosov type, with singularities along the removed orbits. Thurston fibered faces Theory [Thu86,
Section 3] then says that the homology classes of global sections to such a flow (and therefore of
isotopy classes) is a cone in H2(T1Σ\

↔
γ,
↔
γ ;R) whose extremal rays are directed by integral vectors.

D. Fried [Fri82] gives an algorithm to explicitly compute these vectors, starting from a Markov
partition of the flow. So one deduces directly that the set of negative Birkhoff sections is given
by the intersection of a cone with an affine plane: it is a polyhedron. However, the determination
of this polyhedron using Fried’s approach requires an explicit Markov partition for the geodesic
flow on T1Σ \

↔
γ , which does not exist yet. So the interest of our paper lies in the elementary and

explicit characters of all constructions.

Remark 3. Another possible interest of the paper is that it suggests that there may exist an object
that would describe all Birkhoff sections for a given flow simultaneously (this role is played here
by the intersection norm xγ), in the same spirit as Ghys proved [Ghy09] that Gauss linking forms
describe all linking numbers between periodic orbits (and even invariant measures) for a vector
field in a homology sphere.

Plan of the article. Section 1 presents the intersection norm and its elementary properties (Theo-
rem A). Section 2 then presents Eulerian coorientations and the connection with the integer points
in the dual unit ball (Theorem B). Section 3 then goes to dimension 3: we associate to every
Eulerian coorientation a BB-surface in the unit tangent bundle, and then prove Theorems C and D.

Acknowledgments. I thank Étienne Ghys and Adrien Boulanger for many related discussions,
and Elena Kudryavtseva who initiated this article by asking several questions about Birkhoff sec-
tions.
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α1

α2

Figure 3. A genus 3 surface with a collection γ made of four closed curves (black). On
the left the curve α1 (orange and bold) is transverse to γ and intersects it three times.
On the right α2 (red) is homologous to α1 since their difference bounds a subsurface,
namely the right hemisurface. The curve α2 intersects γ only once. This number cannot
be reduced to 0 in the same homology class, hence xγ([α1]) = xγ([α2]) = iγ(α2) = 1.

1. Intersection norms

In this section we define intersection norms and prove Theorem A. All statements are transcrip-
tions of results of Thurston [Thu86] in the 2-dimensional context of a surface with a multi-curve
on it. Although the original 3-dimensional proofs are rather easy, their transcriptions are even
more elementary.

For the whole section we fix a compact surface Σ of genus g with or without boundary. A
curve on Σ is either an immersion of the circle in Σ or an immersion of the segment such that the
extremities belong to ∂Σ. A multi-curve is a finite collection of closed curves that are mutually
transverse. For the whole section we also fix a closed multi-curve γ on Σ.

Given another closed multi-curve α transverse to γ and such that the multiple points of α and γ
are disjoint, there is a finite number of intersection points between α and γ. What we do here is to
minimize it over the homology class of α:

Definition 4. (see Figure 3) The multi-curve γ being fixed on Σ, the function xγ : H1(Σ, ∂Σ;Z)→
N is defined by

xγ(a) := min
[α]=a

iγ(α) = min
[α]=a
αtγ

|α ∩ γ|.

Since the number of intersection points is an integer, the lower bound is always realized and xγ
takes integral values. A multi-curve that realizes the minimum is declared xγ-minimizing.

The function xγ has two properties that will turn it into a semi-norm, namely it is linear on
rays and convex. For proving the first point we need an elementary remark. Let us recall that a
multi-curve is simple if it has no double point, that is, if it is an embedding.

Lemma 5 (simplification). For every multi-curve γ in Σ and for every class a in H1(Σ, ∂Σ;Z),
there exists a xγ-minimizing multi-curve in a that is simple.



8 PIERRE DEHORNOY

Proof. Starting from an arbitrary α0 in a that is minimizing, we can smooth the double points
of α0 away from γ

thus turning α0 into a new multi-curve α which is simple. The two multi-curves are not homotopic
but they are homologous, hence the result. �

Lemma 6 (linearity on rays). For every a in H1(Σ, ∂Σ;Z) and for all n ∈ Z one has

xγ(n · a) = |n| xγ(a).

Proof. Since one does not change the number of intersection points by reversing the orientation
of a curve, one has xγ(−a) = xγ(a).

We then assume n ≥ 0. Given a ∈ H1(Σ, ∂Σ;Z), consider a minimizing multi-curve α in a.
Since n parallel copies of α intersect γ in n xγ(a) points, we have xγ(n · a) ≤ n xγ(a).

For the other inequality, consider a multi-curve α(n) that minimizes xγ(n · a). By the simpli-
fication Lemma, we can suppose α(n) simple. Since [αn] is a class that is a multiple of n, the
class [α(n)] in H1(Σ, ∂Σ;Z/nZ) is zero. This implies that the regions of the complement Σ \ α(n)

can be colored by the numbers 0, 1, . . . , n−1 in such a way that the label increases by 1 mod n
every time one crosses an arc of α(n) positively. Therefore α(n) is the union of n simple multi-
curves: the one separating the regions labelled 0 from the regions labelled 1, the ones separating
the 1 from the 2, etc. Since they pairwise bound a subsurface of Σ, all of these n multi-curves
are homologous, hence they all belong to the class a. If one of them had an intersection smaller
than xγ(a) with γ, then we could replace all the others by a parallel copy of it, thus contradicting
the minimality of α(n). Hence each of these n multi-curves cuts γ in xγ(a) points, and therefore we
have xγ(n · a) = n xγ(a). �

Lemma 7 (convexity). For every a, b in H1(Σ, ∂Σ;Z) one has

xγ(a + b) ≤ xγ(a) + xγ(b).

Proof. The union of two multi-curves that realize xγ(a) and xγ(b) crosses γ in xγ(a)+ xγ(b) points,
giving xγ(a + b) ≤ xγ(a) + xγ(b). �

Proof of Theorem A. Every class in H1(Σ, ∂Σ;Q) is of the form 1
q a with a ∈ H1(Σ, ∂Σ;Z) and

q ∈ N∗. We then define xγ( 1
q a) as 1

q xγ(a), and the linearity on rays (Lemma 6) ensures that this
definition does not depend on the choice of q and a and that it yields a well-defined function (also
denoted by xγ) from H1(Σ, ∂Σ;Q) to Q+ that is linear on rays. Now convexity (Lemma 7) implies
that this function is continuous, so it can be extended into a continuous function (always denoted
by xγ) from H1(Σ, ∂Σ;R) to R+. Since it is linear on rays and continuous, the function xγ is a
semi-norm on H1(Σ, ∂Σ;R).

If the collection γ decomposes Σ into simply-connected regions, then γ intersects every curve
that is not null-homotopic at least once. This implies that xγ is at least 1 on non-zero integral
homology classes, hence xγ is positive on H1(Σ, ∂Σ;R) \ {0}. Therefore xγ is a norm. �

Remark 8. When Σ has some boundary, we can also define a similar norm x′γ on H1(Σ;R), thus
forgetting the classes represented by arcs that connect the boundary components but considering
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the curves parallel to the boundary. Since all our examples are actually in the case of an empty
boundary, we have no opinion on which norm is more interesting in the non-empty case.

Remark 9. One can wonder how the intersection norms compare with other known norms on the
first homology of a surface. For example the stable norm xg is defined in terms of a metric g

by xg(a) = lim inf
n→∞

min
α(n)∈an

g(α(n))
n

. When g is negatively curved, the stabilisation is not necessary,

so that xg(a) = min
α∈a

g(α). One can check that if (γk)k∈N is a sequence of filling geodesics for g,

meaning that the sequence of invariant measures on T1Σ that are concentrated on the lift ~γk tend
in the weak sense to the Liouville measure defined by g on T1Σ, then the rescaled norms 1

g(γk) xγn

tend to the stable norm of g. Equivalently, the rescaled unit balls g(γk)Bxγk
tend to the unit ball of

the stable norm.

2. Unit balls and coorientations

For the whole section we fix a surface Σ of genus at least 1 and a multi-curve γ on it. The
norm xγ defined in the previous section has a very peculiar property: it takes integral values on
integral classes. This property is shared for example by the `1− and `∞-norms on Rd for which
one remarks that the unit ball is polyhedral. Moreover all faces of these unit balls are of the form
{(x1, . . . , xd) |

∑
xiyi = 1} for some (y1, . . . yd) ∈ Zd. This is not a coincidence as was remarked by

Thurston.

Theorem 10 (Thm 2 of [Thu86]). If N is a seminorm on Rd taking integral values on Zd, then
there is a finite subset F of Zd such that N(x) = max

y∈F
〈x, y〉 for all x in Rd.

Let us recall that a norm N on a vector space induces a dual norm N∗ on the dual by N∗(y) =

maxx∈B〈x, y〉 where B denotes the unit ball of N. Thurston’s result can be restated by saying that
the unit ball of the dual norm is the convex hull of finitely many integral points.

In our context, denote by x∗γ the norm on H1(Σ, ∂Σ;R)∗ ' H1(Σ;R) dual to xγ, by Bxγ the unit
ball of xγ, and by B∗xγ the unit ball of x∗γ. A direct consequence of Theorem 10 is

Corollary 11 (see Figure 4). For Σ a compact surface and γ a multi-curve on it, the unit ball B∗xγ
is the convex hull in H1(Σ;R) of finitely many points in H1(Σ;Z).

A natural question is whether the vertices of B∗xγ (or equivalently the faces of Bxγ) have a nice
interpretation. For example in the context of the Thurston norm, the vertices correspond to the
Euler classes of certain taut foliations (Gabai), or of certain vector fields [Fri79, Mos92, Cal06].
Here we also have such an interpretation in terms of Eulerian coorientations (Theorem B), and it
is the goal of this section to prove it.

2.a. Coorientations and signed intersections. Recall that the multi-curve γ is assumed to by
immersed with only double points. We denote by V(γ) the set of double points, that we call
vertices of γ. Consequently we denote by E(γ) the set of connected components of γ \ V(γ), that
we call edges of γ. This turns γ into a graph of degree 4 embedded in Σ.

Definition 12. For e an edge of γ, a coorientation on e is the choice of one of the two possible ways
of crossing e: from left to right, or from right to left. A partial coorientation on γ is the choice of
a coorientation on a subset of E(γ). The support of a partial coorientation is the set of edges that
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Figure 4. A torus with a collection γ (black) made of four curves, two vertical and two
horizontal. The curve α (red and bold) intersects γ in 10 points. It is the best for a curve
whose homology class is (4, 1). The norm xγ is actually given by xγ(p, q) = 2|p| + 2|q|
in the canonical coordinates. The unit balls Bxγ (bold) and B∗xγ (dotted) are shown on the
right. The faces of Bxγ are defined by integral equations while the vertices of B∗xγ belong
to Z2, as predicted by Thurston’s result.

are cooriented. A global coorientation on γ (or coorientation for short) is a coorientation whose
support is all of E(γ).

There are 2|E(γ)| global coorientations and 3|E(γ)| partial coorientations.
A partial coorientation νmay be evaluated on an oriented immersed curve α transverse to γ: one

counts +1 for every intersection point of α with the support of ν if the orientation of α coincides
with the coorientation of the edge, and −1 if the orientations disagree. Denoting by ν(α) this
intersection pairing, one sees that ν(α) is an integer satisfying |ν(α)| ≤ |{α ∩ γ}|.

2.b. Eulerian coorientations. The question now is whether the above inequality may be turned
into an equality for xγ-minimizing curves on the one hand, and whether ν(α) may depend only
on the homology class of α so that one can compute ν on a single representative. Both questions
admit a positive answer if we restrict to some special coorientations, called Eulerian.

Definition 13. A partial coorientation on γ is Eulerian (or closed) if it vanishes on boundaries,
that is, if for every region D ⊂ Σ whose boundary is transverse to γ one has ν(∂D) = 0. The set of
all partial Eulerian coorientations is denoted by EulCo(γ).

The set EulCo(γ) is an affine subspace of {−, 0,+}E(γ). Actually the closing condition is local:
for ν to be Eulerian it is enough that around every vertex of γ there are as many positively coori-
ented edges than negatively cooriented. Hence, for a global coorientation, up to rotation, there are
only two types local Eulerian coorientations:

alternating tranparent
When one travels straight along γ and encounters a vertex of the first type the coorientation
changes, hence the name. For the second type on the other hand, it is as if the coorientation
does not see the vertex.
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Example 14. If [γ]2 ∈ H(Σ, ∂Σ;Z/2Z) is zero (meaning that every closed curve intersects γ an
even number of times), then the regions of Σ \ γ can be colored in black and white in such a way
that adjacent regions have different colors. In this case we can coorient all edges toward the white
regions. The obtained global coorientation is Eulerian:

We call it a Birkhoff coorientation, since the surface we will construct from it is isotopic to the
historical construction of [Bir17].

Example 15. There always exist global Eulerian coorientations, even when [γ]2 ∈ H1(Σ, ∂Σ;Z/2Z)
is non-zero. Indeed if the multi-curve γ is the immersion of c curves, it admits at least 2c Eulerian
coorientations, obtained by choosing a coorientation for each component and having only trans-
parent vertices:

We call such coorientations Brunella coorientation, since the surfaces we will construct from it
correspond to those of [Bru94, Description 2]2.

Lemma 16. If ν is a Eulerian coorientation of γ, then for every multi-curve α, the pairing ν(α)
depends only of the homology class [α] ∈ H1(Σ, ∂Σ;Z).

Proof. If two multi-curves α, α′ are homologous, then their difference bounds a singular subsur-
face in Σ. Definition 13 implies that the pairing of the boundary of the image of a surface with a
Eulerian coorientation is zero. Hence ν(α − α′) = 0, so ν(α) = ν(α′). �

Lemma 16 states that every Eulerian coorientation ν induces a well-defined cohomology class [ν]
in H1(Σ;Z). We denote by [EulCo(γ)] the subset of H1(Σ;Z) formed by the classes of partial Euler-
ian coorientations on γ. Note the class of a Eulerian coorientation is easily computed since it is

2The starting point of this paper is the remark by E. Kudryavtseva that these surfaces are in general not isotopic to
the ones of Birkhoff.
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enough to evaluate its pairing with 2g curves that generate the homology of Σ. Moreover Eulerian
coorientations give lower bounds on xγ:

Lemma 17. For every partial Eulerian coorientation ν of γ and for every a in H1(Σ, ∂Σ;Z), we
have xγ(a) ≥ ν(a).

Proof. Let α be a curve in a that realizes xγ(a). Then ν(α) counts every intersection point of α
and γ with a coefficient −1, 0, or +1, while xγ(a) counts all these intersection points with a coeffi-
cients +1, hence the inequality. �

Lemma 17 is equivalent to the inclusion [EulCo(γ)] ⊂ B∗xγ ∩ H1(Σ;Z). The main content of
Theorem B is the reverse inclusion. The proof goes in two steps: first we prove that the extremal
points of B∗xγ are given by some Eulerian coorientations (Proposition 18), then we prove that every
integer point inside B∗xγ (satisfying the parity condition) is also given by such a coorientation
(Proposition 22).

2.c. Completing a coorientation.

Proposition 18. For every a in H1(Σ, ∂Σ;Z), there exists a global Eulerian coorientation νa of γ
such that xγ(a) = νa(a).

The scheme of the proof is as follows. Let α be a minimising curve α in a. Since we have ν(α) =

ν(a) ≤ xγ(a) for every curve and xγ(a) = iγ(α) since α is xγ-minimizing, we see that one must
have ν(α) = iγ(α), namely all intersection points of α with γ have to be counted positively. This
defines a partial coorientation να on all edges of γ that are intersected by α. What we have to do
is to prove that one can complete such a partial coorientation into a global Eulerian coorientation.

Note that if we rotate a coorientation of γ by an angle π/2, we obtain an orientation of γ, and
this operation turns Eulerian coorientations into Eulerian orientations. Therefore our statement
is about whether a certain partial orientation can be completed into a global Eulerian orientation.
This is similar to classical problems in graph theory which can by solved using max-flow min-
cut and Menger Theorems (see [Hof60] and [Sch03, Chapter 11]3). For completeness, we give a
self-contained proof that does not use more technology than needed.

For β a multi-curve transverse to γ and ν a partial coorientation, we denote by indetν(β) the
number of intersection points of β with γ belonging to edges of γ where ν is not defined. We
always have −|{β ∩ γ}| ≤ ν(β) − indetν(β) ≤ ν(β) + indetν(β) ≤ |{β ∩ γ}| since the two central terms
correspond to put ±-signs on the intersection points of β and γ.

Definition 19. A partial coorientation ν is pre-Eulerian if for every boundary ∂D of a subsurface
one has −indet(∂D) ≤ ν(∂D) ≤ indet(∂D).

Not being pre-Eulerian is an obvious obstruction to being extendable into a Eulerian coorien-
tation. Indeed in this case there are not enough signs left to decide in order to cancel the already
defined coorientation on curves that are boundaries.

Lemma 20 (extension). If ν is a pre-Eulerian coorientation, then it can be extended into a global
Eulerian coorientation.

3I thank Arnaud de Mesmay for pointing these references to me.
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α α′

Figure 5. Proof of Lemma 21. On the left a curve α that induces a partial coorientation ν
and a hexagon D such that |να(∂D)| > indetνα (∂D). Replacing the arcs of α∩∂D by ∂D\α
we decrease the intersecion of α with γ (from 8 to 5 here).

For α a minimizing multi-curve, we notice that αmay not intersect an edge of γ in both possible
directions. If it were the case, then we could replace α with a homologous multi-curve that would
intersect γ in two points less. Therefore α induces a partial coorientation of γ denoted by νa whose
support in the set of edges intersected by α.

Lemma 21 (minimal implies pre-Eulerian). If α is a minimizing multi-curve, then the partial
coorientation να is pre-Eulerian.

Before proving Lemmas 20 and 21, let us see how they imply Proposition 18.

Proof of Proposition 18. Let α be a minimizing curve and να the partial coorientation that it de-
fines. By Lemma 21, να is pre-Eulerian, so, by Lemma 20, it can be extended into a global Eulerian
coorientation ν̄α. We then have ν̄α(α) = να(α) = iγ(α) = xγ(a), so ν̄α indeed gives the intersection
norm of a. �

Proof of Lemma 21. Suppose that να is not pre-Eulerian. Then there exist a subsurface D such
that |να(∂D)| > indetνα(∂D). Since να is only defined on edges of γ that intersect α, this means
that ∂D and α intersect some common edges of γ. Consider the curve α′ obtained by suppressing
the arcs of α that cuts the segments of γ also cut by ∂D and by adding the arcs of ∂D that cut some
edges of γ not cut by α (see Figure 5). Concerning homology classes we have [α′] = [α]− [∂D] =

[α]. The assumption |να(∂D)| > indetνα(∂D) implies that α′ cuts γ in less points than α, which
contradicts the minimality of α. �

Proof of Lemma 20. Let us show the result by induction on the number of edges of γ whose coori-
entation is undefined. If this number if zero, then all edges are cooriented, and being pre-Eulerian
then means being Eulerian.

Now, if for every subsurface D we have indetν(∂D) > |ν(∂D)|, then we can chose an arbitrary
edge on ∂D and fix arbitrarily its coorientation. The obtained coorientation is still pre-Eulerian.

The key-step is if there exists a subsurface D of Σ such that indetν(∂D) = |ν(∂D)|. At the expense
of exchanging D and Σ\D, that is to change the orientation of ∂D, we can suppose ν(∂D) > 0. Then
there exists a unique extension ν̄ of ν to the segments that cut ∂D such that ν̄(∂D) = 0. Let us show
that ν̄ is still pre-Eulerian. If it is not the case, then there exists D′ such that indetν̄(∂D′) < |ν̄(∂D′)|.
We will deduce a contradiction by finding a curve that testify that ν is actually not pre-Eulerian.
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D D′
q

i
j

k

l

Figure 6. Proof of Lemma 20. On the left the curves ∂D and ∂D′. The numbers p and
q correspond to the partial coorientation ν (red), while i, j, k, l count the number of edges
of γ not cooriented by ν (green). The hypothesis p = i+ j+k implies that there is a unique
coorientation ν̄ that colorient the i + k + l edges cut by ∂D so that ν̄(∂D) = 0. If ∂D′ is
such that indetν̄(∂D′) < ν̄(∂D′), we find a curve ∂D′′ (on the right) for which we have
indetν(∂D′′) < ν(∂D′′), a contradiction.

Since ν is pre-Eulerian, we have indetν(∂D′) ≥ |ν(∂D′)|. The comparison of the two previous
inequalities shows that ∂D′ cuts some edges whose coorientation has just been defined. For the
time being, we have no orientation on ∂D′, but we will suppose we have one: this choice will be
made later. Let us introduce some notations (see Figure 6): write p = ν(∂D) > 0 and q = ν(∂D′) ∈
Z. Write i for the number of intersection points of ∂D with edges of γ that are not cut by ∂D′, and
j for the number of intersection points of ∂D′ with edges of γ that are not cut by ∂D. Finally write
k for the number of intersection points of ∂D with edges of γ that are also cut by∂D′ and such that
the orientations of ∂D and ∂D′ coincide, and write l for the number of such points such that the
orientations are opposite. Since changing the orientation to ∂D′ amounts to exchange k and l, and
to change q into −q, we can chose the orientation of ∂D′ in such a way that the number q + l− k is
nonnegative. The assumption indetν(∂D) = ν(∂D) translates into i + k + l = p and the assumption
(which will lead to a contradiction) indetν̄(∂D′) < |ν(∂D′)| into j < |q + l − k| = q + l − k by our
choice of orientation of ∂D′.

Consider now the region D′′ obtained as the union D ∪ D′, plus l connections around the l
edges of γ cut by ∂D and ∂D′ with opposite orientations. Its boundary ∂D′′ is a curve that traverls
along ∂D and ∂D′ alternatively. In particular the intersection points of ∂D′′ with γ are those
of ∂D ∩ γ and those of ∂D′ ∩ γ, except the 2l points that correspond to edges of γ where the
orientations of ∂D and ∂D′ are opposite. Thus we have

indetν(∂D′′) = i+ j+2k = (p−k− l)+ j+2k = p+k− l+ j < p+k− l+ (q+ l−k) = p+q = ν(∂D′′).

This is a contradiction since ν is pre-Eulerian. �

2.d. Averaging coorientations.

Proposition 22. Every point in B∗xγ ∩ H1(Σ;Z) that is congruent to [γ]2 mod 2 is the class of a
global Eulerian coorientation.
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Proof. It is enough to prove that if ν1, ν2 are two Eulerian coorientations such that np/q := p
q [ν1] +

(1− p
q )[ν2] is an point in H1(Σ;Z) congruent to [γ]2 mod 2, then there is a Eulerian coorientation

whose class is np/q. We will define such a coorientation ν. First consider the edges of γ where ν1
and ν2 agree and define ν in the same way. Now consider γp/q the graph obtained by removing
these edges from γ. Since [ν1] − np/q and [ν2] − np/q are integer classes multiple of 2, we deduce
that [ν1] − [ν2] is actually an integer class that is a multiple of 2q. Therefore the coorientation ν1
on the graph γp/q induces a class multiple of q. This implies that γp/q can be decomposed as the
union of q cooriented graphs, all cohomologous. We then just chose p of them and define ν like ν1
on them, and define ν like ν2 on the q − p others. �

Actually one can derive from the proof that every point in B∗xγ ∩ H1(Σ;Z) is the class of some
partial Eulerian coorientation.

Proof of Theorem B. By Lemma 17 and Proposition 18, the convex ball B∗xγ is the convex hull
of the set [EulCo(γ)], and, by Proposition 22, all interior points of B∗xγ congruent to [γ]2 mod 2
correspond to some Eulerian coorientation. �

3. Birkhoff sections with antithetic boundary for the geodesic flow

In this part, we make an additional assumption: now Σ denotes a Riemannian surface that may
be a torus with constant curvature or a higher-genus surface with strictly negative curvature. The
collection γ now consists of finitely many periodic geodesics on Σ.

In this setting, the geodesic flow (ϕt
geod)t∈R on the unit tangent bundle T1Σ is the flow whose

orbits are lifts of geodesics. Namely for g a geodesic parametrized at speed one, the orbit of ϕgeod

going though the point (g(0), ġ(0)) ∈ T1Σ is ϕt
geod((g(0), ġ(0)) = (g(t), ġ(t)). For every oriented

periodic geodesic g on Σ, there is one periodic orbit of ϕgeod corresponding to the oriented lift of g
and denoted by ~g. Then if g now denotes an unoriented geodesic on Σ, there are two associated
periodic orbits of ϕgeod, one for each orientation. We denote by

↔
g the union of these two periodic

orbits, it is an oriented link in T1Σ that is invariant under the involution (p, v) 7→ (p,−v). A link of
the form

↔
g1 ∪ . . .

↔
g k is called an antithetic link.

Let us recall from the introduction that, given a complete flow (φt)t∈R, a compact surface S with
boundary is transverse to φt if its interior is transverse to the orbits of the flow and its boundary is
the union of finitely many periodic orbits4. A Birkhoff section for φt is then a transverse surface S
that intersects every orbit of φt. A small analysis and a compactness argument show that around
the boundary S necessarily looks like a helix (see Figure 2), so that the first-return time on int(S )
is bounded.

In this section, we give a construction that associates to every Eulerian coorientation a surface
transverse to the geodesic flow (3.a). Then we recall some facts on the existence of global sec-
tions for vector fields (3.b), before making some elementary algebraic topology for describing
homology classes of surfaces with boundary (3.c). Finally we put pieces together to prove that the
construction actually exhaust all possible surfaces, thus proving Theorems C and D (3.d).

4Often in the literature a transverse surface is only defined locally. The condition we add here on the boundary is
not standard. However we keep the name for avoiding a heavier expression.
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Figure 7. Bottom: an edge e of γ and a coorientation ν on it. Top: the corresponding
rectangle Re,ν in T1Σ. The dotted lines represent the fibers of some points of Σ, that
is, each point on these lines represent a unit tangent vector to Σ. Since the fibers are
actually circles, the top and bottom extremities of the dotted lines should be glued. Re,ν is
transverse to ϕgeod and the induced coorientation is shown in red. The induced orientation
of the horizontal boundary of Re,ν (red) is opposed to the orientation of the flow (black).
Thus the surfaces we will construct are negative Birkhoff sections.

3.a. Constructions of Birkhoff sections with antithetic boundary. We now explain how to
associate to every Eulerian coorientation of γ a surface bounded by

↔
γ and transverse to ϕgeod, thus

proving the first part of Theorem C.
From now on we fix a global coorientation ν (not yet Eulerian) of γ. For every edge e of γ (i.e.

segment between two double points), we consider the set Re,ν of those tangent vectors based on e
and pairing positively with ν. This is an rectangle in T1Σ of the form e × [−π, π] (see Figure 7). Is
is bounded by the two lifts of e in T1Σ (called the horizontal part of ∂Re,ν) and two halves of the
fibers of the extremities of e (called the vertical part of ∂Re,ν). Note the interior of Re,ν is transverse
to the geodesic flow ϕgeod while the horizontal part of ∂Re,ν is tangent to it. We then orient Re,ν so
that ϕgeod intersects it positively. One checks that then the induced orientation on ∂Re,ν is opposite
to the one given by ϕgeod.

Consider now the 2-dimensional complex S ×(ν) that is the union of the rectangles Re,ν for all
edges e of γ.

Lemma 23. The 2-complex S ×(ν) described above has boundary −
↔
γ if and only if the coorienta-

tion ν is Eulerian.
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Figure 8. On the left, the complex S ×(ν) around the fiber of an alternating double point
of γ. Every point of the fiber of v is adjacent to exactly two rectangles. On the right the
surface SBB(ν) is obtained by smoothing S ×(ν).

Proof. Since S ×(ν) is the union of one rectangle per edge of γ, the horizontal boundary of S ×(ν)
is always

↔
γ . Since the orientation is opposite to the geodesic flow, it is actually −

↔
γ .

What we have to check is that the vertical boundary is empty if and only if ν is Eulerian. At ev-
ery double point v of γ there are four incident rectangles, corresponding to the four adjacent edges.
Now the vertical boundary of a rectangle Re,ν is oriented upwards (that is, trigonometrically) at the
right extremity of e (when cooriented by ν) and downwards at the left extremity. Then the vertical
boundary in a vertex of γ is empty if only if two adjacent edges are cooriented in a direction, and
two others in the opposite direction: this means that ν is Eulerian around v. Conversely, if ν is
Eulerian, then up to rotation there are two local configurations around v (that we called alternating
and transparent), and one checks that in both cases, the vertical boundary is empty (see the left
parts of Figures 8 and 9). �

When ν is Eulerian, the complex S ×(ν) is not a topological surface if ν has some transparent
points: as depicted on Figure 9, there are edges adjacent to four faces. But it is the only ob-
struction and we can desingularize such segments. Also if we want a smooth surface, we have to
smooth S ×(ν) is a neighborhood of the fibers of the double points. In this way, we obtain a smooth
surface, transverse to ϕgeod.
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Figure 9. On the left, the complex S ×(ν) around the fiber of a transparent double point
of γ. Every point of the fiber of v is adjacent to an even number of rectangles. On the
right the surface SBB(ν) is obtained by desingularizing S ×(ν) on the portion of the fiber
where four rectangles meet.

Definition 24. For ν a Eulerian coorientation, the associated BB-surface is the surface SBB(ν)
obtained from S ×(ν) by desingularizing and smoothing the fibers of the double points of γ (see the
right parts of Figures 8 and 9).

3.b. Asymptotic cycles and existence of sections. The question whether a given vector field
admit a global section (i.e., with empty boundary) has been given a very satisfactory answer by
Schwarzmann and Fuller [Sch57, Ful65], then expanded by Fried [Fri82].

A preliminary remark: if two surfaces S1 and S2 in a manifold M are global sections to a flow φ
and they are homologous, then they are isotopic, and the isotopy is realized by the flow. Indeed5

one can consider the infinite cyclic covering of M̂ → M associated to the morphism π1(M) → Z
given by the intersection with [S1] = [S2]. Then S1 and S2 lift into Z disjoint copies tnŜ1 and tnŜ2
in M̂, all transverse to the lift of the flow. Now following the flow starting from Ŝ1, one reaches Ŝ2,
so we have a surjective map Ŝ1 → Ŝ2 of local degree 1, and since Ŝ1 is transverse to the flow it is of
local degree 1. Similarly we have a surjection Ŝ2 → Ŝ1 of local degree 1. By composing the two,
we get of surjection Ŝ1 → Ŝ1 of local degree 1, hence a bijection. Therefore the maps Ŝ1 → Ŝ2 and
Ŝ2 → Ŝ1 are actually bijections, and the flow hence induces an isotopy Ŝ1 → Ŝ2. Projecting back
in M, we obtained the desired isotopy S1 → S2.

For X a vector field in a compact manifold M, we denote by kX(p, t) a closed curve obtained
by concatenating the piece of orbit φ[0,t](p) starting at p of length t with an arc connecting φt(p)

5This mimics the folklore argument that the fiber of a fibration minimizes the genus, but it is not so easy to find a
reference of this statement
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to φ0(p) of bounded length. The class [kX(p, t)] in H1(M;Z) then depends on the choice of the
closing segment, but only in a bounded way, so that the limit limt→∞

1
t [kX(p, t)], if it exists,

does not depend on this choice. An asymptotic cycle of X is then the limit of a sequence of the
form { 1

tn
[kX(pn, tn)] | pn ∈ M, tn → ∞} in H1(M;R). The set of asymptotic cycles is denoted SX .

Sullivan [Sul76] reinterpreted it by showing that every X-invariant measure µ induces a foliated
cycle cµ that is actually a positive barycenter of asymptotic cycles.

Theorem 25. [Sch57, Ful65] A vector field X on a closed M admits a global section whose homol-
ogy class is σ ∈ H2(M, ∂M;Z) if and only σ intersects positively every asymptotic cycle, namely
for every c ∈ SX one has 〈σ, c〉 > 0.

This theorem is beautiful, but unfortunately, for many vector fields X, the point 0 belongs
to Conv(SX), so that X admits no global section at all. This is where Birkhoff sections come in.

3.c. Classes of surfaces with given boundary. Now we work in our restricted setting: Σ is a
negatively curved surface, γ is a finite collection of periodic geodesics and

↔
γ denotes the antithetic

lift of γ. In order to apply Theorem 25 for finding Birkhoff section, we need to work in the
complement T1Σ \

↔
γ and in particular to determine the space H2(T1Σ \

↔
γ,
↔
γ ;Z). In this section

we show that the homology classes of surfaces bounded by −
↔
γ form an affine space and we give

a canonical origin to this space.

Lemma 26. The sequence 0 → H2(T1Σ;Z)
i
−→ H2(T1Σ \

↔
γ,
↔
γ ;Z)

∂
−→H1(

↔
γ ;Z), where the first map

is the inclusion map and the second is the boundary map, is exact.6

Proof. The inclusion map is injective since a boundary in C2(T1Σ) is also a boundary in C2(T1Σ \
↔
γ,
↔
γ). Then if a class in H2(T1Σ\

↔
γ,
↔
γ ;Z) has image 0 in H1(

↔
γ ;Z), it means that it has no boundary,

hence comes from a class in H2(T1Σ;Z). This proves the lemma. �

The homology classes of those surfaces whose boundary is −
↔
γ correspond to the preimages

by ∂ of the point {−1,−1, . . . ,−1} ∈ H1(
↔
γ ;Z) ' Z2|γ|. Hence they form an affine space directed

by H2(T1Σ;Z). Indeed given two surfaces with the same boundary, their difference induces a
class in H2(T1Σ;Z). Now using the fact that T1Σ is a circle bundle with non-zero Euler class, we
get H2(T1Σ;Z) ' H1(Σ): a non-trivial class in H2(T1Σ;Z) can be represented by the set of the
fibers over a cycle in H1(Σ).

From the previous discussion we deduce that if we are given a explicit surface S0 bounded
by −

↔
γ , the classes of the other surfaces bounded by −

↔
γ differ from [S0] by a class in H1(Σ). In our

context, there is a natural choice of such an origin, for which the computation of the intersection
numbers with asymptotic cycles of the geodesic flow will be easy. We denote by S ×± the rational
chain in H2(T1Σ \

↔
γ,
↔
γ ;Q) that is half the sum of all rectangles of the form Re,ν (see Figure 10):

S ×± :=
1
2

∑
e∈γ,νe=±

Re,νe .

6An erroneous version of this statement is in [Fri82, Lemma 6], where it is claimed that the boundary map is
surjective and admits a section. It is not true in general, unless the manifold is a homology sphere. This makes the
statement of [Fri82, Theorem N] meaningless in general, to our regret. This does not alter the fact the rest of the paper
is correct and very interesting.
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Figure 10. The 2-chain S ×± is half of the sum of all rectangles Re,νe . It is cooriented by
the geodesic flow, hence oriented (in red). Its boundary, taking orientations into account,
is then −

↔
γ .

In other words, we consider the set of all tangent vectors base at points of γ. Remember that every
rectangle is cooriented by the geodesic flow, hence oriented. Therefore, S ×± is also oriented. Its
boundary is then exactly −

↔
γ . The chain S ×± is not a surface since the fibers of the double points

of γ are singular. Its double is an integer class. As it is rational the class σ± := [S ×±] might not be
realized by a surface.7

Lemma 27. For α an oriented periodic geodesic on Σ that is not a component of γ, the algebraic
intersection 〈σ±, ~α〉 is equal to + 1

2 |{α ∩ γ}|.

This lemma appears in a different form in [DIT15] where it is used to prove that the linking
number of two collections

↔
γ,
↔
γ
′

in T1Σ is actually equal to |{γ ∩ γ′}|.

7Actually, σ± is realized by a surface if and only if [γ]2, the class of γ with Z/2Z-coefficients, is 0. In this case, the
homology class of Birkhoff’s coorientation νB (Example 14) is 0, and S BB(νB) lies in the class σ±. Also the class σ± is
equal to 1

2 [SBB(ν) + SBB(−ν)] for every Eulerian ν. Hence it is always realized as the mean of two surfaces without any
assumption on [γ]2.
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Proof. Since S ×± is positively transverse to the geodesic flow, all intersection points of ~α with S ×±
counts positively. Since every rectangle has coefficients 1

2 in S ×±, every intersection point con-
tributes for + 1

2 to the algebraic intersection. Finally ~α intersects S ×± exactly in the fiber of the
intersection points of α and γ. �

3.d. Main proof. Denote by S↔
γ
⊂ H1(T1Σ \

↔
γ ;R) the set of asymptotic cycles of the geodesic

flow ϕgeod restricted to T1Σ \
↔
γ . Also denote by π the canonical projection from H2(T1Σ;R)

to H1(Σ;R). The next statement is the key to our main result.

Lemma 28. A class σ ∈ H2(T1Σ \
↔
γ,
↔
γ ;R) intersects positively every element of S↔

γ
if and only if

the class π(σ − σ±) ∈ H1(Σ;R) lies in the interior of 1
2 B∗xγ .

Proof. By the shadowing property for pseudo-Anosov flows, the projectivization of S↔
γ

is the
convex hull of the cycles given of periodic orbits. Hence it is enough to estimate the intersection
of σ with periodic orbits of ϕgeod.

We use the bracket to denote the intersection, and the index reminds the space where the objects
live. For every periodic orbit ~α of ϕgeod, by Lemma 27, we have〈

σ, ~α
〉

T1Σ\
↔
γ

=
〈
σ − σ±, ~α

〉
T1Σ\

↔
γ

+
〈
σ±, ~α

〉
T1Σ\

↔
γ

=
〈
σ − σ±], ~α

〉
T1Σ\

↔
γ

+
1
2
|{α ∩ γ}|

= 〈π(σ − σ±), α〉Σ +
1
2
|{α ∩ γ}|.

Hence
〈
σ, ~α

〉
T1Σ\

↔
γ

is positive if and only if −
〈
π(σ − [S ×±]), α

〉
Σ is smaller than 1

2 |{α ∩ γ}|.
Now the term − 〈π(σ − σ±), α〉Σ depends only on the class [α] ∈ H1(Σ, ∂Σ;Z), while the

term 1
2 |{α ∩ γ}| is larger that 1

2 xγ([α]), with equality if α is xγ-minimizing. Hence the inequal-
ity − 〈π(σ − σ±), α〉Σ ≤

1
2 |{α ∩ γ}| is equivalent to − 〈π(σ − σ±), [α]〉Σ ≤

1
2 xγ([α]).

Therefore σ intersects positively every element of S↔
γ

if and only if for every class a ∈ H1(Σ;Z)

we have − 〈π(σ − σ±), a〉Σ ≤
1
2 xγ(a), which means exactly that the point −π(σ − σ±) belongs

to 1
2 B∗xγ . Since the latter is symmetric, this amounts to π(σ − σ±) belonging to 1

2 B∗xγ . �

As a byproduct of the proof, we obtain that a class σ ∈ H2(T1Σ \
↔
γ,
↔
γ ;R) intersects non-

negatively every asymptotic cycle if and only if π(σ − σ±) ∈ H1(Σ;R) lies in the closed unit
ball 1

2 B∗xγ .

Proof of Theorem C. For ν a Eulerian coorientation, we consider the surface SBB(ν) (Definition 24).
By construction it is transverse to the geodesic flow. One easily checks that every rectangle of the
form Re,ν contributes to −1 to the Euler characteristics, hence χ(SBB(ν)) is −|E(γ)|. Since γ is a
graph of degree 4, one has |E(γ)| = 2|V(γ)|, so that χ(SBB(ν)) = −2|V(γ)|.

Now if ν1 and ν2 are cohomologous, the class [SBB(ν1) − SBB(ν2)] ∈ H2(T1Σ;Z) projects by π
onto [ν1 − ν2] = 0. Since π is actually an isomorphism, [SBB(ν1) − SBB(ν2)] = 0, which in turn
implies [SBB(ν1)] = [SBB(ν2)] in H2(T1Σ \

↔
γ,
↔
γ ;Z). Now since SBB(ν1) and SBB(ν2) are both

transverse to ϕgeod and homologous, the flow actually realizes an isotopy between them. �
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Proof of Theorem D. Let us first treat the case when Σ has genus 2 or higher. Lemma 26 and the
paragraph after implies that real homology classes of surfaces bounded by −

↔
γ form an affine space

directed by H2(T1Σ;R). The class σ± also defined in 3.c gives a canonical origin to this space. It
is a half-integer class, and its double 2σ± is congruent to [γ]2 mod 2. Therefore the double of all
integer classes correspond to the sublattice of H2(T1Σ;Z) of those points congruent to [γ]2 mod 2.

Now we have to determine which of these integer class yield Birkhoff sections. By Schwarzmann-
Fuller Theorem 25, a class σ contains a Birkhoff section if and only if it intersects positively every
asymptotic cycles. By Lemma 28 this means that the difference σ−σ± lies inside 1

2 B∗xγ , or equiv-
alently that 2(σ − σ±) lies inside B∗xγ .

Now surfaces that are transverse to ϕgeod correspond to homology classes that intersects non
negatively every asymptotic cycle, allowing certain intersection to be zero. This means that the
boundary of B∗xγ is now authorized. This end the proof for surface of genus at least 2.

For the case of the torus, the only difference is that the bundle T1Σ is trivial, i.e., of the form Σ×

S1. Therefore we no longer have H2(T1Σ;R) ' H1(Σ;R), but instead H2(T1Σ;R) ' H1(Σ;R) × R,
since the fibers are no longer boundaries. However this extra-factor does not change the proof,
since all asymptotic cycles of the geodesic flow on the flat torus are actually horizontal, meaning
that the extra-coordinate is zero. Hence the positivity condition depends only on the coordinate
in H1(Σ;R), and all the arguments can be translated. �

4. Questions

4.a. On intersection norms. If Σ is a flat torus, then the minimal intersection is always re-
alized by geodesics, which are unique in their homology class. Hence if γ is the union of k
geodesics γ1, . . . , γk, then iγ(α) =

∑k
i=1 iγi(α). This implies that the dual ball B∗γ coincides with the

Minkowski sum B∗γ1
+ · · ·+ B∗γk

. Since the segment [−1, 1]× {0} ⊂ R2 is the dual unit ball B∗xγ for γ
the vertical circle on the torus, every segment containing 0 in the middle is the dual unit ball of
some closed circle on the torus. Therefore every convex polygon in R2 whose vertices are integral
and congruent mod 2 is of the form B∗xγ for some γ. In higher dimension the situation is probably
more intricate.

Question 29. Which polyhedra of R2g with integer vertices can be realized as the dual unit ball B∗xγ
for some γ in Σg?

Also, if Σ is a torus and γ is a union of geodesics, then the above remarks imply that the number
of self-intersection points of γ is exactly 1/4 of the area of B∗xγ (check on Figure 1). Is there an
analog statement in higher genus?

Question 30. Which information concerning γ can be read on B∗xγ? Is the number of self-
intersection points of γ a certain function defined on B∗xγ?

This information is interesting since the this number is exactly the opposite of the Euler char-
acteristic of every Birkhoff section bounded by

↔
γ . Note the the number of self-intersection points

is homogenous of degree 2, so we should look for degree 2 functions on polyhedra in R2g: does it
correspond to some symplectic capacity?

Motivated by our application we only defined the intersection norm for a collection of immersed
curves, but one can directly extend it for an arbitrary embedded graph. One can wonder which
properties extend to this case and which information on the embedded graphs are encoding in this
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norm. For example when the graph is Eulerian (i.e., all vertices have even degree) the connection
with Eulerian coorientations remains.

4.b. On Birkhoff sections. Our constructions and our classification result deal only with Birkhoff

sections bounded by an amphithetic collection of periodic orbits of the geodesic flow, that is,
invariant under the involution (p, v) 7→ (p,−v). However the only restriction a priori for being
the boundary of a Birkhoff section is to be a boundary, that is, to be null-homologous. Our results
here say nothing about the classification, or even the existence, of Birkhoff sections with arbitrary
null-homologous boundary. In this case, the theory of Schwarzmann-Fuller-Thurston-Fried and
the remarks of Sections 3.b and 3.c still apply, so that these sections still correspond to the point
inside a certain polytope in H1(Σ;R). However we have no analog for the coorientations and the
explicit constructions derived from them.

Question 31. Is there a natural generalization of the polytope B∗xγ to non-amphithetic collections ~γ
of orbits of the geodesic flow ϕgeod, so that integer points in this polytope classify surfaces bounded
by ~γ and transverse to ϕgeod?

In the case of the flat torus, this question was answered in [Deh15a, Thm 3.12] where a poly-
gon P~γ classifying transverse surfaces bounded by ~γ was defined for every null-homologous col-
lection ~γ.

What would probably unlock the situation in the higher genus case would be to have, for every
null-homologous collection ~γ, one explicit surface bounded by ~γ (not necessarily transverse), that
is, a analog of σ± when ~γ is not antithetic. Such an explicit point allows to compute its intersection
with every other periodic orbit ~α of ϕgeod. These intersection numbers are all we need in order to
describe explicitly the asymptotic directions of ϕgeod in T1Σ \ ~γ. Generalising the constructions
of [Deh15b] is a possibility here.

More generally, one can wonder whether there exists a generalization to all flows of the inter-
section norm xγ in the following sense:

Question 32. For every 3-dimensional flow X, is there an object that describes all isotopy classes
of Birkhoff sections?

A starting point would be to try with an Anosov flow that is not the geodesic flow, and see
whether Gauss linking forms [Ghy09] could play this role.
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