Gu Éna Ël Renault
email: guenael.renault@lip6.fr

Kazuhiro Yokoyama
email: yokoyama@rkmath.rikkyo.ac.jp

Multi-modular Algorithm for Computing the Splitting Field of a Polynomial

Keywords: I.1 [Computing Methodologies]: Symbolic and algebraic manipulations Algorithms, Theory Galois theory, splitting field

Let f be a univariate monic integral polynomial of degree n and let (↵1, . . . , ↵n) be an n-tuple of its roots in an algebraic closure Q of Q. Obtaining an algebraic representation of the splitting field Q(↵1, . . . , ↵n) of f is a question of first importance in e↵ective Galois theory. For instance, it allows us to manipulate symbolically the roots of f . In this paper, we propose a new method based on multi-modular strategy. Actually, we provide algorithms for this task which return a triangular set encoding the splitting ideal of f . We examine the ability/practicality of the method by experiments on a real computer and study its complexity.

INTRODUCTION

In [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] the authors proposed an approach for computing the splitting field of a monic integral polynomial f . This approach is based on indeterminate coe cients strategy and Hensel lifting. It takes as input the action of the Galois group of f over approximation of roots of f in a p-adic number field Qp (or one of its extensions). To compute the Galois group G f of f over Q, the approach of p-adic approximation is very practical and e cient (see [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Geissler | Galois group computation for rational polynomials[END_REF][START_REF] Geissler | Berechnung von Galoisgruppen über Zhalund Funktionenkörpern[END_REF]).

In the approach of [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF], the authors did not use all the data obtained during Galois group computation. Also, on some particular examples, the method was not so e cient. By experimentations, we discovered that using these data is a very low time consuming. Thus, in order to use a large part of these data and obtain a compromise for this approach we propose here a multi-modular approach for computing the splitting field of f . Moreover, the recent version 2.13 of the computer algebra system Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] provides a new implementation (by Fieker and Klüners) of the Galois group computation based on p-adic approximations where it becomes easy to access the data computed during this procedure. Also, since the new computer architectures are now based on multi-core processors it is important to study new algorithms which can benefit from these new features. For all these reasons, a multi-modular strategy has to be studied.

The key of the multi-modular strategy proposed here comes from the following assertion: From data obtained during the computation of the permutation action of G f over approximate roots of f modulo a prime p1, we can easily obtain the action of the same permutation representation over approximate roots of f modulo another prime p2 (see Section 3).

From this action over approximate roots of f modulo different primes we compute approximations, modulo the same primes, of the Gröbner basis G of the splitting ideal M, that is the ideal of all the algebraic relations of the roots of f . Then we reconstruct it by Chinese Remainder Theorem (See Section 4). Thus, the splitting field of f is given by Q[x1, ..., xn]/M; let us remark that it is easy to perform arithmetic operations in this algebra. Moreover, in general, expressions by primitive elements tend to su↵er "expression swell", that is, huge coe cients appear and those harm the e ciency. So, for our purpose, simple extension does not seem suited.

In order to compute the approximate projections of M in di↵erent p-adic fields, we use the knowledge of certain algebraic structures, the action of G f over the p-adic approximation of roots of f and a theoretical form of G given by the corresponding computation scheme, a very useful object introduced in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] (see also [START_REF] Renault | Computation of the splitting field of a dihedral polynomial[END_REF]). The computation scheme gives sparse forms with indeterminate coe cients for the polynomials in G and techniques to avoid some computations (see Section 3.3). In Section 3 we show how to interpolate these sparse form by adaptation of the formulae given in [START_REF] Dahan | Sharp estimates for triangular sets[END_REF] and modular computations. From these theoretical forms we deduce, in the same section, the best bounds in our knowledge for the coe cients of a basis of M.

In Section 4 we give basic discussion on e ciency of multimodular strategy in a general form, and present concrete algorithms for our subject corresponding to this multi-modular strategy with e↵ective tests for correctness. Then, based on the algorithms, we give certain results about the multimodular strategy's theoretical e ciency. Section 5 is devoted to the experiments, by which the practicality of the multi-modular strategy is examined.

PRELIMINARIES

We provide necessary notions and summarize some results of [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF] and [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF].

2.1 Splitting Field and Galois Group over Q Let f (x) be a monic square-free integral polynomial of degree n and ↵ the set of all its roots in an algebraic closure Q of Q. The splitting field K f of f is the extension field Q(↵) obtained by adjoining ↵ to Q. The group G f of Q-automorphisms of K f acts faithfully on ↵, thus one can consider the permutation representation G f of this group. Fixing a numbering of the roots ↵ = {↵1, . . . , ↵n} of f , G f is viewed as a subgroup of Sn. The group G f is called the Galois group of f .

To express K f symbolically, we consider the epimorphism :

Q[x1, . . . , xn] 3 xi 7 ! ↵i 2 K f of Q-algebras.
For simplicity, we write X = {x1, . . . , xn}. Then K f is represented by the residue class ring A of the polynomial ring Q[X] factored by the kernel M of . We call M the splitting ideal of f associated with the assignment of the roots ↵1, . . . , ↵n. In this setting, computing K f means to compute a Gröbner basis G of M (see [START_REF] Becker | [END_REF]). Now we fix the lexicographic order on terms with x1 • • • xn, then the reduced Gröbner basis of M coincides with the generating set {g1, g2, . . . , gn} obtained by successive extensions, that is, for each i, 1. gi is a polynomial in x1, . . . , xi and monic with respect to xi, and 2. Q(↵1, . . . , ↵i) ⇠ = Q[x1, . . . , xi]/hg1, . . . , gii, where hF i denotes the ideal generated by an element or a set F . This implies that gi is an irreducible factor of f (xi) over Q[x1, . . . , xi 1]/hg1, . . . , gi 1i such that gi(↵1, . . . , ↵i) = 0. Thus this reduced Gröbner basis can be obtained by "algebraic factoring methods" (see [START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF]) and is said to be a triangular basis (see [START_REF] Lazard | Solving zero-dimensional algebraic systems[END_REF][START_REF] Dahan | Sharp estimates for triangular sets[END_REF]). For a Gröbner basis G ⇢ Q[X] and a polynomial P , let NF(P, G) denote the normal form of P in Q[X] with respect to G (see [START_REF] Becker | [END_REF]).

The group Sn acts naturally on Q[X] with x i = xi for 1 6 i 6 n and 2 Sn. Thus G f is the Q-automorphisms group of A denoted by AutQ(A) (see [START_REF] Anai | Computation of the splitting fields and the Galois groups of polynomials[END_REF][START_REF] Abdeljaouad | Computation of the decomposition group of a triangular ideal[END_REF]). We use the following notation for groups: For a group G acting on a set S, the stabilizer in G of an element or a subset Definition 1. We call the ideal generated by the polynomials t1 + a1,. . .,tn + (1) n 1 an, where ti is the i-th elementary symmetric function on X and f (x) = x n + a1x n 1 + • • • + an, the universal splitting ideal of f and denote it by M0. We call the residue class ring Q[X]/M0 the universal splitting ring of f over Q and denote it by A0.

A of S is denoted by StabG(A), i.e. StabG(A) = { 2 G : A = A}. If G is
With respect to the fixed order , the reduced Gröbner basis of M0 is composed of the n Cauchy's modules of f (see [START_REF] Rennert | Calcul de résolvantes avec les modules de Cauchy[END_REF]) and it is called the standard generating set. Since Sn stabilizes M0, Sn also acts faithfully on A0, i.e. Sn ⇢ AutQ(A0). We have the following theorem (see [START_REF] Pohst | Algorithmic Algebraic Number Theory[END_REF][START_REF] Arnaudiès | Lagrange resolvents[END_REF][START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF] for details and other references).

Theorem 2.1. There is a one-to-one correspondence between the set of all primitive idempotents of A0 and the set of all prime divisors of M0. Let m be the primitive idempotent corresponding to the fixed prime divisor M. Then,

G f = Stab(M) = Stab(m) and M = {g 2 Q[X] | gm = 0 in A0}. Moreover, we have M0 = \ 2G f \\Sn M and A0 = 2G f \\Sn m A0 = 2G f \\Sn Q[X]/M .

Splitting Field and Modular Computation

Now we consider the relation between the splitting ring over Q and that over a p-adic field Qp. The n-tuple ↵ = {↵1, . . . , ↵n} and the splitting ideal M associated with the assignment xi to ↵i are fixed. The primitive idempotent of A0 corresponding to M is denoted by m. For a prime integer p, we denote by Z 0 p (resp. Zp) the localization of Z at p (resp. the completion of Z 0 p). We denote by ⇡p the projection from Zp[X] to Fp[X] (the natural extension of the projection from Z to Fp). From now on, we will consider prime numbers p satisfying the following property:

P : ⇡p(f) is square-free. Let Mp 0 denote the ideal ⇡p(M0 \ Z 0 p [X]) in Fp[X]
and G0 denote the standard generating set of M0. By construction, the Cauchy's modules of f are polynomials with integral coe cients and monic in their greatest variable. Thus, the set ⇡p(G0) is a Gröbner basis of Mp 0 . Moreover, G0 is a Gröbner basis of the universal splitting ideal Qp ⌦Q M0 of f as a polynomial with coe cients in Qp and that of Zp . We have the following result (see [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]). Theorem 2.2. We have the following assertions: 1. The projection ⇡p gives a one-to-one correspondence between the set of all primitive idempotents of A (p,1) 0 and that of Āp 0 . Moreover, for each pair (m(p) , m (p,1)) of corresponding primitive idempotents, Stab(m(p)) = Stab(m (p,1)). 2. The idempotent m of A0 is also an idempotent of A . Let Mp be the maximal ideal of Fp[X] corresponding to mp and M (p,1) the maximal ideal of Qp[X] corresponding to m (p,1) . Moreover, let G (p,1) and Ḡ(p) be the reduced Gröbner basis of M (p,1) and that of Mp respectively. Definition 2. Let G (p,1) = {g (p,1) 1 , . . . , g (p,1) n }. For a positive integer k, we call the polynomials set {g (p,1) 1 mod p k+1 , . . . , g (p,1) n modp k+1 } the k-th approximation to the basis G (p,1) and denote it by G (p,k) . Note that G (p,0) = Ḡ(p) .

Approximations of the roots of f

The Gröbner basis Ḡ(p) can be lifted to G (p,1) by Hensel construction based on quadratic iteration.

Theorem 2.3. [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] The reduced Gröbner basis G (p,1) of the ideal M (p,1) with respect to is contained in Zp[X], and Ḡ(p) is lifted uniquely to G (p,1) by Hensel construction.

Remark 3. From Ḡ(p) , we can construct the approximate Gröbner basis G (p,k) for any integer k. As soon as we have G (p,k) , we can compute with the roots of f in Z/p k+1 Z by computing normal forms modulo this basis. Thus, in the sequel, the expression approximations of the roots of f modulo p p+1 will mean that we have such a Gröbner basis G (p,k) Remark 4. As to the Gröbner basis G, the denominators of its elements are related to the discriminant d(f) of f . (See Section 3.4.) For each prime p satisfying the property P, the square-freeness of ⇡p(f) implies ⇡p(d(f)) 6 = 0, and thus, it follows that ⇡p(G) is well-defined, that is, p does not divide any of the denominators. Now we will study the construction of G by Chinese Remainder Theorem.

MODULAR CONSTRUCTION OF G

In this section, we fix a splitting ideal M of f , the corresponding idempotent m and its stabilizer, the Galois group G f represented as a sub-group of Sn. We denote by ZK(I) the algebraic variety over a field K associated to an ideal I in a polynomial ring. Let E = {e1 < • • • < es} be a subset of {1, . . . , n} and = (1, . . . , n) an element of ZQ(M). We denote by (E) the projection of on the indexes given by E (i.e. (e 1 , . . . , es)) and ZQ(M)(E) = { (E) :

2 ZQ(M)}.

Approximation of G

Let G = {g1, . . . , gn} be the Gröbner basis of M, we will describe here how to compute the coe cients of polynomials gi's by indeterminate coe cient strategy and multi-modular computation.

More precisely, by the knowledge of a special subset Ei of {1, . . . , n}, we can deduce an equation which defines the polynomial gi (see Section 3.3): gi() = 0 for every 2 ZQ(M)(Ei).

(3.1)

We can replace the variety ZQ(M)(Ei) by ZQ p (Qp⌦QM)(Ei), where p is a prime satisfying P. Then, by using approximations of roots, we obtain the same equation but for the approximation of gi. To do that, we need to recall some results (see [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF]). Let p be a prime integer satisfying P, m(p) a component of ⇡p(m), Mp its corresponding maximal ideal of Fp[X] and

M (p,1) its corresponding maximal ideal of Qp[X] which is a divisor of Qp[X] ⌦Q M. Proposition 3.1. Let S = Stab(m(p))\\Stab(m). Then Qp⌦QM = \ 2S (M (p,1)) , and ⇡p(M\Z 0 p) = \ 2S (M) .
By Proposition 3.1, we can reduce the equation (3.1) to the following.

NF(gi, (G

(p,1))) = 0 for every 2 GE i \\G f , (3.2)
where 1) with G (p,k) (see Remark 3), we have the following equation that approximation gi mod p k+1 must satisfy.

G f = Stab(m) and GE i denotes Stab([↵e i,1 , . . . , ↵e i,t]) for Ei = {ei,1, . . . , ei,t}. Because {(G (p,1)) : 2 GE i \\G f } provides all elements of ZQ p (Qp ⌦Q M)(Ei). Moreover, re- placing G (p,

NF(gi, (G

(p,k))) ⌘ 0 (mod p k+1) 8 2 GE i \\G f . (3.3)
Remark 5. The components of ⇡p(m) are conjugate to each other by the action of G f = Stab(m). From this fact, it follows that any choice of m(p) from the components of ⇡p(m) still give the same Gröbner basis G = {g1, . . . , gn}.

In [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] the authors presented a linear system resolution to compute gi mod p k+1 . Here, we will present in a further section how to do this by interpolation. Before that, we present how to compute an approximation of gi modulo an integer M by Chinese Remainder Theorem.

Chinese Remainder Construction

Recall that m is the idempotent of A0 corresponding to the fixed splitting ideal M corresponding to the specific roots ordering. We now consider primes p1, . . . , pi satisfying the property P and a component m(p i) of ⇡p i (m) for each pi. Let G (p 1 ,k 1) , . . . , G (p i ,k i) the approximate Gröbner bases corresponding to these components.

As seen in Section 3.1, we can approximate the polynomials gi modulo each p k i i . Thus, by Chinese Remainder Theorem we lift them in the ring Z/M Z where M = Q i j=1 p k j j . From this computation we obtain the projection of G modulo M , that is the set of polynomials {g1 mod M, . . . , gn mod M }. But, in all this computation we assume that the idempotent m is fixed. In practice, we can not assume this hypothesis. Thus we need a general method to assure that each component m(p j) will correspond to the same idempotent m. (See Remark 5.)

To do that, we will use data produced during the computation of the Galois group G f done modulo p k 1 1 . Then we reorder the roots modulo primes p2, . . . , pi by following criteria obtained from the data. From the computation of G f [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF][START_REF] Geissler | Galois group computation for rational polynomials[END_REF], we obtain a finite sequence {(Ii, Ai) : i = 1, . . . , t} of invariants and their integer evaluation

modulo p k 1 1 such that NF (Ii Ai, G (p 1 ,k 1)) ⌘ 0 (mod p k 1 +1 1
) for every i. Since p k 1 1 exceeds the computed theoretical bound so that the corresponding relative Lagrange resolvent has Ai as its simple integral root. This implies (Ii Ai)m = 0 for every i and

NF (gi, G (p 1 ,k 1)) ⌘ 0 (mod p k 1 +1 1
) for every gi. Conversely, tracing the determination process of G f with di↵erent modulus q k , if q k exceeds the bound, we have the same result. As p k 1 1 already exceeds the bound, we have Theorem 3.2. Let q be a prime satisfying the property P, G (q,k) be the k-th approximation of a Gröbner basis of a maximal divisor of Qq ⌦Q M0 and m(q) its corresponding primitive idempotent of Mq 0 . If q k > p k 1 1 and NF (Ii Ai, G (q,k)) ⌘ 0 (mod q k+1) for every i, then NF (gi, G (q,k)) ⌘ 0 (mod q k+1) for every gi, that is, m(q) is a component of ⇡q(m).

This method can be seen as a modular Galois group computation guided by the knowledge of the exact branch taken during the descent from Sn to G f in the permutations subgroups tree of degree n. E cient implementations of Galois group computation use some techniques to cut this descending branch and allow to begin from a subgroup of Sn (see [START_REF] Geissler | Galois group computation for rational polynomials[END_REF]). To be more e cient, we plan to adapt our method with these techniques.

Computation Scheme and i-relations

In this section, we recall the definition and give some new results about computation scheme and i-relation (see [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]).

In [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]Section 3] the authors present a framework for the computation of the Gröbner basis G = {g1, . . . , gn} with indeterminate coe cients strategy. In this framework, we attache to a particular permutation representation G f a set of good theoretical form for polynomials of G and techniques which allow us to avoid computations for some gi. This is what we call computation scheme since this guides the algorithm for computing G.

In particular, we associate to each polynomial gi an in-

tegers set Ei = {e1 < • • • < es = i} which describes a trian- gular set Ti = {g ⇤ 1 , . . . , g ⇤ s = gi} where g ⇤ k 2 Q[xe 1 , . . . , xe k] and g ⇤ k (xe k , ↵e k 1 , . . . , ↵e 1
) is a minimal polynomial of the K-extension K(↵e k) where K = Q(↵e k 1 , . . . , ↵e 1); we will denote by d(Ei) k the degree of this extension. In [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] the theoretical form g ⇤ s is used to compute gi by indeterminate coe cients strategy. The number of coe cients to compute is deduced from Ei (or equivalently by Ti) and is denoted by d(Ei):

d(Ei) := s Y k=1 deg xe k g ⇤ k ,
and this quantity is called the degree of Ei.

There may be a lot of di↵erent sets Ei which all correspond to the polynomial gi but, the smaller d(Ei) is, the more e cient our algorithm will be. For example, we can choose the trivial set Ei = {1, 2, . . . , i 1, i} which has maximal degree but in almost all cases we can find a better set Ei corresponding to gi. This is why these sets Ei are important in our algorithm and we call them i-relations.

The computation scheme introduced in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] provides also some techniques to avoid the computation of some gi's. Thus, to this framework we attach the set I of integers corresponding to the polynomials we have to compute. The total number of coe cients to compute in G is the sum of the degrees of i-relation with i in I and we denote it c(G f). To compute the polynomials with index in I modulo a power of a prime, the strategy used was based on indeterminate coe cients followed by a linear algebra step. Here we want to replace the second step by an interpolation step. This is what we present in the next section.

Lagrange Formulae and i-relations

In [START_REF] Dahan | Sharp estimates for triangular sets[END_REF], Lagrange formulae are presented for general triangular sets. These formulae can be used to compute the Gröbner basis G, this is what is done in [START_REF] Lederer | Explicit constructions in splitting fields of polynomials[END_REF]. In this case, the total number of coe cients to compute will be of the order of the size of the Galois group G f which may be very large. Thus, to overcome this problem we introduce Lagrange formulae for i-relations in order to use the computation scheme.

Let Ei = {e1 < • • • < es = i} be an i-relation and Ti its associated triangular basis as defined in Section 3.3. The a ne variety ZQ(Ti) is equiprojectable, thus one can apply the Lagrange formulae given in [START_REF] Dahan | Sharp estimates for triangular sets[END_REF] but, since here we are in a very special context, we will restate the construction by using the permutation representation of the given Galois group G f . Let be a given permutation in Sn. (Here we write (a) for a for simplifying formulas.) We denote by O(j,) the orbit of (ej) under the action of the point-wise stabilizer StabG f [(e1), (e2), . . . , (ej 1)] defined by {⌧ 2 G f | ⌧ ((ei)) = (ei), 8i 2 {1, . . . , j 1}}. By using the map i 7 ! ↵i, the set O(j,) corresponds to the orbit of the element (↵e j) over the field Q(↵ (e 1) , ↵ (e 2) , . . . , ↵ (e j 1)).

From this orbit we can interpret the formula given in [START_REF] Dahan | Sharp estimates for triangular sets[END_REF] in our specific case. ↵ (e j) ↵e . Thus, all the denominators can be canceled by multiplying Li with Di = d(f) d s 2 e . The polynomial DiLi has integral coe cients, we will now investigate a bound over the coe cient c corresponding to the multi-degree (k1, . . . , ks). We denote by dj the degree in xj of Li. We note

d(Ei) = Q s k=1 d k = |G f : StabG f ([e1, . . . , es])|.
Let be a bound over the di↵erences of roots |↵i ↵j| and ⌫ a bound over the absolute values of the roots |↵i|. Here we will modify the proof given in [START_REF] Lederer | Explicit constructions in splitting fields of polynomials[END_REF] to deal with the case of an i-relation: 1. After cancellation of the denominators by multiplying with Di, it remains, in the numerator, a product of n(n 1)d s 2 e d1 . . . ds + s elements of the form (↵j ↵i). This product will be distributed on all the coe cients of gi and is bounded by B = n(n 1)d s 2 e d 1 ... ds+s . 2. The indeterminate xe i of degree ki in Li comes from a product of di 1 elements of the form (xe i ↵j). Thus, its absolute value can be bounded by the well known binomial quantity `di 1

k i ´⌫d i 1 k i .
Hence, by summing all these products over the transversal (see Theorem 3.3), we obtain the following bound for the absolute value of c:

d(Ei) d1 1 k1 ! ⌫ d 1 1 k 1 • • • ds ks ! ⌫ ds ks B.

MULTI-MODULAR STRATEGY

In order to attain e cient computation of splitting fields, we can make good use of more sophisticated modular computation technique, "multi-modular" one. Here we show details on our technique and its variants for improvements.

Basic Discussion on Modular Techniques

There are several strategies on applying modular techniques for splitting field computation. Among those, a multimodular strategy described below shall be e↵ective and efficient under the following assumption which seems natural phenomena for our problem. Assumption: The computed theoretical bound, say BT , on the coe cients of the Gröbner basis G is much larger than the real bound BR, that is, the maximal absolute value of numerators and denominators of coe cients of G. Also BT is much larger than the bound BG used for the Galois group determination.

Under the assumption, it is quite natural to use some heuristic bound BH much smaller than BT . Our computation can be one instance of the following model: Computational Model with Modular Computation Here, the target which we want to compute is some mathematical object over the rational number field Q.

Step 1. Candidate Computation: Proc CAND

Step 1-1. Modular Image Computation We set the modulus q, and then compute the modular image of the target modulo q.

Step 1-2. Conversion By rational reconstruction, we have a candidate of the target.

Step 2. Correctness Check: Proc CHECK We check whether a candidate is correct or not by some e ciently computable test. If the test is OK, we have the correct result.

In our case, Proc CHECK can be executed by ideal inclusion test, which shall correspond to trial division for polynomial factorization, as pointed out in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]. Also, we may use another modular technique for Proc CHECK. Further discussion will be given later.

When we use 2B 2 T for the modulus, the computed candidate is always correct and Proc CHECK is not necessary. (We note that for rational reconstruction, the modulus should be twice of square of the bound.) On the other hand, when we use some heuristic modulus q, we have to execute recursive computation to reach the correct answer. When Proc CHECK fails, we can apply several strategies in Step 1: S1: Replace a larger modulus q 0 and execute Step 1-1. S2: Take another modulus q 0 prime to q, execute Step 1-1 with q 0 and combine the result with the old one by Chinese remainder theorem. Then the modulus in Proc CHECK becomes q ⇥ q 0 . S3: Lift up the candidate to a larger modulus q 0 by Hensel construction.

Here, we call the strategy S2 multi-modular strategy, and the strategy S3 p-adic strategy. Apparently, the strategy S1 is not e cient compared with other two.

To find the most practical one among strategies in the above, we examine those total times of computation. Let TP (q) be the time of Step 1-1 of Proc CAND, where q is the modulus used, TR(q) the time of Step 1-2 and TC the time of Proc CHECK. Here, we dare to omit the e↵ect of c(G f) on those in order to make our argument clear. In Section 4.3, we will give further discussion taking c(G f) into account.

If we use 2B 2 T for the modulus, Proc CHECK is not necessary, and thus the total time T0 = TP (2B 2 T) + TR(2B 2 T)). If we use some heuristic modulus q, then we should repeat the computation till the modulus exceeds 2B 2 R . Suppose that we reach to it by s times recursion, where q1, . . . , qs are moduli used. Then we have the following total times:

S2: T2 = P s i=1 (TP (qi)+TCRT (q1 • • • qi 1, qi)+TR(Q i j=1 qj)+ TC), where q1 • • • qs 1 < 2B 2
R < q1 • • • qs and TCRT (q, q 0) denotes the time for Chinese remainder theorem for two moduli q to q 0 . S3: T3 = TP (q1) + P s i=2 (TH (qi, qi 1) + TR(qi) + TC), where qs 1 < 2B 2 R < qs and TH (q 0 , q) denotes the time for Hensel lifting from the modulus q to q 0 . Getting precise estimation of TC is very di cult, when we apply ideal inclusion test. Thus, we may also apply additional modular technique to have e cient realization of Proc CHECK. The basic procedure is the following: Modular Check: Proc MODCHECK Once we have a candidate C constructed by using modulo q, we check if it is still valid modulo another q 0 . If so, we can show that C is still a candidate modulo q ⇥ q 0 . Otherwise, we compute the modular image of a candidate modulo q 0 by Step 1-1 of Proc CAND and apply Chinese remainder theorem to get the modular image of new candidate C 0 modulo q ⇥ q 0 . Now we denote by TMC(q) the time for modular check modulo q, not including any candidate construction. In our case, we suppose that TMC(q) is much smaller than TP (q) and TH (q 0 , q 00) with q = q 0 /q 00 . (See Section 4.3 for details.) Then, we have two types of usage of Modular Check: U1: We can reduce the number of Proc CHECK by repeating Proc MODCHECK until we have a stable result. Then, it is highly supposed that the computed candidate is correct. With this practical assumption, the size of the total modulus is supposed the same order as that of 2B 2 R , and so that of BR. Then we have T2 = O(

P s i=1 (TP (qi) + TCRT (q1 • • • qi 1, qi)+TR(Q i j=1 qj) +TMC(qi)) + TC), where Q s i=1 qi = O(BR)
, and T3 = O(TP (q1) + P s i=2 (TH (qi, qi 1) +TR(qi) + TMC(qi)) + TC), where qs = O(BR). U2: We repeat Proc MODCHECK till the total modulus reaches the theoretical bound. (So, the p-adic strategy is not suited for this approach.) This may sound somehow contradictory to our strategy. But, it is still able to give a practical solution as TMC(q) is much smaller than TP (q). In this case, we have T2 = O(P s i=1 (TP (qi) + TCRT (q1

• • • qi 1, qi) +TR(Q i j=1 qj))+ P t i=1 TMC(qi)),
where

Q s i=1 qi = O(BR) and Q t i=1 qi = O(BT).
Omitting the correctness check in U1, the total e ciency can be much improved. In this case, the result is not proven to be correct, but it will be with a high probability.

We will show certain practicality and theoretical e ciency of the multi-modular strategy, as it can use the both usages of modular check. In Section 4.2, we will give details of algorithms based on multi-modular strategy, and in Section 4.3, based on algorithms given in Section 4.2, we will discuss those e ciency, including estimation on TC .

Algorithms

In the case of the computation of the splitting field of the polynomial f , the target will be the Gröbner basis G of the splitting ideal corresponding to the symmetric representation G of the Galois group of f . All our first inputs came from the computation of G f by modular algorithm If condition COND is chosen to be the one corresponding to the version U1 then the output of Proc MODCHECK is not proven but we can use it as an input of Proc CHECK. Otherwise, the condition COND will correspond to version U2 and in this case the output will be proven.

Discussion on Efficiency

Here we discuss the e ciency of the proposed "multimodular strategy" along by basic estimation on concrete procedures given in the previous subsection. We use the facts given in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]. By actual experiments on real computers, the authors found that sometimes the correctness check dominated the total e ciency, even though the modulus used there was the same order of the real bound. To resolve this problem, we introduce the usage U2 and show that it can give good estimation on the total e ciency.

To estimate the total e ciency, we have to give concrete representation of the functions TP , TR, TCRT , TH , TMC and TC . To distinguish the time for Step 1-1 of Proc CAND by linear system solving [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] and that by Lagrange interpolation in Section 3.4, we denote by TPL the time by linear system solving and by TPI that by interpolation. Also, we denote by M(q) the unit cost of integer arithmetics of size q. Then, M(q) = O(q 2) for usual multiplication technique, and M(q) = O(q 1+✏) for fast multiplication technique. Also by [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF], we have TC = O(log(n)c(G f) 2 M(log(B 0)) and B 0 is the largest integer appeared in the normal form computation. (Finding a good estimation on B 0 is a di cult problem.)

For the strategy S2, it had better to use Lagrange interpolation for Proc CAND and TPI(q) = O(c(G f) 2 M(log(q))) + TGO, where TGO is the time for GoodOrdering. For the two quantities TCRT (A, B) and TR, we can apply fast extended GCD computation technique for Chinese remainder Theorem and rational reconstruction (see [START_REF] Pan | Acceleration of Euclidean Algorithm and Rational Number Reconstruction[END_REF]), and thus

TCRT (A, B) = O(c(G f)M(log(C)) log log(C))
, where C = max{A, B} and TR(q) = O(c(G f)M(log(q)) log log(q)). As to the modular check of correctness, we divide each candidate gi by q = p k and substitute the p-adic approximation of roots of f , and so TMC(q) = O(c(G f)(M(log(q)) + M(log(D))), where D is the maximal absolute value of numerators and denominators of coe cients of gi's. As D < BR, we have TMC(q) = O(c(G f)(M(log(BR))).

For the strategy S3, by the estimation in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF], we have TPL(q) = O((c(G f) ! M(log(q))), and

P s i=2 TH (qi, qi 1) = O(n 2 c(G f) 2 M(log(qs)))
where ! represents a feasible matrix multiplication exponent and 2  !  3 (see [START_REF] Zur Gathen | Modern computer algebra[END_REF]).

Thus, accumulating all representations, the total cost can be estimated in slightly rough but simple form, where we are assuming that log(BT) is much larger than log(BR) and the size of modulus q used is close to the size of the real bound BR, that is, the number of correctness checks in U1 and that of CRT construction in U2 can be bounded (one or very small). Proposition 4.1. Assume that log(BT) is much larger than log(BR) and the size of modulus q used and that of BR are the same order.

(1) When we use the modular check U1, we have

T2 =O(c(G f) 2 M(log(BR)) + c(G f)M(log(BR)) log log(BR) + TGO TC), T3 =O(c(G f) ! M(log(q1)) + n 2 c(G f) 2 M(log(BR)) + TC),
where TC = O(log(n)c(G f) 2 M(log(B 0)) and B 0 is the largest integer appeared in the normal form computation.

(2) When we use the modular check U2, we have

T2 =O(c(G f) 2 M(log(BR)) + c(G f)M(log(BR)) log log(BR) + c(G f)M(log(BT)) + TGO log(BT) log(BR)).
Taking account of the estimation on BT in Section 3.5, when GoodOrdering can be e ciently done like as TGO is O(c(G f)M(log(BR))), the strategy S2 with the modular check U2 can give the most e cient computation.

EXPERIMENTS AND REMARKS

We have implemented the algorithms of Section 4.2 with the computer algebra system Magma (version 2.13) in the case of an irreducible monic integral polynomial. This version of Magma provides a lot of functions for using the byproduct of the modular computation of the Galois group. All these functions are very e cient and easy to use but we need a little more, thus we have rewritten a large part of our sub-functions in order to be more e cient. Reordering the roots: In the case of the normalizer of G f in Sn is reduced to G f , it is sometimes better to recompute the Galois group G2 of f using another prime p2 and we finally reorder the roots by applying the permutation which conjugates G f and G2, as we can use the e cient computation of the Galois group. This is specially e↵ective when the descending process in the subgroups tree encounter two succeeding groups with large index. This method could be generalized by considering the normalizer of G f and will study in a future implementation. Choice of the primes p: Because of the limit imposed by the Tchebotarev's density theorem it may be hard to find primes which split completely in the stem field defined by the polynomial f . On the other hand, the costs of the padic arithmetic increase according to the order of the Galois group of f modulo p. Thus, we choose primes satisfying the property P such that the Galois group of f modulo theses primes has an order of at most 2. Heuristic bound BH : We choose, as an heuristic, to begin the computation Proc CAND modulo the fifth power of the product of one, two or three minimal primes satisfying the condition state before. Comments on the experiments: We try our implementation on several polynomials given by [START_REF] Klüners | A database for field extensions of the rationals[END_REF] from degree 6 to 9 and some polynomials of greater degree (not more than 13) corresponding to interesting computation schemes. By using this heuristic bound, Proc CAND already computes in all the cases the final result, thus the remaining computation is the check procedure without any reconstruction. For groups G with small order or c(G) (say under 500) our new implantation will not give a really better e ciency than the one presented in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] which was already very e cient. The only gain is given by the use of the interpolation in place of the linear system resolution. Moreover, if the group is very small in the symmetric group of same degree, the reordering procedure may be time consuming. Thus, in this case it is preferable to use mono-modular algorithm and check the result by normal forms computations (Proc CHECK S2). In the case of groups G with high order and small c(G), our experiments show that by using interpolation, the gain of eciency of this new implementation is comparable to the gain of theoretical complexity. In these cases, the experimental cost of the reordering of the roots and the reconstruction of the polynomials by Chinese remainder theorem are very small in comparison to the other parts of the computation. Concerning the check procedure, in these cases, the modular strategy with version U2 is always better than the procedure Proc CHECK S2. This experiments allow us to think that this new method should be use for the computation of splitting fields with high absolute degree, the remaining bottleneck is the e cient calculation of a computation scheme (we have tabulated them up to degree 10). Remarks on parallel computations: The computer algebra system Magma do not integrate any possibility for parallel computation, thus we have implemented all our algorithms with a sequential style. But, during our experiments we reported that all the parts of the computation that can be shared on di↵erent cores have the same time consuming in general. Thus, implementing these algorithms in a parallel system will have a real impact on the e ciency. For example, in the case of Proc CAND the computations modulo two di↵erent primes has almost the same time consuming in general (this is the case when the word sizes of these primes are the same and they have the same decomposition property modulo f).

We give here some specific examples and comments about them. We give, for each example, the name of the group G in Butler and McKay's nomenclature, the order of G and the integer c(G) (as the sum of the i-relations degrees). The column Primes shows the timings of computing primes with good properties. The column Lin. shows timing Proc CAND using linear systems solving as in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF], Int. those when we use interpolation, S2 the timings for check procedure Proc CHECK S2, U2 the timing of Proc MODCHECK based on version U2 and Ord. the timing of reordering the roots. The total timings can be obtained by summing the column corresponding to strategies used during the computation. The measurements were made on a personal computer with a 3.0GHz Intel Xeon 64bits (all the timings are given in seconds). The first line shows a very special case where the total timing is dominated by the research of primes with good property. Theses cases appear when the group is very large in comparison with its size c(G) as here. On the last line, we show the two di↵erent timings for computing modulo two di↵erent primes. In this case, the first one corresponds to a prime which splits completely the polynomial f in contrary to the second one. This is a general fact, for a fixed word size, using a splitting prime will give better timings (in this case the first one is 10037 the second is 53). The remaining examples show that even the times between the di↵erent strategies are comparable, using multi-modular and interpolation approaches are in general better. We did not compare these timings with the ones given in [START_REF] Lederer | Explicit constructions in splitting fields of polynomials[END_REF] because of the di↵erence of architecture, but if we project them on the same computer our implementation would be more ecient with a factor from 10 to 1000 (this big di↵erence may come from the fact that computation schemes are not used in [START_REF] Lederer | Explicit constructions in splitting fields of polynomials[END_REF]). Also, we did not integrate in the last table the timings for computing G in Magma (version 2.14) with the new function GaloisSplittingIdeal (with parameter Roots set to false) since we can only obtain two of them by waiting not more than 300 seconds.

Group

CONCLUSION

We have presented a new method based on a multi-modular strategy for the computation of the splitting field of a polynomial f . This new method is a good compromise for the one presented in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF] since it gives better results in the case where the later was ine cient. Also, the experiments show that this multi-modular method is a good candidate for a parallel implementation on a multi-core architecture.

The reordering roots function we give here is a general one. We plan to integrate e cient techniques of Galois groups computation (like the ones presented in [START_REF] Geissler | Galois group computation for rational polynomials[END_REF]) in order to reduce the length of the descending branch in the subgroups tree.

We hope that such a multi-modular method could be generalized to the problem of computing algebraic or integral relations between the roots of a polynomial like in [START_REF] Fieker | Integral linear dependencies of algebraic numbers and algebraic Lie algebras[END_REF].

 the full symmetric group on S, we simply write Stab(A) for StabG(A). We denote by StabG([a1, . . . , a k]) the point-wise stabilizer of a subset A = {a1, . . . , a k } of S, i.e. StabG([a1, . . . , a k]) = { 2 G | a i = ai, 8i 2 {1, . . . , k}}. The set of right cosets of H in G is denoted by H\G and the set of all representatives of H\G by H\\G.

 [X] ⌦ Z 0 p (M0 \ Z 0 p [X]) over Zp. The ideal Qp ⌦Q M0 is denoted by M

.

 Let m(p) be a component of ⇡p(m) and m (p,1) the primitive idempotent of A (p,1) 0 corresponding to m(p) . Then Stab(m) contains Stab(m(p)) (= Stab(m (p,1))) and Stab(⇡p(m)) = Stab(m). Moreover, if we denote Stab(m(p))\\Stab(m) by S then ⇡p(m) = P 2S m and m = P 2S m (p,1) . Now we fix a component m(p) of ⇡p(m) and its corresponding idempotent m (p,1) of A (p,1) 0

Theorem 3 . 3 .where

 33 Let Ei = {e1 < • • • < es = i} be an i-relation. The corresponding polynomial gi verify gi = Li with Trans is the transversal StabG f ([e1, . . . , es])\\G f 3.5 Bound for the Coefficients of g ⇤ s In the formula Li given in Theorem 3.3 the denominators can be canceled by multiplying with a su ciently large power of d(f) the discriminant of the polynomial f . The multiplication by d(f) can cancel two denominators of the form Q e2O(j,) e6 = (e j) 1

ACKNOWLEDGMENT

The authors would like to thank the referees for their valuable remarks.

(see [START_REF] Yokoyama | A modular method for computing the Galois groups of polynomials[END_REF], [START_REF] Geissler | Berechnung von Galoisgruppen über Zhalund Funktionenkörpern[END_REF][START_REF] Geissler | Galois group computation for rational polynomials[END_REF]) modulo p k 1 1 a power of a prime satisfying property P. From this computation we obtain a finite sequence {(Ii, Ai) : i = 1, . . . , t} of invariants and their integer evaluation modulo p k 1 1 as in Theorem 3.2. Because, we will use multi-modular strategy S2 for computing G we may need to reorder the roots of f modulo p k 2 2 , where p2 is a prime satisfying P di↵erent from p1. To do this we use the sequence {(Ii, Ai)} as in Theorem 3.2, this is described in the following function:

We assume p k 2 2 > p k 1 1 (else we exit with an error).

Let ↵ be the roots of f modulo p k 2 2 . Let t be the length of the sequence {(I i , A i)}. for i = 1 to t do Let (G, H) be the groups corresponding to

As presented in Section 4.1 we now give an algorithm to compute a candidate G cand = {g1, . . . , gn} for the target G by using a heuristic bound BT . This first step is described by the algorithm Proc CAND that takes as input an approximation of the roots of f mod p k 1 1 as a Gröbner basis G (p 1 ,k 1) of the splitting ideal of f mod p k 1 1 , the Galois group G f corresponding to the order of these roots and a set P of couples (p, k) where p's are di↵erent primes (di↵erent from p1) satisfying property P and k's are integers such that

To the group G f is associated a computation scheme which is represented by the set I of indexes of the gi to compute in G and the corresponding i-relation Ei. Before giving this first algorithm, we give a specific Chinese Remaining Theorem procedure which will be used in the sequel:

Compute and reorder the roots of f mod p k . Interpolate the g i 's mod p k corresponding to E i with i 2 I. Let M be the modulus M ⇥ p k By CRT compute all the g i mod M (i 2 I). Now, we can describe the first algorithm corresponding to the first step Proc CAND:

Let M be the modulus

Let M be the modulus M ⇥ p k end for S1: try to convert all g i 's mod M to rational polynomials h i 's. if all the conversions above succeed then The polynomial gi is h i . else

Find a new couple (p, k) not in P. SpecCRT({g i mod M, i 2 I}, (p, k)).

Let M be the modulus M ⇥ p k . Goto step S1 and add (p, k) in P. end if For each gj with j 6 2 I, apply a technique over one gi with j < i to obtain gj .

Return G cand , G f , I, P.

Since we concentrate here on multi-modular strategy for the computation of G, we give an algorithm corresponding to Proc CHECK based on the strategy S2. Recall that this algorithm is based on the ideal inclusion test given in [START_REF] Renault | A modular method for computing the splitting field of a polynomial[END_REF]: Algorithm 2: Proc CHECK S2({g1, . . . , gn},Gf , I, P)

The Gröbner basis G is {g 1 , . . . , gn}. else Let M be the product