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ABSTRACT

We describe in this paper a fully Bayesian approach for sparse au-
dio signal regression in an union of two bases, with application to
audio denoising. One basis aims at modeling tonal parts and the
other at modeling transients. The noisy signal is decomposed as
a linear combination of atoms from the two basis, plus a residual
part containing the noise. Conditionally upon an indicator variable
which is either 0 or 1, one source coefficient is set to zero or given
a hierarchical prior. Various priors can be considered for the indi-
cator variables. In addition to non-structured Bernoulli priors we
study the performance of structured priors which favor horizontal
time-frequency structures for tonals and vertical structures for tran-
sients. A Gibbs sampler is used to sample from the parameters of the
model. We present results over denoising of a piano sequence using
a MDCT basis with long time resolution to model the tonals and a
MDCT with short time resolution to model the transients.

1. INTRODUCTION

Sparse representations of signals are useful in a variety of current
signal processing challenges, particularly in the audio domain : sig-
nal denoising, blind source separation, audio analysis and compres-
sion, for example. By sparse, we here mean that most of the en-
ergy of the signalx =

P
siΦi is concentrated in a few significant

coefficients, allowing one to truncate the expansion to only these
coefficientsx ≈

PJ
j=1 sij Φij , while still maintaining to good ap-

proximation of the signal.
For music signals, lapped transforms such as the Modified Dis-

crete Cosine Transform (MDCT) have proved their effectiveness and
are nowadays used in the vast majority of high-quality audio cod-
ing algorithms (seee.g [1]). The MDCT has a number of desirable
properties : it is orthogonal, is does not lead to blocking effects,
and its implementation is based on the FFT. However, in general, a
straightforward use of such orthonormal bases does not provide suf-
ficiently sparse approximations, as for musical signals they fail to
represent sparsely the combination of both tonal components (which
require long windows) and fast transients (e.g. the attacks of the
notes, which require small windows). To get around this problem,
the simplest solution is to adapt the window size according to the
local content of the signal. However, this usually requiresad-hoc
methods for the adaptation decision; and more importantly such a
binary decision does not account for the additive nature of audio
signals: it is indeed quite common to have tones and transients si-
multaneously present at a given time.
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To have a truly additive model, overcompleteness is required.
We look for decompositions of the signal as a linear combination of
elementary waveforms (“atoms”) chosen from within a large dictio-
naryΦ. However, given an overcomplete dictionaryΦ, the unique-
ness of the decomposition does not hold anymore. Consequently,
finding the optimal or nearly-optimalJ-term approximation ofx re-
quires a tradeoff between precision and computational complexity
(indeed, findingtheoptimalJ-term approximation is known to be an
NP-complete problem). Many methods have been proposed, such as
basis pursuit denoising (BPDN) [2] and matching pursuit [3]. In this
context, a typical choice of dictionary is the union of two orthonor-
mal bases,{Φ1,k}k=1...N for the tonal content and{Φ2,k}k=1...N

for the transients:

x =

NX
k=1

s̃1,k Φ1,k +

NX
k=1

s̃2,k Φ2,k + e. (1)

As such, these techniques can give satisfactory results [4,5], but
the denoised signals are often contaminated by a significant amount
of so-called “musical noise”. This is due to the fact that some com-
ponents can be represented almost equally well (or badly !) in either
basisΦ1 or Φ2. When the priors do not explicitly consider local de-
pendencies between atom coefficients, isolated components can re-
main which may be perceived as artifacts. Indeed, one has to enforce
some consistency usingstructuredpriors. For the tonal content,
each partial appears on the spectrogram as a horizontal line. Tran-
sients, on the other hand, are characterized by vertical lines: most
time-frequency bins are active for some short time duration. There-
fore, enforcing structure should help reducing the number of isolated
atoms, and thus the musical noise. In a Markovian framework, such
structures have been proposed [6] for representing tones and tran-
sients, respectively in the MDCT and discrete wavelet domains. The
approach is two-step: first identify tonal components from the anal-
ysis coefficients of the signal on the long window MDCT and then
identify transients in the residual.

Our approach is one-step: we aim at identifying the synthe-
sis coefficients{s̃i,k} for all bases jointly, through application of
a Bayesian hierarchical prior. An indicator variable is used to in-
dicate whether a particular coefficient should be set to zero or not.
Markov chain priors are used on the indicator variables to favor hor-
izontal structures for tonals and vertical structures for the transients.
A Gibbs sampler (a standard Markov chain Monte Carlo technique)
is used to jointly estimate all of the parameters in the model. Our
approach can be related to that of [7], in which horizontal and spa-
tial Markov priors were adopted in a single-resolution overcomplete
Gabor regression model. In our case the chosen overcomplete basis,
in the framework of Eq. (1), is a dual-resolution union of two MDCT



bases, one with long windows{Φ1,k}k=1...N for the tonal content
and one with short windows{Φ2,k}k=1...N for the transients. Al-
though this technique can be applied to any of the above-mentioned
applications, we focus here on denoising problems, which are more
straightforward to evaluate (at least in terms of SNR).

The paper is organized as follows. Section 2 describes the signal
model and priors used for all the parameters. Section 3 describes
briefly the Gibbs sampler and gives update steps for the parameters.
Section 4 gives results for denoising of a piano sequence, comparing
different structured priors for the indicator variables. We show that
the use of horizontal and vertical structures to model the tonals and
the transients clearly reduces musical noise.

2. SIGNAL MODEL

2.1. Coefficients priors

The coefficients̃si,k, i = 1, 2, k = 1, . . . , N of Eq. (1) are given
the following hierarchical prior:

p(s̃i,k|γi,k, αi, λi) = (1− γi,k) δ0(s̃i,k) + γi,k N (s̃i,k|0, vi,k)

p(vi,k|αi, λi) = IG(vi,k|αi, λi) (2)

whereN (u|µ, v) andIG(u|α, β) are the normal and inverted-Gamma
distributions as defined in Appendix,δ0(x) is the Dirac delta func-
tion andγi,k ∈ {0, 1} is an indicator variable. Whenγi,k = 0, s̃i,k

is set to zero; whenγi,k = 1, s̃i,k has a normal distribution with
zero mean and variancevi,k, which is in turn assigned a conjugate
inverted-Gamma prior.

2.2. Structured priors

In order to model persistencies of t-f coefficients of musical signal,
structured priors are used forγi,k. We consider three scenarios:

1. Bernoulli priors: no structure is imposed on the indicator
variables, which are assigned the following independent
Bernoulli priors:

P (γi,k = 1|Pi) = Pi P (γi,k = 0|Pi) = 1− Pi (3)

2. “Horizontal” Markov model for tonals and Bernoulli prior
on transients: in order to model persistency in time of t-
f coefficients corresponding to tonal parts, we give a prior
horizontal structure to the indicator variable of the first basis
(the one aimed at modeling tonals). More precisely, when a
MDCT basis is used, the indexk = 1, . . . , N is more con-
veniently replaced by(q, n) with q = 1, . . . , lframe1 being a
frequency index andn = 1, . . . , nframe1 being a frame index,
with lframe1 × nframe1 = N . For a fixed frequency indexq
the sequence{γ1,q,n}n=1,...,nframe1 is modeled by a 2-state
first order Markov chain with transition probabilitiesP1,0→0

andP1,1→1.

3. “Horizontal” Markov model for tonals and “vertical” Markov
model for transients: in addition to horizontal structures we
also favor vertical structures for the transients. For a fixed
frame indexn, the sequence{γ2,q,n}q=1,...,lframe2 is thus
modeled by a 2-state first order Markov chain with transition
probabilitiesP2,0→0 andP2,1→1.

2.3. Residual model

The residual signale is assumed i.i.d zero-mean Gaussian with vari-
anceσ2 given an inverted-Gamma (conjugate) priorp(σ2|ασ, βσ) =
IG(σ2|ασ, βσ).

2.4. Hyperparameters priors

The scale parametersλi in each basis are given independent Gamma
(conjugate) priorsp(λi|αλi , βλi) = G(λi|αλi , βλi), allowing an
automatic adaptation to the scaling of the coefficients in each basis.
The degrees of freedomαi can be fixed to a certain value or esti-
mated like in [8]. However in our simulations the value ofαi hap-
pened to have little influence on the results and in practice we fixed
it to 1. The probabilitiesPi in the Bernoulli models andPi,0→0,
Pi,1→1 in the Markov models are given uniform priors on[0 1],
which may be routinely extended to Beta priors if required to favor
certain values over others.

3. MCMC INFERENCE

We propose to sample from the posterior distribution of the param-
etersθ = {s̃i, vi, αi, λi}i=1,2 ∪ σ2, using a Gibbs sampler. The
Gibbs sampler is a standard Markov Chain Monte Carlo technique
which simply requires to sample from the conditional distributions
of each parameter upon the others [9]. Point estimates can then be
computed from the obtained samples of the posterior distribution
p(θ|x). In contrast with EM-like methods which aim directly at
point estimates (ML or MAP), MCMC approaches are very robust
because they scan the full posterior distribution and are thus unlikely
to fall into local minima. This is however at the cost of higher com-
putational costs.

3.1. Alternate sampling of(γ1, s̃1) and (γ2, s̃2)

One approach is to sampleγ = [γ1 γ2] ands̃ = [s̃1 s̃2] successively.
This strategy requires the storage and inversion of the2N ×2N ma-
trix

`
ΦT Φ + σ2 diag([v1 v2])

−1´ at each iteration of the sampler
(whereΦ = [Φ1 Φ2]), which might not be feasible for largeN . The
structure of our dictionaryΦ, however, facilitates alternative block
sampling of(γ1, s̃1) and(γ2, s̃2), in the fashion of [10]. Indeed, be-
cause the Euclidean norm is invariant under rotation, the likelihood
of the observationx can be written as

p(x|θ) = (2 π σ2)−N/2 exp− 1

2 σ2
‖x− Φ1 s̃1 − Φ2 s̃2‖2

2

= (2 π σ2)−N/2 exp− 1

2 σ2
‖ΦT

2 (x− Φ1 s̃1)| {z }
x̃2|1

−s̃2‖2
2

= (2 π σ2)−N/2 exp− 1

2 σ2
‖ΦT

1 (x− Φ2 s̃2)| {z }
x̃1|2

−s̃1‖2
2

This means that conditionally upon(γ2, s̃2) (resp.(γ1, s̃1)) and the
other parameters, inferring(γ1, s̃1) (resp. (γ2, s̃2)) is a simple re-
gression problem with i.i.d datãx1|2 (resp. x̃2|1), and does not re-
quire any matrix inversion.

3.2. Gibbs steps

We now give the expression for the update steps of the parameters.
In the following most of the derivations have been skipped, further
details can be found in [5]. Note that all the conditional posterior
distributions of all the parameters can be easily sampled from.



3.2.1. Update of(γi, s̃i)

The coefficients̃si,k can be integrated out from the posterior distri-
bution ofγi,k, leading to

p(γi,k = 0|σ2, vi,k, x̃i|−i,k) = 1/(1 + τi,k) (4)

p(γi,k = 1|σ2, vi,k, x̃i|−i,k) = τi,k/(1 + τi,k) (5)

with

τi,k =

s
σ2

σ2 + vi,k
exp

 
x̃2

i|−i,k vi,k

2 σ2(σ2 + vi,k)

!
p(γi,k = 1|γi,−k)

p(γi,k = 0|γi,−k)

(6)
whereγi,−k denotes the set of all indicator variables{γi,l}l=1,...,N

exceptγi,k and wherex̃i|−i similarly denotes either̃x1|2 or x̃2|1.
The expression of the ratiop(γi,k = 1|γi,−k)/p(γi,k = 0|γi,−k)
changes according to the chosen prior for the indicator variables.
Whenγi,k has a Bernoulli prior, this ratio is simplyPi/(1 − Pi).
Whenγ1,k has a Markov horizontal structure andk = (q, n), this
ratio depends on the values ofγ1,q,n−1 andγ1,q,n+1. The exact ex-
pressions are standard results from the Markov chain literature (see
e.g, [11]). The posterior distribution of̃si,k is written as

p(s̃i,k|γi,k, vi,k, σ2, x̃i|−i,k) =


δ0(s̃i,k) if γi,k = 0

N (s̃i,k|µs̃i,k , σ2
s̃i,k

) if γi,k = 1

(7)
with σ2

s̃i,k
=
`
1/σ2 + 1/vi,k

´−1
andµs̃i,k = (σ2

s̃i,k
/σ2) x̃i|−i,k.

3.2.2. Update ofvi

The conditional posterior distribution ofvi,k is

p(vi,k|γi,k, s̃i,k, αi, λi) =
IG (vi,k|αi, λi) if γi,k = 0

IG
„

vi,k| 12 + αi,
s̃2

i,k

2
+ λi

«
if γi,k = 1

(8)

3.2.3. Update ofσ2

The conditional posterior distribution ofσ2 is given by

p(σ2|s̃1, s̃2, x) =

IG

 
σ2|N

2
+ ασ,

‖x− Φ1 s̃1 − Φ2 s̃2‖2
2

2
+ βσ

!
(9)

3.2.4. Update of the hyperparameters

• The posterior distribution of the scale parameters isp(λi|vi) =
G
`
λi|N αi + αλi ,

P
k 1/vi,k + βλi

´
,

• When the indicator variables are given a Bernoulli prior, the
posterior distribution ofPi is simplyp(Pi) = B(Pi|#γi +
1, N − #γi + 1), whereB(x|α, β) is the Beta distribution
defined in the Appendix and#γi is the number of values of
γi,k equal to 1. Similarly, when the indicator variables are
given Markov priors, the posterior distributions of the transi-
tion probabilities can be sampled using a Metropolis-Hasting
step as in [7]. In this work we simply update them as the
number of transitions from 0 to 0 and 1 to 1 divided byN .

1. Bernoulli tonals + Bernoulli transients 20.7 dB
2. MC tonals + Bernoulli transients 21.6 dB

3. MC tonals + MC transients 21.6 dB

Jeffrey’s + EM 15.3 dB

Table 1. Output SNR of the signal estimate for various input SNR.
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Fig. 1. Significance maps of the selected atoms in each basis using
Bernoulli priors onγ1 andγ2.

4. RESULTS

We present results for denoising of a melodic piano sequence of
lengthN = 131072, sampled at 44.1kHz (≈ 3s). White Gaussian
noise was added to the clean source with 10dB input SNR. We used
MDCT bases with sine bell analysis window and with 50% overlap.
The time resolutions (half the window length) arelframe1 = 1024
samples (≈ 23.2ms) andlframe2 = 128 samples (≈ 2.9ms).

We ran 500 iterations of our Gibbs sampler, and Minimum Mean
Square Error estimates of the parameters where computed by aver-
aging the last 100 samples. Using a MATLAB implementation run-
ning on a 1.25 GHz Powerbook G4 with 1Go RAM this requires
approximatively 30min when using Bernoulli priors only forγi, and
a few minutes more when using Markov chains priors on each ba-
sis. The MDCT operatioñy = ΦT

i y and inverse MDCT opera-
tion y = Φi ỹ were performed using an implementation based on
the Wavelab MATLAB toolbox [12]. The horizontal Markov chains
were initialized with arbitrary probabilitiesP (γ1,q,1 = 1) = 0.1
and the vertical Markov chains withP (γ2,1,n = 1) = 0.05.

Our approaches are compared with the one in [10], in which a
Jeffrey’s inverse priorp(s̃i,k) ∝ 1/|s̃i,k| is employed. This heavy-
tailed (improper) prior leads to very sparse signal representations.
It admits a hierarchical Gaussian formulation with Jeffrey’s inverse
prior on the variances. An Expectation Conditional Maximization
algorithm is used to find a Maximum A Posteriori estimate of
{s̃1, s̃2, σ

2}, treating{v1 v2} as the missing data and using alternate
update of̃s1 ands̃2 like in Section 3.1.

Table 1 shows the output SNR20 log10 ‖ŝ−s‖/‖s‖ of the signal
estimatês obtained with each method. Audio files can also be found
athttp://www-sigproc.eng.cam.ac.uk/˜cf269/
icassp06/sound_files.html .

Fig. 1, 2 and 3 show the significance maps of each basis,i.e the
Maximum A Posteriori estimates ofγ1 andγ2 for the three scenarios
described in Section 2.2.

The audio examples and Table 1 show that our approach, con-
sisting of using hierarchical model for the source coefficients and a
MCMC approach, outperforms the Jeffrey’s + EM approach, even
when using Bernoulli priors only. The main reason for this is that
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Fig. 2. Significance maps of the selected atoms in each basis using
horizontal Markov prior onγ1 and Bernoulli prior onγ2.
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Fig. 3. Significance maps of the selected atoms in each basis using
horizontal Markov prior onγ1 and vertical prior onγ2.

our prior is more flexible than the Jeffrey’s prior. However, the Jef-
frey’s + EM approach has the advantage of lower computational cost
(the results were obtained in 2 min).

5. CONCLUSIONS

We have proposed a fully Bayesian approach for sparse signal re-
gression in union of basis, with application to audio denoising. The
use of a mixture prior of a Dirac centered at 0 and a hierarchical
prior for the source coefficients involves an indicator variable which
can be given desired structures to model tonals and transients of au-
dio signals. Table 1 does not reveal large differences of output SNR
between scenarios 1, 2 and 3. However the audio files show that
musical noise is considerably reduced when structures are used. In
particular, though the SNR values obtained with scenario 2 and 3
are equal, the audio files show that the transient part obtained with
scenario 3 contains much less musical noise than with scenario 2.
The transients having a rather small energy, their contribution to the
output SNR is low, hence the importance of audio qualitative assess-
ment.

Other experiments carried out on polyphonic recordings showed
that the transients estimate obtained from scenario 3 reliably follows
the rhythm of the musical extracts and could be used for other appli-
cations such as tempo extraction or audio segmentation. Perspective
of this work will involve studying the influence of the initialization
of the Markov chains as well as exploring other transients models,
such as hidden Markov trees priors used with wavelet bases, in a
similar fashion to [6].

A. STANDARD DISTRIBUTIONS

Normal N (x|u, σ2) = (2πσ2)−1/2 exp− (x−u)2

2σ2

Beta B(x|α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1 (1− x)β−1, x ∈ [0, 1]

Gamma G(x|α, β) = βα

Γ(α)
xα−1 exp(−β x), x ∈ [0, +∞)

inv-GammaIG(x|α, β) = βα

Γ(α)
x−(α+1) exp(−β

x
), x ∈ [0, +∞)

The inverted-Gamma distribution is the distribution of1/X whenX
is Gamma distributed.
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