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SPARSE REGRESSION WITH STRUCTURED PRIORS: APPLICATION TO AUDIO
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ABSTRACT To have a truly additive model, overcompleteness is required.

L . We look for decompositions of the signal as a linear combination of
We describe in this paper a fully Bayesian approach for sparse alyjementary waveforms (“atoms”) chosen from within a large dictio-

dio _signal rt_egression in an _unic_m of two bas_es, with application tchary@. However, given an overcomplete dictionaby the unique-
audio denoising. One basis aims at modeling tonal parts and thgass of the decomposition does not hold anymore. Consequently,
other at modeling transients. The noisy signal is decomposed a3,4ing the optimal or nearly-optimal-term approximation of: re-

a linear combination of atoms from the two basis, plus a residug}ires a tradeoff between precision and computational complexity
part containing the noise. Conditionally upon an indicator Va”able(indeed, findingheoptimal.J-term approximation is known to be an
which is either 0 or 1, one source coefficient is set to zero or give’NP-compIete problem). Many methods have been proposed, such as
a hlerarc_hlcal prior. Var_|(_)us priors can be considered f_or t_he indiyasis pursuit denoising (BPDN) [2] and matching pursuit [3]. In this
cator variables. In addition to non-structured Bernoulli priors Wecontext, a typical choice of dictionary is the union of two orthonor-
study the performance of structured priors which favor horizontal, 5| bases{®1 1 }r_1...n for the tonal content and®s }r_1.
time-frequency structures for tonals and vertical structures for trang, the transieﬁts: ’
sients. A Gibbs sampler is used to sample from the parameters of the

model. We present results over denoising of a piano sequence using N N

a MDCT basis with long time resolution to model the tonals and a T = Z S1,6 1k + Zgz,k Dok + €. )
MDCT with short time resolution to model the transients. k=1 k=1

1. INTRODUCTION As su_ch, th_ese techniques can giv<=T satisfactory_res_L_JIts [4,5], but
the denoised signals are often contaminated by a significant amount

Sparse representations of signals are useful in a variety of curreff S0-called “musical noise”. This is due to the fact that some com-
signal processing challenges, particularly in the audio domain : si(geféon_ents can be represented almost equally well (or badly !) in either
nal denoising, blind source separation, audio analysis and compre@aSis®1 or ®2. When the priors do not explicitly consider local de-
sion, for example. By sparse, we here mean that most of the efendencies between atom coefficients, isolated components can re-
ergy of the signak: = " s,®; is concentrated in a few significant main which may be perceived as artifacts. Indeed, one has to enforce

coefficients, allowing one to truncate the expansion to only thes§0Me consistency usingiructuredpriors. For the tonal content,
coefficientsr Z._I s:.®;., while still maintaining to good ap- each partial appears on the spectrogram as a horizontal line. Tran-
proximation of the si:glnaf. 7 sients, on the other hand, are characterized by vertical lines: most

For music signals, lapped transforms such as the Modified Dislime-frequency bins are active for some short time duration. There-

crete Cosine Transform (MDCT) have proved their effectiveness an{P"€: enforcing structure should help reducing the number of isolated
are nowadays used in the vast majority of high-quality audio cogatoms, and thus the musical noise. In a Markovian framework, such

ing algorithms (see.g[1]). The MDCT has a number of desirable structures have been proposed [6] for representing tones and tran-

properties : it is orthogonal, is does not lead to blocking effects,SiemS’ respectively in the MDCT and discrete wavelet domains. The

and its implementation is based on the FFT. However, in general, @PProach is two-step: first identify tonal components from the anal-
straightforward use of such orthonormal bases does not provide sufSiS coefficients of the signal on the long window MDCT and then
ficiently sparse approximations, as for musical signals they fail tddentify transients in the residual. . o

represent sparsely the combination of both tonal components (which ©OUr approach is one-step: we aim at identifying the synthe-
require long windows) and fast transients (e.g. the attacks of th&!S coefficients{s; .} for all bases jointly, through application of
notes, which require small windows). To get around this problem@. Bayesian h|erarch|c_al prior. A_n_lndlcator variable is used to in-
the simplest solution is to adapt the window size according to th&licate whether a particular coefficient should be set to zero or not.
local content of the signal. However, this usually requiaeshoc Markov chain priors are used on thellndlcator variables to favor.hor-
methods for the adaptation decision; and more importantly such gon_tal structures for tonals and vertical structures for the transients.
binary decision does not account for the additive nature of audié* GiPbs sampler (a standard Markov chain Monte Carlo technique)

signals: it is indeed quite common to have tones and transients d8 Used to jointly estimate all of the parameters in the model. Our
multaneously present at a given time. approach can be related to that of [7], in which horizontal and spa-

tial Markov priors were adopted in a single-resolution overcomplete

Cédric Fevotte acknowledges support from the European Commissiof3abor regression model. In our case the chosen overcomplete basis,
funded Research Training Network HASSIP (HPRN-CT-2002-00285). in the framework of Eq. (1), is a dual-resolution union of two MDCT




bases, one with long windowgb, . }x=1...v for the tonal content 2.4. Hyperparameters priors

and one with short window$®;  }r—1...~ for the transients. Al-

though this technique can be applied to any of the above-mentionethe scale parametels in each basis are given independent Gamma

applications, we focus here on denoising problems, which are morgonjugate) priorp(X:|ay,, 8x;) = G(Ai|ax;, By;), allowing an

straightforward to evaluate (at least in terms of SNR). automatic adaptation to the scaling of the coefficients in each basis.
The paper is organized as follows. Section 2 describes the sign@he degrees of freedom; can be fixed to a certain value or esti-

model and priors used for all the parameters. Section 3 describégated like in [8]. However in our simulations the valuecafhap-

briefly the Gibbs sampler and gives update steps for the parametegggned to have little influence on the results and in practice we fixed

Section 4 gives results for denoising of a piano sequence, comparirigto 1. The probabilitiesP; in the Bernoulli models and; oo,

different structured priors for the indicator variables. We show thatP; 11 in the Markov models are given uniform priors ¢ 1],

the use of horizontal and vertical structures to model the tonals andthich may be routinely extended to Beta priors if required to favor

the transients clearly reduces musical noise. certain values over others.

2. SIGNAL MODEL
3. MCMC INFERENCE
2.1. Coefficients priors

We propose to sample from the posterior distribution of the param-
eters@ = {5;,vi, i, \i }iz1,2 U 0%, using a Gibbs sampler. The
Gibbs sampler is a standard Markov Chain Monte Carlo technique
P(SikVik, iy Ai) = (1 —ik) 00(8s,k) + Yi,e N(56,£]0,v:x)  which simply requires to sample from the conditional distributions
pviklo, Ni) = ZG(viklai, Ai) (2) of each parameter upon the others [9]. Point estimates can then be
] computed from the obtained samples of the posterior distribution
whereN (ulu, v) andZG (ule, 3) are the normal and inverted-Gamma,g|z). In contrast with EM-like methods which aim directly at
distributions as defined in Appendis () is the Dirac delta func-  point estimates (ML or MAP), MCMC approaches are very robust
tion andv; » € {0, 1} is an indicator variable. When,x =0, 5. pecause they scan the full posterior distribution and are thus unlikely

is set to zero; wheR;,x = 1, 5, has a normal distribution with g fa|| into local minima. This is however at the cost of higher com-
zero mean and varianag x, which is in turn assigned a conjugate pytational costs.

inverted-Gamma prior.

The coefficientss; , ¢« = 1,2, k = 1,..., N of Eq. (1) are given
the following hierarchical prior:

2.2. Structured priors 3.1. Alternate sampling of(v1,31) and (72, 52)

In order to model persistencies of t-f coefficients of musical signalOne aporoach is to sam ands — 151 5] successivel
structured priors are used fgy .. We consider three scenarios: '€ app ; Ple= [y1 2] ands =[5, 52 su y-
R o o This strategy requires the storage and inversion o2fkie< 2N ma-

1. Bernoulli priors no structure is imposed on the indicator iy (@7 ® + o diag([v1 v>]) ') at each iteration of the sampler
variables_, which are assigned the following independent (where® = [®; ®,]), which might not be feasible for larg¥. The
Bernoulli priors: structure of our dictionargp, however, facilitates alternative block

Plyvir=1P) =P Prix=0P)=1-—P (3) Ssampling of(1 ,_§1) and(fyg,.§2_), in the fashion of [10]. Indeed, be-
cause the Euclidean norm is invariant under rotation, the likelihood

2. "Horizontal” Markov model for tonals and Bernoulli prior  of the observation: can be written as
on transients in order to model persistency in time of t-

f coefficients corresponding to tonal parts, we give a prior 2\ N2 1 ~ o
horizontal structure to the indicator variable of the first basis P(|0) = (2707) XP—5 3 [ — @181 — P2 82|
(the one aimed at modeling tonals). More precisely, when a 2\ N/2 1 - B o
MDCT basis is used, the indéx = 1,..., N is more con- = (2mo7) exp—5— (| 22 (& — ®151) —3all2
veniently replaced byg,n) with g = 1,.. ., lrame1 being a 52“1

frequency indexand = 1, ..., nfsame1 being a frame index,

With lframe1 X Tgrame1 = N. For a fixed frequency index = 2no’) M exp—-— | @] (z — ®25) 513
the sequencéyi,g,nfn=1,...,ngame: 1S Modeled by a 2-state 20 e G

first order Markov chain with transition probabilitié o—.o iz

andP1,1_>1.

3. “Horizontal” Markov model for tonals and “vertical” Markov ~ 1his means that conditionally updnz, 52) (resp.(v1, 51)) and the
model for transientsin addition to horizontal structures we Other parameters, inferringy., 51) (resp. (72, 52)) is a simple re-
also favor vertical structures for the transients. For a fixegdr€ssion problem with i.i.d datay, (resp.2);), and does not re-
frame indexn, the sequUENCE2.qn a1, iname, IS thus — duire any matrixinversion.
modeled by a 2-state first order Markov chain with transition
probabilitiesPz 0o and Pz, 1—1.

3.2. Gibbs steps

2.3. Residual model We now give the expression for the update steps of the parameters.
The residual signad is assumed i.i.d zero-mean Gaussian with vari-In the following most of the derivations have been skipped, further
ances? given an inverted-Gamma (conjugate) ptige>| oo, 85 ) = details can be found in [5]. Note that all the conditional posterior
I6(o%as, Bs). distributions of all the parameters can be easily sampled from.



3.2.1. Update ofv;, §;)

The coefficientss; , can be integrated out from the posterior distri-

bution of; x, leading to

/(1 +7ik) (4)
Tik /(1 + Ti k) (%)

p(Yik = 0|0, vi ke, Ti|—i k)

p(Yik = Uo®, vig, Tij—ig) =

with
- o? > 53?|7i,k Vi, k p(vik = 1vi,—k)
g o2 + i 202(02 +vik) ) P(Yik = 0]vi,—)
(6)

wherey; _ denotes the set of all indicator variables ;}1=1,... ~
excepty; » and wherez; _; similarly denotes eithei, |, or ;.
The expression of the ratio(vi . = 1|vi,—x)/p(Yi,e = O]vi,—k)

changes according to the chosen prior for the indicator variables. 20 40 6 &

When~; . has a Bernoulli prior, this ratio is simpli; /(1 — F;).
When~; i, has a Markov horizontal structure akd= (g, n), this

ratio depends on the valuesof ; »—1 and~y1 4,»+1. The exact ex-

1. Bernoulli tonals + Bernoulli transients 20.7 dB
2. MC tonals + Bernoulli transients 21.6 dB
3. MC tonals + MC transients 21.6 dB

| Jeffrey’s + EM | 15.3dB]

Table 1. Output SNR of the signal estimate for various input SNR.
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Fig. 1. Significance maps of the selected atoms in each basis using

pressions are standard results from the Markov chain literature (sdernoulli priors ory, and-s.

e.g [11]). The posterior distribution of; ;; is written as

p(gik|7ik7vi.k702yii\7ik) = < %0(8x) 2
whr K= Nuklis, or0?, )

» (7)

with o2, | = (1/0® + 1/vik) " andus, , = (03, /0%) &ij—ik-

3.2.2. Update of;

The conditional posterior distribution of j is

P(Vi,k|Yi ks Sisks iy Ai) =
{ IQ’ (vi,k\ai, /\7,) |f Yi,k = O

-2
1 55k
16 ('Ui,k|§ + o, Sk

(8)
5+ /\z‘)

3.2.3. Update of2
The conditional posterior distribution ef is given by

p(0?]51,52,) =

— @151 — 02 53
76 <02|];7+a07||x 181 252||2+60) ©)

2

3.2.4. Update of the hyperparameters

e The posterior distribution of the scale parameterg s |v; )
g (/\z'\N ai + g, o 1/vik Jrﬂ,\,i),

If Yi,k = 1

4. RESULTS

We present results for denoising of a melodic piano sequence of
length N = 131072, sampled at 44.1kHz 4 3s). White Gaussian
noise was added to the clean source with 10dB input SNR. We used
MDCT bases with sine bell analysis window and with 50% overlap.
The time resolutions (half the window length) dfgqme1 = 1024
samples & 23.2ms) andl s qme2 = 128 samples & 2.9ms).

We ran 500 iterations of our Gibbs sampler, and Minimum Mean
Square Error estimates of the parameters where computed by aver-
aging the last 100 samples. Using a MATLAB implementation run-
ning on a 1.25 GHz Powerbook G4 with 1Go RAM this requires
approximatively 30min when using Bernoulli priors only far, and
a few minutes more when using Markov chains priors on each ba-
sis. The MDCT operatiory = &7 y and inverse MDCT opera-
tion y = ®; gy were performed using an implementation based on
the Wavelab MATLAB toolbox [12]. The horizontal Markov chains
were initialized with arbitrary probabilitie®(y1,41 = 1) = 0.1
and the vertical Markov chains witR(~2,1,, = 1) = 0.05.

Our approaches are compared with the one in [10], in which a
Jeffrey’s inverse priop(§; k) o 1/|3; | is employed. This heavy-
tailed (improper) prior leads to very sparse signal representations.
It admits a hierarchical Gaussian formulation with Jeffrey’s inverse
prior on the variances. An Expectation Conditional Maximization
algorithm is used to find a Maximum A Posteriori estimate of
{51, 52, 0%}, treating{v, v2} as the missing data and using alternate
update ofs; andss like in Section 3.1.

Table 1 shows the output SNR log,, ||5—s||/||s|| of the signal
estimates obtained with each method. Audio files can also be found

e When the indicator variables are given a Bernoulli prior, theat http://www-sigproc.eng.cam.ac.uk/"cf269/

posterior distribution ofP; is simply p(P;) = B(P;|#v: +

1, N — #v, + 1), whereB(z|«, 3) is the Beta distribution

icassp06/sound_files.html
Fig. 1, 2 and 3 show the significance maps of each basithe

defined in the Appendix angty; is the number of values of Maximum A Posteriori estimates gf and~» for the three scenarios
v, €qual to 1. Similarly, when the indicator variables are described in Section 2.2.

given Markov priors, the posterior distributions of the transi-

The audio examples and Table 1 show that our approach, con-

tion probabilities can be sampled using a Metropolis-Hastingsisting of using hierarchical model for the source coefficients and a
step as in [7]. In this work we simply update them as themCMC approach, outperforms the Jeffrey’s + EM approach, even

number of transitions from 0 to 0 and 1 to 1 divided By

when using Bernoulli priors only. The main reason for this is that
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A. STANDARD DISTRIBUTIONS

Normal N(zlu,0?) = (2m0®)~1/? eXP_4<Zzirq§)2
Beta B(zlo, B) = st 27 (1—2)° ™", 2 €[0,1]
Gamma G(z|a, B) = % 2 ! exp(—Bx), z € [0, +00)

inv-GammaZg(z|a, 8) =

3

£ 2 exp(=2), @ € [0, +00)

The inverted-Gamma distribution is the distributionlgfX whenX
is Gamma distributed.

Fig. 2. Significance maps of the selected atoms in each basis using

horizontal Markov prior ony; and Bernoulli prior ony;.
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Fig. 3. Significance maps of the selected atoms in each basis using

horizontal Markov prior orny; and vertical prior ony,.

our prior is more flexible than the Jeffrey’s prior. However, the Jef-

[6]

frey’s + EM approach has the advantage of lower computational cost

(the results were obtained in 2 min).

5. CONCLUSIONS

[7]

(8]

We have proposed a fully Bayesian approach for sparse signal re-
gression in union of basis, with application to audio denoising. The
use of a mixture prior of a Dirac centered at 0 and a hierarchical 9]
prior for the source coefficients involves an indicator variable which
can be given desired structures to model tonals and transients of au-
dio signals. Table 1 does not reveal large differences of output SNR
between scenarios 1, 2 and 3. However the audio files show that

musical noise is considerably reduced when structures are used. [0

particular, though the SNR values obtained with scenario 2 and 3
are equal, the audio files show that the transient part obtained witf11]
scenario 3 contains much less musical noise than with scenario 2.
The transients having a rather small energy, their contribution to the

output SNR is low, hence the importance of audio qualitative asses

ment.

fiz]

Other experiments carried out on polyphonic recordings showed
that the transients estimate obtained from scenario 3 reliably follows
the rhythm of the musical extracts and could be used for other appli-
cations such as tempo extraction or audio segmentation. Perspective

of this work will involve studying the influence of the initialization

of the Markov chains as well as exploring other transients models,
such as hidden Markov trees priors used with wavelet bases, in a

similar fashion to [6].

B. REFERENCES

S. Mallat, A wavelet tour of signal processingAcademic
Press, 1998.

S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition
by basis pursuit,"SIAM Journal on Scientific Computingol.
20, no. 1, pp. 33-61, 1998.

S. Mallat and S. Zhang, “Matching pursuits with time-
frequency dictionaries,1EEE Trans. Signal Processingec
1993.

L. Daudet and B. To&sani, “Hybrid representations for au-
diophonic signal encoding,’Signal Processingvol. 82, no.
11, pp. 1595-1617, Nov. 2002.

C. Fevotte and S. J. Godsill, “Sparse linear regression in unions
of bases via bayesian variable selectionEZEE Signal Pro-
cessing Letters2005, Accepted for publication - Preprint
available athttp://www-sigproc.eng.cam.ac.uk/

“cf269/

S. Molla and B. Torésani, “An hybrid audio scheme using
hidden Markov models of waveformsApplied and Compu-

tational Harmonic Analysisvol. 18, no. 2, pp. 137-166, Mar
2005.

P. J. Wolfe, S. J. Godsill, and W.-J. Ng, “Bayesian variable
selection and regularisation for time-frequency surface estima-
tion,” J. R. Statist. Soc. Series B004.

C. Fevotte and S. J. Godsill, “A Bayesian approach for blind
separation of sparse sourceslEEE Trans. Speech and Au-
dio Processing In press - Preprint available ttp:/
www-sigproc.eng.cam.ac.uk/ cf269/

S. Geman and D. Geman, “Stochastic relaxation, Gibbs dis-
tributions, and the Bayesian restoration of imagedEEE
Trans. Pattern Analysis and Machine Intelligengel. PAMI-

6, no. 6, pp. 721-741, Nov 1984.

] M. E. Davies and L. Daudet, “Sparse audio representations

using the MCLT,” Signal Processingn press.

L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognitioRfoceedings of the
IEEE, , no. 77, pp. 257-286, 1989.

D. Donoho, M. R. Duncan, X. Huo, and O. Levi,
lab 802,” Toolbox for Matlab, http://www-stat.
stanford.edu/"wavelab/

“Wave-



