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An Overview of Wavelet Analysis
and Time-Frequency Analysis

(a minicourse)
Bruno Torrésani1

LATP, CMI, Université de Provence,
39 Avenue F. Joliot-Curie, 13432 Marseille

FRANCE

Abstract

We describe several aspects of wavelet analysis and more general meth-

ods of time-frequency analysis, emphasizing applications to signal analysis

and processing problems.

1 Introduction

Time-Frequency analysis has been introduced from the need of developing a
mathematical version of musical notation. Classical analysis is generally based
upon a representation of functions, either the usual one (hereafter termed the
“time representation”) or the Fourier representation (“frequency representa-
tion”): formally

f̂(ω) =

∫

f(t)e−iωtdt .

It is known that the frequency representation yields a lot of difficult mathemati-
cal problems (see e.g. [57]). However, the frequency representation has also been
criticized for its lack of physical significance. From a physical point of view, it
does not make sense to think of a function or a signal as being a superposition of
functions which do not possess any time localization properties. Let us take the
example of a musical signal. Our ear interprets it as a series of notes, or “atoms
of sound” appearing at given times, with a finite duration and a given height
(the fundamental frequency). If the signal contains a given note once, say A,
a Fourier representation of the signal will exhibit a peak at the corresponding
frequency, without any indication of location or duration. We now quote J.
Ville:

“...the representation is mathematically correct because the phases
of the tones close to A have managed to suppress it by interference
phenomena before it is heard, and to enforce it, again by interfer-
ences, when it is heard... However this is a deformation of reality:
when the A is not heard, it is simply because it has not been played
yet...”

This motivates the search for a mathematical analogue of the musical notation:
a way of representing functions in terms of joint time-frequency variables.
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This programme of time-frequency representations has been achieved in var-
ious ways and various contexts. The first contributions seem to be due to
Ville on one hand, who proposed to use the Wigner distribution as a “time-
frequency density”, and Gabor on the other hand, whose approach was based
upon decompositions into “time-frequency atoms”, generated as time and fre-
quency translates of a Gaussian function. Since then, Ville’s approach has led
to the theory of quadratic time-frequency representations, very popular in the
signal analysis community. Gabor-type expansions are also very popular, and
have more recently enjoyed a renewed interest, since the development of wavelet
theory in the early eighties.

A. Grossmann and J. Morlet realized in 1983 that any square-integrable
function may be expanded into wavelets, namely translates and dilates of a sin-
gle function (the mother wavelet), provided that the latter possess some mild
oscillation properties. This simple result, and the remark that the correspond-
ing expansions are in fact very close to Gabor’s expansions, showed that wavelet
expansions had an important potential as a tool for signal analysis. Grossmann
and his collaborators also provided a beautiful interpretation of wavelet and Ga-
bor expansions in terms of square-integrable group representations, emphasizing
the importance of symmetry groups in the construction.

At about the same time, motivated by image processing problems, and the
construction by Y. Meyer of an orthonormal basis of L2(R) consisting in a dis-
crete system of wavelets (see [46] for example), S. Mallat [42] developed the
theory of Multiresolution analysis, providing a sort of algorithmic framework
for generating wavelet bases. This discovery had in fact a tremendous impact
in various fields, as it realized a synthesis between several apparently discon-
nected fields: image analysis and computer vision, mathematical analysis, sig-
nal coding,... A major achievement was the construction by I. Daubechies [16]
of orthonormal bases of compactly supported wavelets. The construction was
generalized in many respects since then: construction of new compactly sup-
ported wavelet orthonormal bases (see [15] for a general account), biorthogonal
bases [13], wavelet bases on intervals and open sets, generalized subband de-
compositions [14, 55] (wavelet packets, local trigonometric bases,...), and many
other developments.

The wavelet theory has also evolved very much along lines motivated by
applications. Besides signal and image processing applications, which were in
some sense the first motivations for wavelet-based methods, new applications
have gradually emerged. Without being exhaustive again, let us quote applica-
tions to numerical analysis [7], dynamical systems [4] and turbulence, quantum
physics, and more recently statistics. All these subjects brought additional con-
tributions to the general theory of wavelets.

The present paper is a written version of lectures given by the author at
the Dubna workshop on “self-similar systems”, in July 1998. The goal of the
lectures was to present a general introduction to the wavelet theory and some
more recent developments, with a necessarily “coarse sampling” of the subject.
Obviously, the theory is by now too large to fit into a single survey paper. There-
fore, we have chosen to limit our presentation to specific aspects, mostly related
to signal processing problems. We start our presentation with the introduc-
tion of wavelet transforms in the context of time-frequency analysis, in parallel
with the so-called “quadratic time-frequency transforms”, and the continuous
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Gabor transform. After describing some classical time-frequency problems, we
illustrate the

2 Time-frequency analysis; continuous transforms

The whole story of wavelet analysis started with the introduction of the contin-
uous wavelet transform in a seminal article by A. Grossmann and J. Morlet [29].
Many earlier contributions should in fact be quoted, both in the signal process-
ing and mathematical literature, but it was only in that paper that wavelet
transform was considered as such.

Like the continuous Gabor transform (also called short-time Fourier trans-
form), the continuous wavelet transform is a prototype of the so-called linear
time frequency representations, which provide decompositions of functions as
superpositions of elementary waveforms. Those linear time-frequency represen-
tations are often compared with the quadratic time-frequency representations, a
family of tools which are considered more powerful in some respects, but gener-
ally lack of robustness in complex situations. We start our analysis by a short
account of the quadratic time-frequency representations.

2.1 Quadratic time-frequency transforms

Definitions and general properties The first instance of time-frequency
transform is the ambiguity function, familiar to radar specialists (see e.g. [8]).
The (cross) ambiguity function Af,g(b, ω) of a pair of functions f(t) and g(t)
may be introduced as the solution of the following problem: let g(t) be a fixed
reference signal, and let f(t) be an observation, assumed to be a noisy version
of a time and frequency shifted copy of g(t):

f(t) = Ag(t− τ)eiξt + n(t) ,

where A is a constant and n(t) is a random perturbation, supposed to be a
white noise for the sake of simplicity. Let us assume that g ∈ L2(R). If the
random component is absent, the problem may be formulated as follows: find a
family of continuous linear forms Lb,ω such that for all τ, ξ), Lb,ω(gτ,ξ) attains its
maximum for (b, ω) = (τ, ξ). If n(t) is present, Lb,ω(f) = ALb,ω(gτ,ξ)+Lb,ω(n).
According to Riesz’s representation theorem, there exists a function ϕb,ω(t) ∈
L2(R) such that for all f ∈ L2(R), Lb,ω(f) = 〈f, ϕb,ω〉. Then, denoting by
E {X} the expectation of a random variable X, E

{

|Lb,ω(n)|2
}

= ||ϕb,ω||2, and
the optimal ϕb,ω is defined as the one which maximizes the Signal to Noise
Ratio (SNR) ρ2 = |〈gτ,ξ, ϕτ,ξ〉|2/E

{

|Lb,ω(n)|2
}

. The solution ϕb,ω = Kgb,ω
(whereK 6= 0 is a constant) is an immediate consequence of the Cauchy-Schwarz
inequality. Therefore, the parameters τ and ξ may be obtained by maximizing
with respect to b, ω the square-modulus of

∫

f(t)g(t− b)e−iωtdt .

The latter is essentially a time-frequency cross-correlation of f(t) and g(t), ob-
tained by considering scalar products of f(t) with time and frequency shifted
copies of g(t) of the form eiωtg(t − b) (with b, ω ∈ R). Therefore, it measures
how close f(t) is to time-frequency shifted copies of g(t).
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The definition (including the case of random time series) is given below.

DEFINITION 2.1 1. Let f ∈ L2(R). Its ambiguity function is defined by

Af (τ, ξ) =

∫

f(t+ τ/2)f(t− τ/2)e−iξtdt . (1)

2. Let {Xt, t ∈ R} a second order random time series. Then its ambiguity
function is defined by

AX(τ, ξ) = E

{∫

Xt+τ/2Xt−τ/2e
iξtdt

}

. (2)

It is easily seen that if f ∈ L2(R), thenAf is a bounded function (with ||Af ||∞ ≤
||f ||2). In addition, a direct calculation shows that if f ∈ L2(R), then Af ∈
L2(R2), and that ||Af ||22 = 2π||f ||4. More generally, it may be shown that A ∈
Lp(R2) for all p ∈ [1,∞] (bounds for the corresponding Lp(R2) norms have been
derived by E. Lieb [39]). More generally, the definition of ambiguity function
may be extended to distributions, and it may be shown that the “ambiguity
distribution” of a distribution φ ∈ S ′(R) is a distribution Aφ ∈ S ′(R2).

The ambiguity and cross-ambiguity functions possess several interesting prop-
erties. Among them, the so-called Moyal’s formula is extremely important:

PROPOSITION 2.1 Let f, f ′, g, g′ ∈ L2(R). Then Af,g,Af ′,g′ ∈ L2(R2), and

〈Af,g,Af ′,g′〉 = 2π〈f, f ′〉 〈g, g′〉 . (3)

The proof of the proposition follows from a simple calculation.
The non-deterministic version may be given a similar interpretation. Its

properties depend on the properties of the covariance operator C of the process,
defined by its matrix elements: for all f, g ∈ D(R),

〈Cf, g〉 = E

{

〈X, g〉〈X, f〉
}

. (4)

For example, if C extends to a Hilbert-Schmidt operator, which we denote by
C ∈ L2, then A ∈ L2(R2).

A convenient way of expressing the ambiguity function makes use of the
translation operator Tb, defined by Tbf(t) = f(t− b) and the modulation oper-
ator Eω defined by Eωf(t) = eiωtf(t): Af,g(τ, ξ) = 〈T− τ

2
E− ξ

2

f, T τ
2
E ξ

2

g〉. This

shows in particular that the ambiguity function Af (τ, ξ) only provide estimates
for the spreading of the analyzed object in the joint time-frequency plane, but
not on its localization in that space. Such an analysis is done by the Wigner-
Ville (WV) distribution, defined by

DEFINITION 2.2 1. Let f ∈ L2(R). Its Wigner-Ville distribution is the func-
tion of two real variables Wf defined by

Wf (b, ω) =

∫

f(b+ τ/2)f(b− τ/2)e−iωτdτ (5)

2. Let {Xt, t ∈ R} a second order time series. Then its Wigner-Ville distri-
bution (or Wigner spectrum) is defined by

EX(b, ω) = E

{∫

Xb+τ/2Xb−τ/2e
−iωτdτ

}

(6)
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REMARK 2.1 It is readily seen that the Wigner-Ville function and the ambigu-
ity function are related via a symplectic Fourier transform

A(τ, ξ) =
1

2π

∫ ∫

W(b, ω)e−i(ξb−ωτ)db dω , (7)

W(b, ω) =
1

2π

∫ ∫

A(τ, ξ)ei(ξb−ωτ)dτ dξ . (8)

The same holds true in the non-deterministic context. Therefore, the Wigner
function is square-integrable as soon as the ambiguity function is so. Therefore,
Wf ∈ L2(R2) as soon as f ∈ L2(R). In fact, Lieb’s estimates show that when
f ∈ L2(R), Wf ∈ Lp(R2) for all p ∈ [1,∞].

REMARK 2.2 The Wigner-Ville distribution may also be defined when f is a
distribution. Indeed, if f ∈ S ′(R), it may be shown (see [25] for example) that
Wf ∈ S ′(R2). In fact, the Wigner-Ville distribution is nothing but the Weyl
symbol of the operator of orthogonal projection onto f , which may be written:

Pfg(t) =
1

2π||f ||2
∫

Wf

(

t+ b

2
, ω

)

eiω(t−b)g(b)dbdω .

Properties of the Wigner-Ville distribution The WV distributions en-
joy remarkable properties. The first one reflects the orthogonality relations
of the Ambiguity functions, and go under the name of Moyal’s formulae: let
f, f ′, g, g′ ∈ L2(R). Then Wf,g,Wf ′,g′ ∈ L2(R2) and

〈Wf,g,Wf ′,g′〉 = 2π〈f, f ′〉 〈g′, g〉 . (9)

The orthogonality relations of the Wigner-Ville coefficients are a direct conse-
quence of the corresponding relations for ambiguity functions, and the symplec-
tic Fourier transform formulas (7) and (8).

A main property of the WV distribution is its covariance with respect to a
certain number of simple transformations. Namely:

1. Translations: if g(t) = f(t− τ), Wg(b, ω) = Wf (b− τ, ω).

2. Modulations: if g(t) = eiλtf(t), then Wg(b, ω) = Wf (b, ω − λ).

3. Rescalings: if g(t) = 1√
a
f
(

t
a

)

, then Wg(b, ω) = Wf

(

b
a , aω

)

.

4. Time-frequency rotations: Let θ be such that cos θ 6= 0, and set

gθ(t) =
1√
cos θ

1

2π

∫

ei tan θ(t
2+ξ2)/2eitξ/ cos θf̂(ξ)dξ .

Then
Wgθ (b, ω) = Wf (b cos θ + ω sin θ,−b sin θ + ω cos θ) .

More generally, the Wigner transform is covariant under a general group of
transformations, called the metaplectic group. We refer to [25] for more details.

5



2.2 Examples

Time-frequency localization The examples that best illustrate the optimal
localization properties of the WV distribution are the pure oscillations, i.e.
the distributionof the form f(t) = eiλt. The WV transform of such an f(t)
has to be defined as a two-dimensional distribution, and one easily shows that
Wf (b, ω) = 2πδ(ω − λ).

More generally, such optimal localization properties are preserved by the
simple transformations alluded to in the previous section. While the effect of
translations, modulations and rescalings are easy to understand, let us stress
the role played by time-frequency rotations. It is easily shown that the so-
called linear chirps, i.e. the distributions with a linearly time-varying frequency
eiλt+αt

2/2 may be obtained by appropriate translation, modulation, rescaling
and time-frequency rotation of a pure oscillation. Therefore, its WV distribution
inherits the perfect localization properties from those of the pure oscillations,
and one obtains Wf (b, ω) = 2πδ(ω − (λ+ αb)). An example of such a behavior
is provided in Fig. 1, which represents the WV distribution of a linear chirp.

Interferences As a quadratic functional of the function f(t), the WV distri-
bution yields interference terms. Namely, let f1, f2 ∈ L2(R), and let f = f1+f2.
Then one immediately sees that

Wf (b, ω) = Wf1(b, ω) +Wf2(b, ω) + 2ℜWf1,f2(b, ω)

Even in the case where both Wf1(b, ω) and Wf2(b, ω) are sharply localized in
the (b, ω) plane, the “cross term” 2ℜWf1,f2(b, ω) introduces an extra component
in the WV transform of f , which degrades the resolution. An example is given
in Fig. 2, where we display the WV distribution of the sum of three pulses.

The treatment of such interference terms has received a considerable atten-
tion in the signal processing literature during the past 10 years. Interferences
terms are generally attenuated by appropriate smoothings of the WV distribu-
tion. Examples are provided by the following classes of time-frequency distri-
butions:

1. The Cohen’s class: let Π ∈ L1(R2) be a fixed function. Associate with it
the following time-frequency distribution

ρf (b, ω) =

∫

Π(τ, ξ)W(b− τ, ω − ξ)dτdξ . (10)

ρf (b, ω) is expected to be smoother than the Wigner-Ville distribution,
and in particular to contain much less important interference terms. No-
tice that since it is obtained from a WV distribution via a two-dimensional
convolution (a translation invariant operation), ρf (b, ω) inherits fromW(b, ω)
the time-frequency translations covariance.

2. The affine class: Given a function of two variables Π(b, ω), introduce

ρf (b, a) =

∫

Π(τ, ξ)W
(

b− τ

a
, aξ

)

dτdξ . (11)

ρf (b, a) is a time-scale representation of f . With the same arguments as
before, it may be shown that it inherits from the WV distributions its
properties of covariance with respect to translations and rescalings.
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The need for linear time-frequency transform The quadratic time-frequency
distributions we just described have many interesting properties. We refer to [23]
for a detailed analysis of such properties in a signal processing perspective. How-
ever, they are often difficult to interpret in practical situations. For that reason,
simpler alternatives such as linear time-frequency transforms are often prefered.
We describe below the simplest two examples of such transforms. We first fo-
cus on the case of continuous transforms, and postpone the description of the
discretization problem to a subsequent section.

2.3 Continuous Gabor transform (CGT)

Definitions The simplest localized version of Fourier analysis is provided by
windowed Fourier transform, whose main idea is to localize the signal first by
multiplying it by a smooth and localized window, and then perform a Fourier
transform. More precisely, the construction goes as follows. Start from a func-
tion g ∈ L2(R), such that ||g|| 6= 0, and associate with it the following family of
Gaborlets

g(b,ω)(t) = eiω(t−b)g(t− b) . (12)

DEFINITION 2.3 Let g ∈ L2(R) be a window. The continuous Gabor transform
of a finite-energy signal f ∈ L2(R) is defined by the integral transform

Gf (b, ω) = 〈f, g(b,ω)〉 =
∫

f(t) g(t− b)e−iω(t−b) dt . (13)

Gaborlets yield decomposition formulas for functions in L2(R), as follows.

THEOREM 2.1 Let g ∈ L2(R) be a non trivial window (i.e. ||g|| 6= 0.) Then
every f ∈ L2(R) admits the decomposition

f(t) =
1

2π||g||2
∫ ∞

−∞

∫ ∞

−∞
Gf (b, ω)g(b,ω)(t)dbdω , (14)

where equality holds in the weak L2(R) sense.

In other words, the mapping L2(R) ∋ f →֒ 1
||g||

√
2π
Gf ∈ L2(R2) is an isometry

between L2(R) and L2(R2), and the inverse mapping is provided by the adjoint
mapping.

The case of random time series

DEFINITION 2.4 Let {Xt, t ∈ R} be a mean zero second order random time
series, and let g ∈ L2(R) be a window. The CGT of Xt is the random time-
frequency series defined by

GX(b, ω) = 〈X, g(b,ω)〉 (15)

By definition, the covariance operator C of the time series is defined by its matrix
elements 〈Cf, g〉 = E {〈X, g〉〈f,X〉}. Obviously,

E
{

Gf (b, ω)Gf (b
′, ω′)

}

= 〈Cg(b′,ω′), g(b,ω)〉 (16)
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The case where the time series {Xt, t ∈ R} under consideration is (second order)
stationary is particularly interesting. By definition, the covariance operator is
in such a case a convolution operator, and one immediately sees that

E
{

Gf (b, ω)Gf (b
′, ω)

}

=
1

2π

∫

eiη(b−b
′)E(η) |ĝ(η − ω)|2 dη ,

where E(η) stands for the spectral density of the time series.
However, the main interest of the CGT lies in its potential for handling non

stationary situations (in the stationary case, the covariance operator is a con-
volution operator, which is perfectly handled by Fourier methods). Particularly
interesting is the case of the so-called locally stationary time series, which are
basically random time series whose covariance operator is “almost diagonal” in
an appropriate Gabor representation. Such a situation has been discussed by
various authors in various contexts (see e.g. [38, 44, 11, 33]).

examples The CGT and similar tools have been quite popular in the speech
processing literature, because of its capability of handling the so-called locally
harmonic signals, namely signals which may be modeled in the form

f(t) =
K
∑

k=1

Ak(t)e
iφh(t) , (17)

where the local amplitudes ak(t) and the local frequencies ωk(t) = φ′k(t) are
assumed to be slowly varying. Such signals are called locally harmonic when, in
addition, the local frequencies are close to be integer multiples of a fundamental
frequency (the pitch frequency: ωk(t) ≈ kω1(t). The CGT of such signals have
been studied by several authors. For example we have the following estimates

LEMMA 2.1 Let g ∈ L2(R) be a window such that
∫

|tg(t)|dt <∞ and
∫

t2|g(t)|dt <
∞. Let

f(t) = A(t)eiφ(t)

be such that A, φ ∈ C2(R), and let Gf (b, ω) denote the continuous Gabor coef-
ficients of f with respect to the window g. Then

Gf (b, ω) = A(b)eiφ(b)ĝ(φ′(b)− ω) [1 +R(b, ω)] , (18)

and the remainder R(b, ω) is bounded as

|R(b, ω)| ≤ K1
|A′(b)|
|A(b)| +K2

supu |A′′(u)|
|A(b)| +K3

supu |φ′′(u)|
|A(b)| .

A proof of a statement close to that one may be found in [41]. See also [19, 51, 11]
for similar approaches.

The meaning of such statements is the following: as soon as the amplitudes
A(t) and frequencies φ′(t) are slowly varying enough, one may write

Gf (b, ω) ≈ A(b)eiφ(b)ĝ(φ′(b)− ω) .

Assume now that g(t) is a smooth function, located near the origin t = 0
(typically a Gaussian function.) The latter expression shows that for each value
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of the time variable b, the modulus of the CGT attains its maximum on a curve
(the so-called ridge) of equation ω = φ′(b), i.e. describing the instantaneous
frequency of the function f(t).

We refer to [11] for a large number of numerical illustrations of such a situa-
tion. We limit our illustrations to an example of speech signal, in which several
such components are present. Thanks to the linearity of the CGT, the CGT of
a signal of the type (17) is of the form

Gf (b, ω) ≈
K
∑

k=1

Ak(b)e
iφk(b)ĝ(φ′k(b)− ω) ,

and as soon as g is such that the various φ′k(b) − φ′ℓ(b) for ℓ 6= k are small
enough, the CGT of such a signal localizes itself near K different ridges. An
example of such a behavior is given in Fig. 3, where we display 625 milliseconds
of speech signal: /How are you ?/ (top) and the modulus of the CGT. Observe
the localisation near the ridges.

2.4 Continuous Wavelet Transform (CWT)

An alternative to Gabor transform was proposed more recently by Grossmann
and Morlet [29]. The main idea was to improve the time resolution of Gabor
transform, by changing the rule for generating the “basis functions”. This may
be done by replacing the modulation operation used to generate Gaborlets by
a scaling operation.

Wavelet transform Let ψ ∈ L1(R)∩L2(R) be a fixed function (in fact, it is
sufficient to assume ψ ∈ L1(R), but for convenience also assume that ψ ∈ L2(R).
This extra assumption ensures the boundedness of the wavelet transform.) From
now on it will be called the analyzing wavelet. It is also sometimes called the
mother wavelet of the analysis. The corresponding family of wavelets is the
family {ψ(b,a); b ∈ R, a ∈ R

∗
+} of shifted and scaled copies of ψ defined as

follows. If b ∈ R and a ∈ R
∗
+ we set:

ψ(b,a)(t) =
1

a
ψ

(

t− b

a

)

, t ∈ R . (19)

The wavelet ψ(b,a) can be viewed as a copy of the original wavelet ψ rescaled
by a and centered around the “time” b. Given an analyzing wavelet ψ, the
associated continuous wavelet transform is defined as follows

DEFINITION 2.5 Let ψ ∈ L1(R)∩L2(R) be an analyzing wavelet. The continu-
ous wavelet transform (CWT for short) of a finite-energy signal f(t) is defined
by the integral:

Tf (b, a) = 〈f, ψ(b,a)〉 =
1

a

∫

f(t)ψ

(

t− b

a

)

dt . (20)

Like Gaborlets, wavelets may form complete sets of functions in L2(R), and we
have in particular

9



THEOREM 2.2 Let ψ ∈ L1(R) ∩ L2(R), be such that the number cψ defined by:

cψ =

∫ ∞

0

|ψ̂(aξ)|2 da
a

(21)

is finite, nonzero and independent of ξ ∈ R. Then every f ∈ L2(R) admits the
decomposition

f(t) =
1

cψ

∫ ∞

−∞

∫ ∞

0

Tf (b, a)ψ(b,a)(t)
da

a
db , (22)

where the convergence holds in the strong L2(R) sense.

In particular, we also have “energy conservation”: if f ∈ L2(R), then Tf ∈
L2(R × R

∗
+, db

da
a ), and ||Tf ||2 = cψ||f ||2. Notice that in (21), the constant cψ

can only depend on the sign of ξ ∈ R, therefore assuming independence wrt
ξ is a simple symmetry assumption. The fact that 0 < cψ < ∞ implies that

ψ̂(0) = 0, so that the wavelet ψ(t) has to oscillate enough to be of zero mean.
The CWT of random time series may be defined in a way similar to the

CGT.

Examples The CWT has a behavior similar to that of the CGT in many
respects. The main difference lies in the fact that wavelets are extremely pre-
cise at small scales (where they lose frequency resolution), and more frequency
localized at large scales (where time resolution is lost). A main application of
this fact is the analysis of regularity (see below). A visualization of this effect
may be found in Fig. 3 (bottom), where we display the modulus of the CWT
of the speech signal shown at the top of the figure. As may be seen, at large
scales, the wavelets have a sufficient frequency resolution to analyze carefully
the first harmonics (namely, the pitch frequency and the first harmonic). For
smaller scales, frequency resolution is lost, and the same wavelet is unable to
“separate” several harmonic components. This results in interferences between
the harmonic components, which yield the oscillations of the modulus in the b
direction that appear on the image. We refer to [11] for a more detailed analysis
of such applications.

2.5 Linear transforms as approximations

Interestingly enough, there is a strong connection between the Wigner-Ville
distributions and the linear decompositions we just reviewed (or more precisely
their squared modulus). We express this in the following

PROPOSITION 2.2 Let f ∈ L2(R), and let Tf , Gf and Ef denote respectively its
CWT, CGT and WV transforms. Then the following two properties are true:

1. The squared modulus |Gf (b, ω)|2 of the CGT is a smoothed version of the
WV distribution Wf of f :

|Gf (b, ω)|2 =

∫

Wf (τ, ξ)Wg(τ − b, ξ − ω)dτdξ (23)
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2. The squared modulus |Tf (b, a)|2 of the CWT is an affine smoothing of the
WV distribution Wf of f :

|Tf (b, a)|2 =

∫

Wf (τ, ξ)Wψ

(

τ − b

a
, aξ

)

dτdξ (24)

These results follow from an easy calculation. See e.g. [23] for more details.

2.6 Littlewood-Paley transform

We close this section with a short account of a simplified version of wavelets
decomposition, known for a long time under the name of Littlewood-Paley de-
composition. Littlewood-Paley decomposition also provide a first step towards
the discretization of the continuous wavelet transforms, by a discretization of
the scale variable only.

Let ψ ∈ L1(R) ∩ L2(R) be such that 0 < cψ <∞, and let us assume that φ
is such that

∣

∣

∣φ̂(aξ)
∣

∣

∣

2

=

∫ ∞

a

∣

∣

∣ψ̂(uξ)
∣

∣

∣

2 du

u
. (25)

Assuming an obvious definition for φ(b,a)(t), we set

Sf (b, a) = 〈f, φ(b,a)〉 (26)

for all f ∈ L2(R). Then equation (22) may be replaced by

f(t) =
1

cψ
lim
a→0

∫

Sf (b, a)φ(b,a)(t)db

=
1

cψ

(∫

Sf (b, a)φ(b,a)(t)db+

∫ ∞

−∞

∫ a

0

Tf (b, u)ψ(b,u)(t)
du

u
db

)

.

(27)
The function φ is called a (bilinear) scaling function associated with the wavelet
ψ. We refer to [22] for more details.

It is important to emphasize the difference between wavelet coefficients Tf
and scaling function coefficients Sf . While the coefficients Sf (b, a) provide an
approximation of the function f at scale a, Tf (b, a) give details at scale a, i.e.,
essentially differences between two consecutive approximations.

In fact, the integral with respect to the scale variable in the continuous
wavelet decompositions may easily be replaced with a discrete sum, by the
following trick. Let Ψ(t) be such that

∣

∣

∣
Ψ̂(ω)

∣

∣

∣

2

=

∫ 1

1/2

∣

∣

∣
ψ̂(aω)

∣

∣

∣

2 da

a
(28)

The, setting for all f ∈ L2(R)

Σj(f)(t) =
1

cψ

∫

Sf (b, 2
−j)φ(b,2−j)(t)db (29)

Df (b, a) = 〈f,Ψ(b,a)〉 (30)

∆j(f)(t) =
1

cψ

∫

Df (b, 2
−j)Ψ(b,2−j)(t)db (31)
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we obtain the following decomposition: for all f ∈ L2(R),

f = Σj0(f) +

∞
∑

j=j0+1

∆j(f) =

∞
∑

j=−∞
∆j(f) (32)

Such decompositions are called Littlewood-Paley decompositions, and play a
great role in several contexts, for example in the study of partial differential
equations. They are also extremely useful in the context of signal analysis,
for they provide a version of wavelet analysis in which the translation invari-
ance properties of the continuous transform are preserved. Littlewood-Paley
decompositions may also be thought of as a first step towards multiresolution
decompositions, which will be described in Section 4

3 Wavelets and the characterization of regular-
ity

The wavelet transform is often compared to a mathematical microscope, because
of its capability of zooming in. In fact, another crucial property of wavelets is
their blindness to certain “regular” behaviors. Indeed, we have seen already
that a wavelet has necessarily zero integral. Hence, two functions which differ
only by a constant have the same wavelet coefficients: wavelets are blind to
constants. If necessary, one may make them blind to higher order polynomial
behavior, by imposing vanishing moments conditions, of the type

∫

tmψ(t)dt = 0 , m = 0, 1, . . .M .

This is best illustrated by the study of Hölder regularity properties of functions,
which we sketch below.

3.1 Global regularity properties

We start with an example of characterization of some global regularity prop-
erties. Let us first recall some definitions. For 0 < α < 1, let Cα denote the
Banach space of functions f satisfying

|f(t)− f(s)| ≤ C|t− s|α, t, s ∈ R, (33)

for some constant 0 < C <∞. Such functions are said to be Hölder continuous
of order α. Then we have

THEOREM 3.1 Let ψ ∈ L1(R) be such that

cα =

∫

|t|α |ψ(t)| dt <∞ , and

∫

sup
|δ|<1

|ψ′(u+ δ)| du <∞ . (34)

Then f ∈ Cα if and only if

|Tf (b, a)| ≤ C ′aα, a ∈ R, (35)

for some finite positive constant C ′ independent of b.
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We will not give a complete proof of this result here (see, e.g., [26]), but in order
to illustrate the role of the vanishing moments, let us sketch the proof of the
first half. Let ψ be a wavelet satisfying the above properties, and let f ∈ Cα.
Then since

∫

ψ(t)dt = 0, we have Tf (b, a) =
1
a

∫

[f(t)− f(b)]ψ
(

t−b
a

)

dt, and

|Tf (b, a)| ≤
C

a

∫

|t− b|α
∣

∣

∣

∣

ψ

(

t− b

a

)∣

∣

∣

∣

dt ≤ Ccα a
α .

which proves the first part of the theorem. The converse is proved in a similar
way and makes use of the second assumption on the wavelet.

REMARK 3.1 If one associates to any f ∈ Cα the infimum ‖f‖α of the con-
stants C such that (33) holds, it may be proved that ‖ · ‖α provides Cα with
a norm, which makes it a Banach space (notice that functions in this Banach
space, are only defined modulo additive constants). Then Theorem 3.1 expresses
the fact that for a suitably chosen wavelet, the number inf a−α|Tf (b, a)| defines
an equivalent norm on Cα. This is one of the simplest examples of the char-
acterization of function spaces by mean of the wavelet transform. Elaborating
on such arguments leads to the characterization of wider classes of functional
spaces (see, e.g., [46] or [26] for a review).

The theorem above only addresses the case of Hölder spaces of exponent
0 < α < 1. More generally, let us assume that n < α < n + 1. Then the
function f belongs to the Hölder space Cα if for any t there exists a polynomial
Pn of order n and a constant C such that for |h| small enough,

|f(t)− Pn(h)| ≤ C|h|α . (36)

Equivalently, f is Cα if its derivative of order n is Cα−n. To adapt to this
new situation, extra assumptions on the wavelet are needed. To see this, let
us consider the following toy example. Assume that f has M − 1 continuous
derivatives in a neighborhood U of a point t = t0. Then for every t ∈ U we may
write

f(t) = f(t0) + (t− t0)f
′(t0) + · · ·+ 1

(M − 1)!
(t− t0)

M−1f (M−1)(t0) + r(t) .

If the wavelet ψ (assumed to have compact support for the sake of the present
argument) has M vanishing moments, then for sufficiently small values of the
scale parameter a (i.e., such that supp(ψ(b,a)) ⊂ U for some b), we have

Tf (b, a) = 〈f, ψ(b,a)〉 = 〈r, ψ(b,a)〉 .

Then we can say that, at least in some sense, the wavelet does not “see” the
regular behavior of f(t) near t = t0 and “focuses” on the potentially singular
part r(t). If in addition we assume that f(t) is CM near t = t0, then we have
r(t) = (t− t0)

Mρ(t), with |ρ(t)| ≤ sup |f (M)|/M !, and we immediately conclude
that

Tf (b, a) ∼ O(aM ) as a→ 0 .

More generally, Theorem 3.1 is still valid if one assumes in addition that
the wavelet ψ has n vanishing moments (and a corresponding generalization
of condition (34)). The proofs go along the same lines, except that instead of
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using the zero integral property of ψ to subtract f(b) from f(t), one uses all
the vanishing moment assumption to subtract Pn(t − b) from f(t) inside the
integral.

Elaborating on such arguments leads to the characterization of Hölder spaces
of functions via wavelet transform (see, e.g., [46, 26]) and the whole body of work
on the characterization of singularities of a given signal [43]. More elaborate
arguments also yield characterizations of more general functional classes, such
as Sobolev, Besov and Triebel classes.

3.2 Local regularity

The previous results are global in the sense that they require uniform regularity
throughout the real line. Another classical example involves local regularity.
For a given point t we say that the function f is locally Hölder continuous of
order α at t if it satisfies

|f(t)− f(s)| ≤ C|t− s|α (37)

for some constant C and for |t − s| small enough. Then we have the “local”
counterpart of the previous result:

THEOREM 3.2 Let ψ ∈ L1(R) be a wavelet with M +1 vanishing moments such
that for any m, there is a constant Cm such that

∣

∣ψ(k)(t)
∣

∣ ≤ Cm

1+|t|m .

1. Let the function f be locally Hölder continuous of order α at t0. Then

|Tf (b, a)| ≤ C ′(aα + |b− t0|α) (38)

for some constant C ′.

2. Conversely, Let α < M be a non-integer number, and assume that there
exist numbers α′ < α and A such that for all a, b

|T (b, a)| ≤ Aaα

(

1 +

∣

∣

∣

∣

t0 − b

a

∣

∣

∣

∣

α′
)

. (39)

Then f is locally Hölder continuous of order α at t0.

The proof of the theorem uses the ingredients we have developed above. Let us
start with the first part, and consider T (b, a) = 1

a

∫

(f(t)− P (t))ψ
(

t−b
a

)

dt.

|T (b, a)| ≤ A

a

∫

|t− t0|α
∣

∣

∣

∣

ψ

(

t− b

a

)∣

∣

∣

∣

dt

≤ 2α
A

a

∫

(|t− b|α + |b− t0|α)
∣

∣

∣

∣

ψ

(

t− b

a

)∣

∣

∣

∣

dt

≤ 2αA

(

aα
∫

|u|α|ψ(u)|du+ |t0 − b|α||ψ||1
)

,

which proves the first assertion.
For the converse assertion, one first needs to exhibit the polynomial P (t).

Let us consider the Littlewood-Paley blocks

∆j(t) =

∫ ∞

−∞

∫ 2j+1

2j
T (b, a)ψ(b,a)(t)

da

a
db
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According to the assumptions made on ψ, each block may be bounded as

|∆j(t)| ≤ K2jα
∫ ∞

−∞

1 + 2α
′ |u|α′

+ 2α
′
∣

∣

t−t0
2j

∣

∣

α′

1 + |u|m du .

Taking m > α′ + 1 yields the following estimate:

LEMMA 3.1

|∆j(t)| ≤ K2jα

(

1 +

∣

∣

∣

∣

t− t0
2j

∣

∣

∣

∣

α′
)

. (40)

In the same way, we obtain the estimates

LEMMA 3.2 For all k smaller than the integer part of α,

∣

∣

∣
∆

(k)
j (t)

∣

∣

∣
≤ K2j(α−k)

(

1 +

∣

∣

∣

∣

t− t0
2j

∣

∣

∣

∣

α′
)

. (41)

Let us now consider the truncated Taylor expansion

Pt0(t) =

⌊α⌋
∑

k=0





∞
∑

j=−∞
∆

(k)
j (t0)





(t− t0)
k

k!

The behavior of this sum as j → −∞ is easily controlled thanks to Lemma 3.2.

In addition, the fact that |T (b, a)|≤||f || ||ψ||/√a implies |∆(k)
j (t0)| ≤ K2−j(k+

1
2
),

which takes care of the limit j → ∞. Then, Pt0(t) is well defined. Consider now
f(t)− Pt0(t). Let J be such that 2J−1 ≤ |t− t0| < 2J . It follows from Taylor’s
formula that

∞
∑

j=J



∆j(t)−
⌊α⌋
∑

k=0

∆
(k)
j (t0)

(t− t0)
k

k!



≤ |t− t0|⌊α⌋+1

(⌊α⌋+ 1)!
sup

s∈[t,t0]

∣

∣

∣∆
(⌊α⌋+1)
j (s)

∣

∣

∣≤K|t−t0|α

In addition, the sum from −∞ to J − 1 is bounded by

K

J−1
∑

j=−∞



2jα

(

1 +

∣

∣

∣

∣

t− t0
2j

∣

∣

∣

∣

α′
)

+

⌊α⌋
∑

k=0

2j(α−k)
|t− t0|k

k!





≤ K



2Jα + 2J(α−α
′)|t− t0|α

′

+

⌊α⌋
∑

k=0

2J(α−k)
|t− t0|k

k!





≤ K



2α|t− t0|α + 2α−α
′ |t− t0|α +

⌊α⌋
∑

k=0

2α−k

k!
|t− t0|α



 ≤ K|t− t0|α ,

where K is a constant, which may change from line to line. This sketches the
proof. More details may be found for example in [37] and [43] which contain
reviews especially tailored to mathematicians and signal analysts, respectively.
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REMARK 3.2 It is instructive to examine the meaning of conditions of the
type (38). Let us consider the cone in the (b, a) half-plane defined by the con-
dition |b − t0| < a. Within this cone we have |Tf (b, a)| = O(aα) as a → 0.
Outside the cone, the behavior is governed by the distance of b to the point t0.
These two behaviors are generally different, and have to be studied indepen-
dently. However, it is shown in [43] that non-oscillating singularities may be
characterized by the behavior of their wavelet transform within the cone.

REMARK 3.3 It is also shown in [43] that rapidly oscillating singularities can-
not be characterized by the behavior of their wavelet transform in the cone. A
typical example is given by the function f(t) = sin 1/t whose instantaneous fre-
quency tends to infinity as x→ 0. The wavelet transform modulus is maximum
on a curve of equation b = Ka2 for some constant K depending only on the
wavelet, and this curve is not in the cone. In such a case, the oscillations have
to be analyzed carefully (see, e.g., [37].)

REMARK 3.4 We close this discussion with a more “practical” remark. Most
often, data are only available in the form of discrete signals, i.e. only for discrete
values of the variable (with a fixed resolution given by the sampling frequency).
Therefore, the notions of singularities and Hölder exponents are strictly speaking
meaningless (as is the limit a→ 0.) Nevertheless, one can say that the behavior
of the wavelet coefficients across scales provides a good way of describing the
regularity of functions whose samples coincide with the observations up to a
given resolution.

4 Multiresolution wavelet analysis

Let us now turn to an approach which is completely different, namely the mul-
tiresolution approach. This approach is based upon a general methodology (the
multiresolution analysis, which automatically generates orthonormal bases of
wavelets. Remarkably enough, such an approach turned out to be extremely
close to image processing methods (subband filtering methods), which led to
fast pyramidal algorithms for wavelet decompositions.

We shall not go into the details of the theory, which received a considerable
attention in the recent years, and refer to [15, 53, 55] for details. We rather
sketch the construction and give a few consequences and examples.

4.1 Multiresolution analysis and associated wavelet basis

Let us start by introducing the notion of multiresolution analysis.

DEFINITION 4.1 A multiresolution analysis (MRA) of L2(R) is a collection of
nested closed subspaces Vj ⊂ L2(R)

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . (42)

such that the following properties hold:

1. ∪Vj = L2(R) and ∩Vj = {0}.

2. If f ∈ V0, then f( · − k) ∈ V0 for all k ∈ Z; f ∈ Vj if and only if
f( · /2) ∈ Vj−1.
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3. There exists a function χ ∈ V0 such that the collection of the integer
translates χ( · − k) for k ∈ Z is a Riesz basis of V0.

The function χ is called a scaling function, and the Riesz basis may be orthonor-
malized by Gram’s procedure by setting

φ̂(ω) =
χ̂(ω)

√
∑

k |χ̂(ω + 2πk)|2
. (43)

COROLLARY 4.1 With the same notation as before, the collection {φ( · −k); k ∈
Z} is an orthonormal basis of V0.

The function φ(t) is also called a scaling function. An immediate consequence
of the definition of φ in (43) is that the Fourier transform satisfies

∑

k

|φ̂(ω + 2πk)|2 = 1 . (44)

From now on, we shall essentially work with the scaling function φ associated
with orthonormal basis. The inclusion of the Vj spaces shows that φ(t) (as well
as χ(t)) may be expressed as a linear combination of the functions 21/2φ(2t−k),
which form an orthonormal basis of V1. The consequence is the so-called two-
scale difference equation (or refinement equation)

φ(t) =
√
2
∑

k

hkφ(2t+ k) . (45)

Let now the 2π-periodic function H(ω) be defined by

H(ω) =
1√
2

∑

k

hke
ikω , (46)

Clearly, we have φ̂(2ω) = H(ω)φ̂(ω). LetWj denote the orthogonal complement
of Vj in Vj+1. The cornerstone of the multiresolution theory is the existence of
a function ψ ∈W0 such that the collection {ψ( · − k), k ∈ Z} is an orthonormal
basis of W0. More precisely, if we define the 2π-periodic function G(ω) by

G(ω) = eiωH(ω + π), (47)

and if we denote by 2−1/2gk its Fourier coefficients, i.e., if we set

G(ω) = 1√
2

∑

k gke
ikω,

gk = −(−1)kh1−k , k ∈ Z ,
(48)

then we have

THEOREM 4.1 If ψ(t) is defined by

ψ(t) =
√
2
∑

k

gkφ(2t+ k), t ∈ R, (49)

then the collection {ψ( · − k); k ∈ Z} is an orthonormal basis of W0.
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See, e.g., [46] for a proof. Notice that ψ constructed in this way is in fact an
analyzing wavelet in the sense of the continuous wavelet transform introduced
earlier. Formula (49) is a second example of refinement equation. Set

{

ψjk(t) = 2j/2ψ
(

2jt− k
)

,
φjk(t) = 2j/2φ

(

2jt− k
)

.
(50)

By definition, it follows that for a given j ∈ Z, the collection {φjk; k ∈ Z} (resp.
{ψjk; k ∈ Z}) is an orthonormal basis of Vj (resp. Wj), and we have

COROLLARY 4.2 With the same notation as before, the collection of wavelets
{ψjk; j, k ∈ Z} is an orthonormal basis of L2(R).

4.2 Quadrature mirror filters

The remarkable property of H(ω) and G(ω) is that they satisfy the so-called
Quadrature Mirror Filter (QMF) condition, which is a direct consequence of
equations (44) and (45):

LEMMA 4.1 The periodic functions H(ω) and G(ω) defined in (46) and (47)
satisfy

|H(ω)|2 + |G(ω)|2 = 1, ω ∈ R. (51)

Let now f ∈ L2(R) be any square-integrable function, and set

sjk = 〈f, φjk〉 , and djk = 〈f, ψjk〉 (52)

Then, an immediate consequence of the refinement equations and Lemma 4.1 is

LEMMA 4.2 1. The coefficients {djk,j,j∈Z} and {sjk,j,j∈Z} may be computed
recursively via the following pyramidal algorithm

sj−1 k =
∑

ℓ

h2k−ℓsjℓ , and dj−1 k =
∑

ℓ

g2k−ℓsjℓ . (53)

2. The finer resolution coefficients may be obtained from the coarser ones by

sj+1 ℓ =
∑

k

(h2k−ℓsjℓ + g2k−ℓdjℓ) . (54)

These two equations are of fundamental practical importance, for they automat-
ically yield fast algorithms for discrete wavelet transform and inverse transform.

Let us also mention that such pyramidal algorithms have been generalized
to yield new orthonormal bases of L2(R), known as wavelet packet bases. The
interested reader may refer to [55] for a detailed account of such generalizations.

4.3 Discrete Littlewood-Paley transform

Let us finally quote for the record a variant of discrete wavelet transform, which
is essentially a discrete version of the Littlewood-Paley transform we described
above. The goal of such a transform is to restore a kind of (discrete) translation
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invariance. Let us consider a multiresolution analysis, with scaling function φ(t)
and wavelet ψ(t), and introduce the following family of functions, defined by

{

ψjk(t) = 2j/2ψ
(

2j(t− k)
)

,

φjk(t) = 2j/2φ
(

2j(t− k)
)

.
(55)

This family forms an overcomplete set. For any f ∈ L2(R), define

Dj
k = 〈f, ψjk〉 , and Sjk = 〈f, φjk〉 . (56)

An immediate calculation yields the following pyramidal algorithm for comput-
ing such coefficients:

Sj−1
k =

∑

ℓ

hk−2j−1ℓS
j
ℓ , and Dj−1

k =
∑

ℓ

gk−2j−1ℓS
j
ℓ . (57)

These coefficients yield an alternate wavelet representation for the function f(t),
suitable for problems in which translation invariance is an important issue. See
for example [43] for some applications in the image processing context.

5 Implementing Symmetries

As we have seen already, the continuous (linear or quadratic) time-frequency
transforms described at the beginning of this paper possess important built-in
symmetry properties. Such covariance properties, which are crucial for practical
purposes (in particular for signal processing applications) are in fact intrinsic to
the transforms, and even characterize them. This fact is conveniently described
by means of group-theoretical methods. Indeed, the set of simple transforma-
tions used to generate the wavelets from a single one in general inherits the
structure of a group G (as is the case for instance for translations, modulations
or dilations).

The deep connection between the usual wavelet decompositions, coherent
states theory and the theory of square-integrable group representations was
emphasized by H. Moscovici and A. Verona [47, 48] and A. Grossmann, J. Morlet
and T. Paul independently [30]. As a result, all such wavelets are generated from
a representation of a group of simple transformations G, in such a way that
the representation is unitarily equivalent to a subrepresentation of the regular
representation, i.e. a representation of the group G onto L2(G).

5.1 Square-integrable group representations

The connexion between time-frequency representation theorems and square-
integrable group representations was realized by A. Grossmann, J. Morlet and
T. Paul in [30]. We briefly sketch the construction.

DEFINITION 5.1 Let G be a separable locally compact Lie group, and let π be
a unitary strongly continuous representation of G on the Hilbert space H. π
is said to be square-integrable (or to belong to the discrete series of G) if π is
irreducible, and if there exists at least a vector v ∈ H such that

0 <

∫

G

|〈π(g)v, v〉|2 dµ(g) < ∞ . (58)

Such a vector is said to be admissible.
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Square-integrable group representations have been extensively studied in the
literature, in particular for compact groups, locally compact unimodular groups
and non-unimodular locally compact groups. The results may be summarized
in the following theorem, due to Duflo and Moore:

THEOREM 5.1 Let π be a square-integrable strongly continuous unitary repre-
sentation of the locally compact group G on H. Then there exists a positive
self-adjoint operator C such that for any admissible vectors v1, v2 ∈ H and for
any u1, u2 ∈ H

∫

G

〈u1, π(g).v1〉〈π(g).v2, u2〉 dµ(g) = 〈C1/2v2, C
1/2v1〉 〈u1, u2〉 (59)

Moreover, the set of admissible vectors coincides with the domain of C.

Let λ : G→ U(L2(G)) be the left-regular representation of G: if f ∈ L2(G),

(λ(h)f) (g) = f(h−1g) . (60)

Theorem 5.1 shows that a representation π of G is square integrable if and only
if is is unitarily equivalent to a subrepresentation of the left-regular represen-
tation λ. The corresponding intertwiners can be realized as follows. If v is an
admissible vector in H, and v′ ∈ H, introduce the Schur coefficients, i.e the
matrix coefficients of elements of G:

cv,v′(g) = 〈v′, π(g)v〉, g ∈ G (61)

Let T be the left transform [30], i.e. the map defined by

T : u ∈ H → Tu = cv,u(·) ∈ L2(G) (62)

T realizes the intertwinning between π and λ:

T ◦ π = λ ◦ T (63)

The idea of Grossmann, Morlet and Paul was to use (59) and (62) for the analysis
of functions, in the case where H is a function space. This was the starting point
of many applications, especially in a signal analysis context. The left transform
T is used to obtain another representation of functions, and (63) expresses the
covariance of the transform. Notice that the continuity assumption is fulfilled
by construction.

5.2 The classical examples

Gabor functions We start with the case of the so-called canonical coherent
states, generated from the n-dimensional Weyl-Heisenberg group GWH = R

2n×
S1, with group operation

(q, p, ϕ) · (q′, p′, ϕ′) = (q + q′, p+ p′, ϕ+ ϕ′ + p.q′ [mod 2π]) (64)

It follows from the Stone-Von-Neumann theorem that any irreducible unitary
representations of GWH is unitarily equivalent to one of the following form
(see [40, 52]). If f ∈ L2(Rn)

[

π(q, p, ϕ) · f
]

(x) = eiµ(ϕ−p.(x−q))f(x− q)
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for some µ ∈ Z
∗. Let us focus on the one-dimensional situation for the sake of

simplicity, and assume µ = 1. The representation is square-integrable, and the
corresponding left transform is the Gabor transform described in Definition 2.3,
up to a phase factor eiϕ. More precisely, the Gaborlets read

g(b,ω) = π(b, ω, 0)g .

This can be interpreted as a square-integrable projective representation of the
abelian group R

2n. Notice that in such a case, one does not have full covari-
ance by time-frequency shifts, precisely because of this phase factor (twisted
covariance.)

One-dimensional wavelets Let Gaff = R×R
∗
+ denote the one-dimensional

affine group, or “ax+ b” group with group operation

(b, a) · (b′, a′) = (b+ ab′, aa′)

It may be proved Gaff has only two inequivalent irreducible unitary represen-

tations on H2
±(R) = {f ∈ L2(R), f̂(±ω) = 0∀ω ≥ 0}, of the form

[π(b, a) · f ] (t) = 1√
a
f

(

t− b

a

)

(65)

(notice the slight change in the normalization.) This representation is square-
integrable, and the corresponding left transform is nothing but the affine wavelet
transform described in Definition 2.5. The covariance equation (63) simply ex-
presses that the affine wavelet transform of a dilated and shifted copy of a
function f(t) coincides with a dilated and shifted version of the wavelet trans-
form of f(t). Finally, the admissibility of a vector ψ ∈ L2(R) reduces to (21).
In a signal analysis context, the translation parameter is interpreted as a posi-
tion (or time) parameter, and the scale parameter a as a frequency parameter
(more precisely the inverse of a frequency parameter). One is then led to a
time-frequency representation.

N-dimensional wavelets To generalize the previous construction to the n-
dimensional case, one faces an irreducibility problem. The n-dimensional affine
group Gaff = R

n × R
∗
+ does not act irreducibly on L2(Rn). To restore ir-

reducibility, R. Murenzi [49] proposed to consider the semi-direct product of
the affine group by SO(n). The resulting group, denoted by IG(n) then yields
wavelets of the form

ψ(b,a,r)(x) = a−n/2 ψ

(

r−1x− b

a

)

, (66)

and the following resolution of the identity: for all f ∈ L2(Rn)

f = Cψ

∫

〈f, ψ(b,a,r)〉ψ(b,a,r)
db

an
da

a
dθ . (67)
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5.3 Generalizations

Several extensions and generalizations have been developed. A first way of
generalization concerns the study of more general classes of groups possessing
square-integrable representations. Let us mention for example the works of
Bernier and Taylor [5], Führ [27] and Aniello et al [2] on semi-direct products
of the form H ×R

n, where H is a closed subgroup of GL(n,R), with group law
(h, b)(h′, b′) = (hh′, b + hb′). The above mentioned authors have in particular
given necessary and sufficient conditions on the group H which ensure that the
representation under consideration is square integrable.

The application of the general theory to the case of discrete groups has also
been studied. We refer to [24, 3] for more details.

In more general situations, i.e. for more general groups, the general the-
ory does not apply, since the representation under consideration is not square-
integrable. However, a representation may become square-integrable when re-
stricted to an appropriate quotient group. The general theory has been de-
veloped by Antoine, Ali and Gazeau, and may be found in [1], where several
particular cases are also studied.

6 Conclusion

We have described in this paper a (limited) number of aspects of wavelet analysis
and time-frequency analysis, with emphasis on some signal processing related
problems. Our goal was to give an idea of the broadness of the theory, as well as
the huge range of applications and potential applications. The interested reader
may refer to several excellent textbooks available in the literature (up to now,
more than a hundred monographs have been published on the subject).

Before closing this review, let us stress that there are still many problems,
connected to wavelet theory and applications, which are still to be solved. For
the record, let us mention a few of them.

First, the connection between continuous and discrete wavelet systems is not
completely understood. We have seen the algebraic and geometrical origin of
continuous wavelet decompositions. The multiresolution approach seems to be
also extremely constrained by algebraic arguments, which should be developed
further (see [3]).

Also, a very important problem (from the practical point of view) is that
of adaptive decomposition. We have seen that the “time-frequency toolbox”
offers several different ways of decomposing a signal, which raises the problem
of selecting the most appropriate one. This point has been studied by several
authors (see for example [55]), and should be one of the main research areas in
the near future.
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FIGURES

Figure 1: Example of a WV transform: the case of a linear chirp (coded with
gray levels).

Figure 2: Interferences with the WV transform: the case of the sum of three
pulses.
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Figure 3: Gabor (middle) and wavelet (bottom) transforms of 625ms of speech
signal (top).
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